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Abstract

We investigate the notion of involutive weak globular ω-categories making use
of T.Leinster’s approach: as algebras for the initial contracted globular operad
in the bicategory of globular collections induced by the Cartesian monad of the
free involutive strict ω-category functor on globular ω-sets. An apparently more
restrictive notion of involutive weak globular ω-categories as algebras for the ini-
tial operadic-contraction in the bicategory of globular contracted-collections in-
duced by the previous Cartesian monad (where here the operadic multiplications
and units satisfy further compatibility axioms with the contractions) is also con-
sidered.
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1 Introduction and Motivation
Category theory, since its inception in [Eilenberg Mac Lane 1945], has always been
evolving in very close connection with algebraic topology. The interlink between these
two subjects became even more substantial with the development of higher category
theory (among the several resources available, see [Cheng Lauda 2004], [Leinster
2004, pages 19-30] for an introductory discussion, [Baez 1997, Baez Dolan 1995]
for original motivations also from physics and the wiki-site http://ncatlab.org/nlab for
further details).

Attempts to test the architecture of higher category theory within non-commutative
topology are still in their prenatal stage (see for example [Bertozzini Conti Lewkeer-
atiyutkul Suthichitranont 2020] where only some “non-commutative” variants of strict
n-categories have been considered).

Non-commutative topology is notoriously dominated by the central role of C*-alge-
bras as an arena generalizing the well-known Gel’fand-Naı̆mark duality between com-
mutative unital C*-algebras and compact Hausdorff topologies. As a first minimal at-
tempt to elaborate categorical environments capable of supporting non-commutative
homotopy/cobordism and define weak notions of (higher) C*-categories, one would
like to axiomatize the existence of (higher) involutions, vertically categorifying, in a
weak environment, several already known notions of involutive categories (see [Yau
2020] and [Bertozzini Conti Lewkeeratiyutkul Suthichitranont 2020, section 4] for
further references).

In our previous joint paper [Bejrakarbum Bertozzini 2017] we have been provid-
ing a definition of weak involutive ω-category, as an algebra for the free involutive
ω-category monad, in the spirit of J.Penon’s algebraic definition of weak ω-catego-
ries [Penon 1999]. Our ideological point of view is to consider involutions not (only)
as symmetries of a (higher) categorical structure, but as unary operations on the very
same footing of the binary compositions and nullary identities present in ordinary
categories.

http://ncatlab.org/nlab
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 The purpose of this work is to produce an algebraic definition of involutive weak
globular ω-categories following an operadic definition in the style of [Leinster
2004].

For now (for simplicity) we limited ourselves to the usual axiomatic setting of (weak)
higher categories, although we plan to further develop our work in the direction of
non-commutative exchange [Bertozzini Conti Lewkeeratiyutkul Suthichitranont 2020,
section 3.3] in view of application to operator algebraic structures.

In the original treatment from T.Leinster, the operadic and contraction structures in-
troduced onto a given globular T -collection are essentially independent; on the other
side, terminal objects in the category of globular T -collections seem to be naturally
contracted T -operads that further satisfy compatibility axioms between operadic mul-
tiplication/unit and contraction.

 We put forward a more restrictive notion of weak (involutive) globular ω-cat-
egory as an algebra for an initial “operadic contraction”, that is universal
among those contracted operads whose multiplication and unit satisfy addi-
tional compatibility conditions with the contraction.

As a first-aid motivation for readers that might not be familiar with the intricacies of
operadic definitions of weak ω-categories, we provide here below a brief synopsis of
the construction:

I one first introduces strict (involutive) ω-categories and constructs the Cartesian
monad T̂ (respectively T̂? in our involutive case) induced by the free (involu-
tive) ω-category functor,

I the monad T̂ (respectively T̂?) applied to the the terminal globular ω-set • spec-
ifies the input-type “arity” of general operations to be axiomatized via operads,

I to the Cartesian monad T̂ (respectively T̂?) a bicategory ET̂ (respectively ET̂? ) is

associated whose 1-cells E
tM
←−− M

sM
−−→ T̂ (E) (respectively E

tM
←−− M

sM
−−→ T̂?(E))

represent systems “labeling the multi-input one-target operations” with source
parametrized by T̂ (E) (respectively by T̂?(E)) and target in E,

I generalized T̂ -multicategories (respectively T̂?-multicategories) are defined as
monads in the previous bicategory and generalized T̂ -operads are just gener-
alized T̂ -multicategories whose labeling is provided by T̂ (•) (respectively by
T̂?(•)),

I the actual unbiased description of the evaluation of all the operations involved
into the definition of a weak globular ω-category and of their coherence struc-
ture are together uniquely specified by a choice of contraction on a T̂ -operad
(respectively on a T̂?-operad),
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I the monad L (respectively L?) that is the initial/universal contracted T̂ -operad
(respectively contracted T̂?-operad) is supposed to specify the labeling of op-
erations, in a weak (involutive) globular ω-category, with certain T̂ (•) (respec-
tively T̂?(•)) inputs and describe their formal compositions and identities,

I algebras for the initial contracted T̂ -operad L (respectively for initial contracted
T̂?-operad L?) are the actual weak (involutive) ω-categories,

I a contracted T̂ -operad (respectively contracted T̂?-operad) P produces a strict
functor from algebras over P to algebras over L (respectively over L?), that
by definition are the weak (involutive) ω-categories: to give an example of
weak (involutive)ω-category is equivalent to provide an algebra for a contracted
T̂ -operad (respectively contracted T̂?-operad) P.

Notice that in our involutive case: the involution is used to specify the input type
monad T̂?, it is not used to compose formal labeled operations and hence (apart from
the labeling input T̂?(•)) it does not modify the definition of the monad underlying
the definition of initial operad L?: there is usually no involution on the collection of
operations making up L? (the operad only takes care of the nesting of operations);
involutions and their evaluations are instead hidden in the choice of contraction that
explicitly depends on the base labeling via T̂?(•) in place of T̂ (•).

The content of the paper consists of this brief motivational introduction section 1 fol-
lowed by a section 2 of preliminaries, where we recall (in a notation compatible with
our previous work) already available material on strict ω-categories, monads in bicat-
egories and T.Leinster’s construction of weak ω-categories as algebras for a certain
generalized operad.

Section 3 of the paper opens recalling our previously developed definition of involu-
tive strict ω-category and continues exposing the new material on an operadic defini-
tion of involutive weak ω-categories as algebras for a generalized initial T̂?-operad in
the bicategory of T̂?-collections, where T̂? is the monad of the free involutive strict
ω-category construction presented in [Bejrakarbum Bertozzini 2017, propositions 3.1
and 3.2].

Our main existence theorem 3.12 is obtained from a direct procedure, detailed in the-
orem 3.16, explicitly constructing by recursion a free contracted T̂?-operadic magma
and quotienting it in order to obtain a free contracted T̂?-operad over a T̂?-collection.

The more restrictive notion of operadic contraction (in place of the more general
contracted-operads considered in [Leinster 2004, definition 9.2.1]) is introduced in re-
mark 2.22, where we also mention the possibility to utilize them to define a tighter
variant of Leinster’s algebraic notion of weak globular ω-categories. A parallel treat-
ment of this issue in the involutive case is described in remarks 3.10 and 3.19; the
terminal operadic-contraction T̂?(•) is examined in detail in remark 3.11.
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We close the work in section 4 with some outlook on possible further work in the
direction of weak higher C*-categories and higher categorical non-commutative ge-
ometry.

2 Preliminaries

This section is dedicated to a description of all the long background material necessary
to formulate algebraic operadic notions of weak ω-categories; most of the material is
directly inspired by [Leinster 2004].

Before starting, a foundational disclaimer: although no set-theoretical contradiction
will emerge in this work, formally (especially in section 2.3.1) we will use monads
internal to a bicategory of non-small categories 1

2.1 Strict Globular ω-categories

We recall the formalism and definition of strict globular ω-categories as used in [Be-
jrakarbum Bertozzini 2017].

Definition 2.1. An ω-quiver Q0
s0

⇔
t0

Q1
s1

⇔
t1
· · ·

sn−1

⇔
tn−1

Qn
sn

⇔
tn
· · · consists of a sequence of

sets (Qk)k∈N equipped with sequences of source (sk)k∈N and target (tk)k∈N maps.

A globular ω-set is an ω-quiver that satisfies the globularity conditions:

sk ◦ sk+1 = sk ◦ tk+1, tk ◦ sk+1 = tk ◦ tk+1, ∀k ∈ N.

For any k ∈ N, an element x ∈ Qk is called a globular k-cell of the globular ω-set.

A globular ω-set is reflexive if it is equipped with a sequence (ιk)k∈N of maps

Q0 ι0

→ Q1 ι1

→ · · ·
ιn−1

→ Qn ιn

→ · · ·

such that sk ◦ ιk = IdQk = tk ◦ ιk for every k ∈ N.

A (reflexive) globular ω-magma is a (reflexive) globular ω-set equipped with a family
of compositions

◦m
p : Qm ×Qp Qm → Qm, (x′, x) 7→ x′ ◦m

p x, ∀m ∈ N0, 0 ≤ p < m,

1A simple solution would be to consider a set theory based on classes of at least “3 types” (2-classes
consisting of elements called 1-classes, whose elements are called 0-classes and identified as sets) suitably
formulating the axiom of “class formation” in such a way that, for k ∈ {2, 1, 0}, “proper classes” of level k
cannot be elements of classes of level strictly less than k.
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where Qm×Qp Qm :=
{
(x′, x) ∈ Qm×Qm | tp◦tp+1◦· · ·◦tm−1(x) = sp◦sp+1◦· · ·◦sm−1(x′)

}
,

such that the following conditions hold: if m ∈ N0, 0 ≤ p < m and (x′, x) ∈ Qm×Qp Qm,

(sq ◦ sq+1 ◦ · · · ◦ sm−1)(x′ ◦m
p x)

=

(sq ◦ sq+1 ◦ · · · ◦ sm−1)(x′) ◦q
p (sq ◦ sq+1 ◦ · · · ◦ sm−1)(x), q > p;

(sq ◦ sq+1 ◦ · · · ◦ sm−1)(x′), q ≤ p.

(tq ◦ tq+1 ◦ · · · ◦ tm−1)(x′ ◦m
p x)

=

(tq ◦ tq+1 ◦ · · · ◦ tm−1)(x′) ◦q
p (tq ◦ tq+1 ◦ · · · ◦ tm−1)(x), q > p;

(tq ◦ tq+1 ◦ · · · ◦ tm−1)(x), q ≤ p.

A strict glubular ω-category (C, s, t, ι, ◦) is a reflexive globular ω-magma

C0
ι0 // C1

t0

ii

s0

uu
ι1 // C1

t1

ii

s1

uu
Cn ιn // Cn+1

tn

ii

sn

uu
,

Cn ×Cp Cn
◦n

p // Cn,

that satisfies the following list of algebraic axioms:

I (associativity) for all p,m ∈ N, such that 0 ≤ p < m, and all x, y, z ∈ Cm with
(z, y), (y, x) ∈ Cm ×Cp Cm:

(z ◦m
p y) ◦m

p x = z ◦m
p (y ◦m

p x),

I (unitality) for all p,m ∈ N, such that 0 ≤ p < m, and all x ∈ Cm:

(ιm−1◦· · ·◦ιp◦tp◦· · ·◦tm−1)(x)◦m
p x = x = x◦m

p (ιm−1◦· · ·◦ιp◦ sp◦· · ·◦ sm−1)(x),

I (functoriality of identities) for all q, p ∈ N, such that 0 ≤ q < p, and all
(x′, x) ∈ Cp ×Cq Cp:

ιp(x′) ◦p+1
q ιp(x) = ιp(x′ ◦p

q x),

I (binary exchange) for all q, p,m ∈ N such that 0 ≤ q < p < m and all
x, x′, y, y′ ∈ Cm with (y′, y), (x′, x) ∈ Cm ×Cp Cm and (y′, x′), (y, x) ∈ Cm ×Cq Cm:

(y′ ◦m
p y) ◦m

q (x′ ◦m
p x) = (y′ ◦m

q x′) ◦m
p (y ◦m

q x), •
���� x
EE

�� x′
// •

���� y
EE

�� y
′

// • .
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A morphism of ω-quivers Q
φ
−→ Q̂ (respectively, of globular ω-sets) is a sequence

(φk)k∈N of maps Qk φk

−→ Q̂k that, for any q ∈ N, satisfies any one of the following two
alternative properties:

q-covariance : ŝq ◦ φq+1 = φq ◦ sq, t̂q ◦ φq+1 = φq ◦ tq, (2.1)

q-contravariance : t̂q ◦ φq+1 = φq ◦ sq, ŝq ◦ φq+1 = φq ◦ tq. (2.2)

An index q ∈ N satisfying (2.1) (respectively (2.2)) is a φ-covariance (respectively
φ-contravariance) index.

A morphism of reflexive ω-quivers (respectively of reflexive globular ω-sets) is also
required to satisfy:

∀k ∈ N : ι̂k ◦ φk = φk+1 ◦ ιk.

A morphism of (reflexive) globular ω-magmas is a morphism of (reflexive) globular
ω-sets that, for all k, q ∈ N such that 0 ≤ q < k, further satisfies:

whenever q is φ-covariance index:

φk(x ◦k
q x′) = φk(x) ◦̂k

q φ
k(x′), ∀(x, x′) ∈ Qk ×Qq Qk,

whenever q is φ-contravariance index:

φk(x ◦k
q x′) = φk(x′) ◦̂k

q φ
k(x), ∀(x, x′) ∈ Qk ×Qq Qk.

Anω-functor between two strict globularω-categories is a morphism of their reflexive
globular ω-magmas.

Remark 2.2. Each one of the previous notions of “morphism” provides a strict 1-

category where, given a “composable pair of morphisms” Q
ψ
−→ Q̂

φ
−→ Q̃, their compo-

sition Q
φ◦ψ
−−−→ Q̃ is defined componentwise: (φk)k∈N ◦ (ψk)k∈N := (φk ◦ ψk)k∈N; and, for

any object Q := (Qk)k∈N, its “identity morphism” is defined by ι(Q) := (IdQk )k∈N. y

The following result is well-known, see for example [Penon 1999] or [Leinster 2004,
appendix F].

Proposition 2.3. Let Q denote the strict 1-category of covariant morphisms between
globular ω-sets and let C be the strict 1-category of covariant ω-functors between
strict globular ω-categories.

For any globularω-set Q in Q, a free strict globularω-category over Q is a morphism
of globular ω-sets Q

ηQ
−−→ U(C), into the underlying globular ω-set U(C) of a strict

globular ω-category C, satisfying the following universal factorization property: for

any morphism of globular ω-sets Q
φ
−→ U(Ĉ), into the underlying globular ω-set U(Ĉ)
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of a strict globular ω-category Ĉ, there exists a unique ω-functor C
φ̂
−→ Ĉ such that

φ = φ̂ ◦ ηQ.

The forgeful functor C
U
−→ Q (forgetting compositions and identities of objects in

C ) admits a left-adjoint F a U free strict globular ω-category functor C
F
←− Q that

is uniquely determined via a specific construction of free strict globular ω-category
Q

η
−→ U(C) over the globular ω-set Q above.

2.2 Monads in Bicategories and Cartesian Monads
Algebraic definitions of weak ω-categories in the several approaches available [Penon
1999, Batanin 1998, Leinster 1998, Batanin 2022] make use of algebras/modules over
certain (generalized) monads.

In this subsection we review the basic preliminaries on bicategories, introducing mon-
ads (respectively algebras over them) as internal monoids in a bicategory (respectively
modules over such monoids). For completeness, categorical adjunctions and some of
their well-known relations to monads in the bicategory of categories are also recalled,
following [Riehl 2016]. Finally Leinster’s definition of Cartesian monad is presented.

2.2.1 Bicategories

Bicategories [Bénabou 1967], [Borceux 1994, section I.7.7], [Leinster 1998], [Lein-
ster 2004, section I.1.5], are a horizontal categorification of the well-known notion
of weak monoidal category (where a monoidal category is just a strict 2-category
with one object). There are alternative possible equivalent definitions of this struc-
ture, we present here a version that is adapted to our notation for globular ω-set in
definition 2.1.

Definition 2.4. A bicategory (B, ◦, ι, α, λ, ρ) is a reflexive globular 2-magma

B0 ⇔ B1 ⇔ B2

such that:

I the 1-magma B1 ⇔ B2 is a strict 1-category with the vertical composition ◦2
1

and vertical identity ι1; 2

I (◦2
0, ◦

1
0) : B2 ×B0 B2 → B2 is a covariant 1-functor; 3

that is further equipped with:
2This condition implies that B2, and B2 ×B0 B2 are both bundles of 1-categories over the product

B0 ×B0 of discrete categories (with projections that are 1-functors) and that (ι1 ◦ ι0) : B0 → B2 is also a
functor, where B0 is considered as a discrete category.

3This condition is equivalent to the strict axioms of binary exchange and functoriality of identities.
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I an associator natural isomorphism
(
(− ◦2

0 −) ◦2
0 −

) α
=⇒

(
− ◦2

0 (− ◦2
0 −)

)
be-

tween the functors

(B2×B0 B2)×B0 B2 (−◦2
0−)◦2

0−

−−−−−−−→ B2, B2×B0 (B2×B0 B2)
−◦2

0(−◦2
0−)

−−−−−−−→ B2,

over the naturally isomorphic 1-categories

(B2 ×B0 B2) ×B0 B2 α
−→ B2 ×B0 (B2 ×B0 B2);

I a right unitor natural isomorphism
(
− ◦2

0 −
) ρ

=⇒ IB2 between the pair of

1-functors 4

B2 ×B0 ι(B1)
−◦2

0−

−−−−→ B2, B2 IB2
−−−→ B2,

over the naturally isomorphic 1-categories B2 ×B0 ι(B1)
ρ
−→ B2; 5

I a left unitor natural isomorphism
(
− ◦2

0 −
) λ

=⇒ IB2 between the two 1-functors

ι(B1) ×B0 B2 −◦2
0−

−−−−→ B2, B2 IB2
−−−→ B2,

over the naturally isomorphic 1-categories ι(B1) ×B0 B2 λ
−→ B2;

such that any possible diagram involving (iterated) applications of the ◦2
0 composition

functor to the associator isomorphism α, the left/right unitor isomorphisms λ/ρ and
their inverses, commutes.

Remark 2.5. Coherence theorems for weak monoidal categories and bicategories as-
sure that the condition on the commuting diagrams in the previous definition is sat-
isfied as long and the following pentagonal and triangular diagrams commute under

4Here IB denotes the identity functor of the category B.
5Here ι(B1) is a bundle over B0 × B0 of discrete categories (consisting only of identity morphisms

in B2); it is a distinguished terminal object in the category of bundles over B0 ×B0 of 1-categories with
fiberwise 1-functors as morphisms.
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◦2
1-composition:

associator coherence: for all A
z
−→ B

y
−→ C

x
−→ D

w
−→ E in B1

((w ◦1
0 x) ◦1

0 y) ◦1
0 z
αw,x,y ◦

2
0 ι

1(z)
//

α(w◦10 x),y,z

��

(w ◦1
0 (x ◦1

0 y)) ◦1
0 z

αw,(x◦10y),z
// w ◦1

0 ((x ◦1
0 y) ◦1

0 z)

ι1(w)◦2
0αx,y,z

��
(w ◦1

0 x) ◦1
0 (y ◦1

0 z)
αw,x,(y◦10z)

// w ◦1
0 (x ◦1

0 (y ◦1
0 z))

unitors coherence: for all A
g
−→ B

f
−→ C in B1

( f ◦1
0 ι

0(B)) ◦1
0 g

α f , ι0(B), g //

ρ f ◦
2
0ι

1(g)
))

f ◦1
0 (ι0(B) ◦1

0 g)

ι1( f )◦2
0λguu

f ◦1
0 g

We refer to the respective entry [coherence in n-Lab] for references and details about
the proof of this result. y

2.2.2 Monads in a Bicategory

The notion of monad (in a strict 2-category) originated in a concrete adjunction case
in [Godement 1958], with the name “standard construction”; it is a powerful instru-
ment that allows to generalize algebraic structures.
The abstract notion of formal monad over an object of a strict 2-category and in a
bicategory are introduced in [Street 1972] and more recently discussed, for example,
in [Chikhladze 2015].

Definition 2.6. Let (B, ◦, ι, α, λ, ρ) be a bicategory and B ∈ B0 an object of B.

A monad (T, µ, η) over B consists of a 1-cell B
T
−→ B together with a pair of 2-cells

µ, η ∈ B2:

I the monadic multiplication T ◦1
0 T

µ
==⇒ T,

I the monadic unit ι0(B)
η
=⇒ T,

such that the following unitality and associativity diagrams of ◦2
1-compositions of
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2-cells are commuting:

ι0(B) ◦1
0 T

λ

��

η◦2
0ι

1(T )
// T ◦1

0 T

µ

��

T ◦1
0 ι

0(B)

ρ

��

ι1(T )◦2
0ηoo

T
ι1(T )

// T T
ι1(T )

oo

(T ◦1
0 T ) ◦1

0 T α //

µ ◦2
0 ι

1(T )
��

T ◦1
0 (T ◦1

0 T )
ι1(T ) ◦2

0 µ // T ◦1
0 T

µ

��
T ◦1

0 T
µ

// T

(2.3)

Given two objects A,B ∈ B0 and two monads, (T, µ, η) over A and (S , µ′, η′) over

B, a T -S bimodule is a 1-cell A
M
←−− B in B1 together with a pair of left/right

evaluations 2-cells T ◦1
0 M

θ
=⇒M and M ◦1

0 S
ϑ
=⇒M such that the following diagrams

involving vertical composition of 2-cells all commute:

T ◦1
0 (T ◦1

0 M)

ι1(T )◦2
0θ

��

(T ◦1
0 T ) ◦1

0 M
αT,T,Moo

µ◦2
0ι

1(M)
// T ◦1

0 M

θ

��
T ◦1

0 M θ
// M

ι0(A) ◦1
0 M

λA

��

η◦2
0ι

1(M)
// T ◦1

0 M

θ

��
M

ι1(M)
// M

(M ◦1
0 S ) ◦1

0 S

ϑ◦2
0ι

1(S )
��

αM,S ,S // M ◦1
0 (S ◦1

0 S )
ι1(M)◦2

0µ
′

// M ◦1
0 S

ϑ

��
M ◦1

0 S
ϑ

// M
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M ◦1
0 ι

0(B)
ι1(M)◦2

0η
′

//

ρB

��

M ◦1
0 S

ϑ

��
M

ι1(M)
// M

(T ◦1
0 M) ◦1

0 S
αT,M,S //

θ◦2
0ι

1(S )
��

T ◦1
0 (M ◦1

0 S )
ι1(T )◦2

0ϑ // T ◦1
0 M

θ

��
M ◦1

0 S
ϑ

// M

We will need to apply monads two consecutive times: in the first case it will be
a monad T̂ , over Q (respectively T̂? over Q?), in the strict bicategory C of natu-
ral transformations between covariant functors between (not necessarily small) strict
1-categories; in the second case it will be a monad, over a terminal object, in the
bicategory ET̂ (respectively ET̂? ) that will be subsequently defined in proposition 2.12.

Remark 2.7. When applied to the 2-category C of natural transformations between
covariant functors between (small) strict 1-categories, the previous definition of mon-
ad over an object C ∈ C 0 reproduces the traditional monad endofunctor T ∈ [C;C]
with its multiplication and unit natural transformations.
Given a small strict 1-category C ∈ C 0, a monad (T, µ, η) over C is an endofunctor

C
T
−→ C, T ∈ C 1 equipped with natural transformations T ◦ T

µT

==⇒ T , the monad

multiplication µT ∈ C 2 and ι1(C)
ηT

==⇒ T , the monad unit ηT ∈ C 2, that satisfy, for

every object X ∈ C0, the following properties:

µT
X ◦ T 1(ηT

X) = ι0T 0(X) = µT
X ◦ η

T
T 0(X), µT

X ◦ T 1(µT
X) = µT

X ◦ µ
T
T 0(X). (2.4)

An algebra for the monad (T, µT , ηT ) over the 1-category (C, ◦, 1) consists of an

object A ∈ C0 together with an evaluation morphism T (A)
θA

−→ A, θA ∈ C1, such that
θA ◦ ηA = ι0A and θA ◦ T 1(θA) = θA ◦ µA.

Considering a functor •
A
−→ C from a terminal 1-category • ∈ C 0, the definition of

bimodule left for the monad T over C and right for the identity endofunctor of •
reproduces the usual definition of T -algebra. y

We recall these essential properties of monads and adjunctions, see for example [Riehl
2016, chapter 5].

Remark 2.8. Every adjunction C

U
&&

F

ff Q , F a U, between small 1-categories

Q,C , with unit IdQ

η
=⇒ U◦F and co-unit F◦U

ε
=⇒ IdC , induces a monad T := U◦F, in
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the strict 2-category of natural transformations between functors, over the 1-category
Q, with multiplication µ := U ◦ ε ◦F and unit η (see for example [Riehl 2016, lemma
5.1.3] for further details).

Every monad (T, µ, η) on a category C, induces an adjunction CT
UT

%%

FT

ff C where FT

is the free T -algebra functor, left-adjoint to the forgetful functor UT defined on the
category CT of T -algebras. The monad T coincides with the monad induced by the
above adjunction FT a UT (see for example [Riehl 2016, lemma 5.2.8]).

Given a monad (T, µ, η) over C, the adjunction CT
UT

%%

FT

ff C is a terminal object

(see [Riehl 2016, proposition 5.2.12]) in the category whose objects are adjunctions

D

U
%%

F

ff C , F a U, over C and whose morphisms C

F
&&

U

ee D
H
−→ D̂

Û
%%

F̂

ff C are

functors D
H
−→ D̂ such that F̂ = H ◦ F and Û ◦ H = U.

A monadic adjunction F a U is an adjunction D

U
%%

F

ff C such that the terminal

morphism D
!
−→ CT , in the previous category of adjunctions over C, is an equivalence

of categories (see [Riehl 2016, definition 5.3.1]). A monadic functor is a functor

D
U
−→ C with a left adjoint D

F
←− C such that the adjunction F a U is monadic. y

From the adjunctions described in the previous proposition 2.3 we have the following.

Corollary 2.9. On the 1-category Q of morphisms of globular ω-sets, we have the
following

I free strict globular ω-category monad T̂ := U ◦ F.

Certain conditions of “closure under pull-backs” are required to define Leinster’s gen-
eralized operads.

Definition 2.10. [Leinster 2004, definition II.4.4.1] A category E is Cartesian if

it admits all pull-backs: for any co-span A
α
−→ X

β
←− B in E , there exists a span

A
α̂
←− X̂

β̂
−→ B in E , with α ◦ α̂ = β ◦ β̂, satisfying the following universal factorization

property: for any other span A
α′

←− P
β′

−→ B in E , with α ◦ α′ = β ◦ β′, there exists a
unique P

γ
−→ X̂ such that α′ = α̂ ◦ γ and β′ = β̂ ◦ γ.
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A functor E
G
−→ Ê between 1-categories is a Cartesian functor if it preserves pull-

backs.

A natural transformation E

G
%%

Ĝ

99�� ζ Ê is a Cartesian natural transformation if, for

any 1-arrow A
x
−→ B in E, the span G(B)

G(x)
←−−− G(A)

ζA
−→ Ĝ(A) in Ê is a pull-back of the

co-span G(B)
ζB
−→ Ĝ(B)

Ĝ(x)
←−−− Ĝ(A) in Ê.

A monad (T, µ, η) on a category C is a Cartesian monad if the category C the functor
T and the two natural transformations µ and η are all Cartesian in the previously
defined senses.

For the free strict globular ω-category adjunction in proposition 2.3 and its associated
monad in corollary 2.9 we have these Cartesianity conditions as a consequence of
[Leinster 2004, theorem F.2.2].

Proposition 2.11. The 1-category Q of small globularω-sets with morphisms of glob-
ular ω-sets is Cartesian. The 1-category C of small strict globular ω-categories with

ω-functors is Cartesian. The forgetful 1-functor C
U
−→ Q and the free strict globu-

lar ω-category 1-functor C
F
←− Q are Cartesian. The unit IQ

η
−→ U ◦ F of the free

strict globular ω-category functor is a Cartesian natural transformation. The free
strict globular ω-category monad T̂ := U ◦ F is Cartesian (this means that also the
multiplication natural transformation T̂ ◦ T̂

µ
−→ T̂ is Cartesian).

2.3 Leinster Weak Globular ω-categories

Weak ω-categories in the Leinster’s approach [Leinster 2004, section III.9.2] are al-
gebras for a certain monad L; the monad L here utilized is a certain universal (ini-
tial) generalized contracted T-operad, where T is the Cartesian free strict globular
ω-category monad T̂ of corollary 2.9.

We proceed here to recall all the essential above-mentioned ingredients that are still
missing.

2.3.1 Generalized Multicategories and Generalized Operads

A monad T on a Cartesian category E allows to formulate a generalized notion of
multicategory, where the “arity” of the multicategory arrows is specified by T (•),
with • an object in E . The strategy behind such definition originates in [Burroni
1971], [Hermida 1997] and has been further described in [Leinster 2004, section II.4]
whose exposition we are closely following.
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Proposition 2.12. [Leinster 2004, section II.4.2]. Let T be a Cartesian monad on
the Cartesian category E .

Given a span E1
i1
−→ X

i2
←− E2 in E , let us denote by E1

π1
←− E1 �X E2

π2
−→ E2 a choice of

pull-back. 6

There is a bicategory (ET , ◦T , ιT , αT , λT , ρT ) defined as follows:

I 0-cells in E 0
T are just objects E in E 0,

I 1-cells E2
(tP,P,sP)
←−−−−−− E1 in E 1

T are spans in E of the form: E2
tP
←− P

sP
−→ T 0(E1)

I 2-cells E2 E1

(tQ,Q,sQ)
gg

(tP,P,sP)
ww
�� φ consist of commuting diagrams in E of the form:

P

φ

��

sP

""

tP

��
E2 T 0(E1)

Q

sQ

<<

tQ

__

I vertical composition ◦2
1 is just the usual composition of 1-arrows in E ,

I vertical identities ι1ET

(
E2

tP
←− P

sP
−→ T (E1)

)
are just identities ι0E (P) in E ,

I horizontal composition
(
E1

tP1
←−− P1

sP1
−−→ T (E2)

)
◦1

0

(
E2

tP2
←−− P2

sP2
−−→ T (E3)

)
of one

arrows in ET is given by:E1
tP1◦π1
←−−−− P1 �T (E2) T (P2)

µT
E3
◦T (sP2 )◦π2

−−−−−−−−−−→ T (E3)
 ,

as specified by the following diagram

P1 �T (E2) T (P2)
π1

xx

π2

&&

T (E3)

E1 P1
sP1 //

tP1oo T (E2) T (P2)
T (sP2 )
//

T (tP2 )
oo T (T (E3))

µT
E3

OO

6Assume that a specific choice of pull-backs has been done via axiom of choice, for example we will
use E1 �X E2 := E1 ×X E2.
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horizontal composition of 2-cells E1 E2

(tQ1 ,Q1,sQ1 )
gg

(tP1 ,P1,sP1 )
ww
�� φ1 E3

(tQ2 ,Q2,sQ2 )
gg

(tP2 ,P2,sP2 )
ww
�� φ2 is given by the 2-cell

E1 E3

(tQ1 ,Q1,sQ1 )◦1
0(tQ2 ,Q2,sQ2 )

ii

(tP1 ,P1,sP1 )◦1
0(tP2 ,P2,sP2 )

uu
�� φ1◦

2
0φ2 , where φ1◦

2
0φ2 is defined as the unique morphism P1�T (E2)

T (P2)
φ1◦

2
0φ2

−−−−−→ Q1 �T (E2) T (Q2) in E induced by the universal factorization prop-

erty of the pull-back Q1
π′1
←− Q1 �T (E2) T (Q2)

π′2
−→ T (Q2) via the span

Q1
φ1◦π1
←−−−− P1 �T (E2) T (P2)

T (φ2)◦π2
−−−−−−→ T (Q2)

as specified in this commuting diagram:

P1
φ1 //

sP1 ##

Q1

sQ1zz
P1 �T (E2) T (P2)

π1

88

π2 &&

T (E2) Q1 �T (E2) T (Q2),

π′1

gg

π′2ww
T (P2)

T (tP2 )
;;

T (φ2) // T (Q2)

T (tQ2 )
dd

I horizontal identities ι0T (E) :=
(
E

ι0(E)
←−−− E

ηT
E
−−→ T (E)

)
, for all objects E ∈ E 0

T .

I left-unitors E2 E1

P
gg

ι1(E2)◦1
0P

ww
�� λP are uniquely determined by universal factorization

property of the pull-backs:

E2

ηT
E2 // T (E2) T (P)

T (tP)oo

P

tP

gg
ηT

P

77

E2 �T (E2) T (P)

λP

OO π2

>>

π1

__ P
tP //

ηT
P

��

E2

ηT
E2
��

T (P)
T (tP)

// T (E2)

(2.5)



Paratat Bejrakarbum and Paolo Bertozzini 17

(where the second pull-back-diagram above is assured by Cartesianity of ηT )
and by the diagram

T (P)
T (sP) // T 2(E1)

µT
E1 // T (E1)

P
sP //

ηT
P

OO

T (E1)

ηT
T (E1)

OO

ι1(T (E1))

66

that commutes by Cartesianity of ηT and the unital property of the monad T;

I right-unitors E2 E1

P
gg

P◦1
0ι

1(E1)
ww
�� ρP are also determined via the universal factorization

property of the pull-backs:

P
sP // T (E1) T (E1)

ι1(T (E1))oo

P

ι1(P)

gg
sP

66

P �T (E1) T (E1)

ρP

OO π′2

>>

π′1

^^ P
sP //

ι1(P)
��

T (E1)

ι1(T (E1))
��

P
T (sP)

// T (E1)

(2.6)

(where the second pull-back diagram is due to Cartesianity of T) and by the
commuting diagram

P
sP //

sP ''

T (E1)

ι1(T (E1))
��

T (ηT
E1

)
// T 2(E1)

µT
E1vv

T (E1)

that is again commuting because of the unital property of the monad T;

I associators E4 E1

P1◦
1
0(P2◦

1
0P3)

ii

(P1◦
1
0P2)◦1

0P3
uu

�� αP1P2P3 for the compositions of

E4
P1
←−− E3

P2
←−− E2

P3
←−− E1
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are uniquely determined by universal factorization property of the following
pair of pull-backs over T (E2): 7

P1 � T (P2)
µT

E2
◦T (sP2 )◦π2

// T (E2) T (P3)
T (tP3 )

oo

P1 � T (T (P2) � T (P3))

µT
P3
◦T (π1)◦π1

44

π2◦θ

jj

(P1 � T (P2)) � T (P3)

αP1 P2 P3

OO π2

::

π1

ee

(2.7)

where the morphism θ is uniquely determined by universal factorization prop-
erty in the following diagram, where all the squares (due to composition or to
the Cartesianity of T and µT ) are pull-backs:

P1 � T (P2 � T (P3))

π1

""

θ

��

π2 // T (P2 � T (P3))

T (π1)

��

T (π2) // T 2(P3)

T 2(tP3 )
��

µT
P3 // T (P3)

T (tP3 )

��
P1 � T (P2)

π1

��

π2
// T (P2)

T (sP2 )
//

T (tP2 )

��

T 2(E2)
µT

E2

// T (E2)

P1
sP1 // T (E3)

and where the following triangles diagrams, with target E4 and source T (E1)

P1 � T (T (P2) � T (P3))

tP1◦π1

��

T (π2)◦π2 // T 2(P3)

µT
P3

��

T 2(sP3 )
// T 3(E1)

T (µT
E1

)
//

µT
T (E1)

��

T 2(E1)

µT
E1

��
E4 T (P3)

T (sP3 )
// T 2(E1)

µT
E3 // T (E1)

(P1 � T (P2)) � T (P3)

tP1◦π1◦π1

OO
αP1 P2 P3

aa

π2

55

(2.8)

are commuting because of Cartesianity of T and µT and by the associativity
property of the monad T .

7Here, with a little abuse of notation, we utilize the same symbols π1, π2 to denote all the pull-back
projections of compositions.
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Definition 2.13. Given a Cartesian monad (T, µT , ηT ) on a Cartesian category E , a
T -multicategory on E is a monad (P, µP, ηP) over an object E in the bicategory ET

defined in proposition 2.12.

A T -operad (P, µP, ηP) is a T-multicategory on a terminal object • in E .

Remark 2.14. In practice a T -multicategory consists of: an object E ∈ E 0 (indexing
the inputs and outputs of multicategory arrows); a 1-cell E

tP
←− P

sP
−→ T 0(E) in ET

(specifying all the multicategory arrows with multi-input as an element of T 0(E) and
only one target in E); a composition of multicategory arrows specified by the monadic
multiplication µP; and multicategory identity, specified by the monadic unit ηP. y

Proposition 2.15. For any object E ∈ E , we have a 1-category, denoted by E T
E ,

whose objects are 1-arrows in ET with source and target E and whose morphisms are
2-arrows in ET .

For every object E ∈ E , there is a category C T
E of T -multicategories on E that is the

subcategory of E T
E with:

I objects of C T
E are T-multicategories (P, µP, ηP) in ET ,

I morphisms (P, µP, ηP)
φ
−→ (Q, µQ, ηQ) in C T

E are morphisms in ET such that:

P ◦1
0 P

µP //

φ◦2
0φ

��

P

φ

��
Q ◦1

0 Q
µQ // Q

ι0T (E)
ηP //

ι1(E)
��

P

φ

��
ι0T (E)

ηQ // Q

I composition and identity coincide with those in ET .

Definition 2.16. For a terminal object • in a Cartesian category E with a Cartesian
monad T we denote by:

I E T
• the category of T -collections over •

I OT
• := C T

• the category of T -operads over •.

2.3.2 Contractions and Globular Collections

We now specialize the discussion to the bicategory QT̂ constructed from the Cartesian
category E := Q of globular ω-sets equipped with the free strict globular ω-category
Cartesian monad T̂ .

The codification of the algebraic axioms for weak globular ω-categories via “contrac-
tions” originates in [Penon 1999]; the following notion of contraction, for globular
ω-sets, appears in [Leinster 2001, section II.5] and [Leinster 2004, section III.9.1] and
is actually used to formalize, at the same time, the (evaluation of) operations and the
algebraic and coherence axioms for weak globular ω-categories.
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Definition 2.17. Let Q ∈ Q0 be a globular ω-set; we say that x1, x2 ∈ Qk are parallel
k-cells if either k = 0 or

sk−1(x1) = sk−1(x2), tk−1(x1) = tk−1(x2).

We denote by ParQ the family of pairs of parallel cells of the globular ω-set Q.

Let Q1
π
−→ Q2 be a covariant morphism in the category Q of globular ω-sets, define

Par(π) :=
{
(x+, y, x−) | (x+, x−) ∈ ParQ1 , y ∈ Qn

2, n ∈ N0,

π(x+) = tn−1(y), sn−1(y) = π(x−)
}
.

A Leinster contraction on π is a map Par(π)
κ
−→ Q1 such that, ∀(x+, y, x−) ∈ Par(π):

s(κ(x+, y, x−)) = x−, t(κ(x+, y, x−)) = x+, π(κ(x+, y, x−)) = y. (2.9)

Definition 2.18. Let • ∈ Q denote a terminal object in the category of globular ω-sets
and T a monad on Q.

A globular T -collection is a morphism Q
π
−→ T (•) in Q; a globular contracted

T -collection consists of a Leinster contraction Par(π)
κ
−→ Q on a globular T-collection:

Par(π)
κ
−→ Q

π
−→ T (•).

Lemma 2.19. Given a commuting diagram of covariant functors in the category Q
of globular ω-sets:

Q1
φ //

π1

&&

Q̂1

π2

xx
Q2

there is a well-defined induced map Par(π1)
Parφ
−−−→ Par(π2) given by

Parφ : (x+, y, x−) 7→ (φ(x+), y, φ(x−)).

We recall here the notion of category of globular contracted operads from [Leinster
2004, definition III.9.2.3].

Proposition 2.20. For any terminal object • ∈ Q0, we have the following categories:

I the category QT̂
• of globular T̂ -collections over •, specified in definition 2.16;
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I the category QT̂ ,κ
• of globular contracted T̂ -collections over • whose objects

are globular contracted T̂ -collections and whose morphisms

(P, πP, κP)
φ
−→ (Q, πQ, κQ)

are globular ω-functors P
φ
−→ Q such that

Par(πP)

κP

��

Parφ // Par(πQ)

κQ

��
P

φ // Q

φ ◦ κP = κQ ◦ Parφ;

I the category O T̂
• of globular T̂ -operads over •, specified as in definition 2.16;

I the category O T̂ ,κ
• of globular contracted T̂ -operads over • with objects consist-

ing of (P, πP, κP, µP, ηP) such that (P, πP, µP, ηP) ∈ O T̂
• is a globular T̂ -operad

and (P, πP, κP) ∈ QT̂
• is a globular contracted T̂ -collection, 8 and with mor-

phisms (P, πP, κP, µP, ηP)
φ
−→ (Q, πQ, κQ, µQ, ηQ) such that

– (P, πP, µP, ηP)
φ
−→ (Q, πQ, µQ, ηQ) is a morphism in O T̂

•

– (P, πP, κP)
φ
−→ (Q, πQ, κQ) is a morphism in QT̂ ,κ

• .

There is a forgetful functor QT̂ ,κ
•

W
−→ QT̂

• defined on object by (Q, π, κ) 7→ (Q, π), for
every globular contracted T̂ -collection (Q, π, κ) and as identity map on morphisms.

There is a forgetful functor O T̂ ,κ
•

U
−→ O T̂

• defined by (P, π, κ, µ, η) 7→ (P, π, µ, η) on
objects, for every globular contracted T̂ -operad (P, π, κ, µ, η) and as identity map on
morphisms.

Remark 2.21. Although T -operads are defined for any operad T on a Cartesian cate-
gory E , Leinster’s contractions are defined only on globular T -collections, where T is
an arbitrary monad on the Cartesian category Q of globular ω-sets. As a consequence,
proposition 2.20 holds actually for any Cartesian operad T on the Cartesian category
of globular ω-sets Q. We will use this fact, substituting the free strict globular ω-cat-
egory monad T̂ with the free involutive strict globular ω-category monad T̂? in the
next section 3.2. y

8 Notice that at this point we are not imposing any compatibility axiomatic requirement between the
contraction κ and the operadic unit η and multiplication µ simultaneously defined on a T̂ -collection; we will
address this issue in remark 2.22 here below.
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Remark 2.22. As anticipated in footnote 8, following the treatment in [Leinster 2004,
definition 9.2.1], we did not include in our definition of globular contracted T̂ -operad,
in the last point of proposition 2.20, any further compatibility axioms between con-
tractions and operadic units/multiplications.

We introduce here a more restrictive notion of globular T̂ -operadic contraction over
•, consisting of data (P, πP, κP, ηP, µP) such that (P, πP, κP) is a globular contracted
T̂ -collection in QT̂ ,κ

• and (P, πP, ηP, µP) is a globular T̂ -operad in O T̂
• that furthermore

satisfy the commutativity of the following diagrams in QT̂
• :

Par(π•)

κ•

��

ParηP // Par(πP)

κP

��
•

ηP // P

Par(πP ◦
2
0 πP)

κP◦
2
0κP

��

ParµP // Par(πP)

κP

��
P ◦1

0 P
µP // P

where •
π•
−→ T̂ (•) is π• := ηT

• , we have P ◦1
0 P

πP◦
2
0πP

−−−−−→ T̂ (•) ◦1
0 T̂ (•) and lemma 2.19

provides ParηP and ParµP . 9

The category OK T̂
• of globular T̂ -operadic contractions over • is just the full subcat-

egory of O T̂ ,κ
• determined by the objects defined above.

It is perfectly viable to use the category OK T̂
• instead of O T̂ ,κ

• in order to define
a slightly more restrictive notion of weak globular ω-category as an algebra for the
initial object in OK T̂

• , whose existence can be obtained following similar steps and
in the case examined in the subsequent subsection 2.3.3. y

2.3.3 Weak ω-categories

The subsequent fundamental result is proved in [Leinster 2004, appendix G].

Theorem 2.23. The category O T̂ ,κ
• of globular contracted T̂ -operads has initial ob-

jects.

The proof provided in the reference above is not direct, and is based on the following
definitions and results.

Definition 2.24. A strict 1-category C is filtered if any finite diagram D
D
−→ C admits

a co-cone. 10

9Notice that the contraction κ• : (x+, y, x−) 7→ y is uniquely determined by the defining axioms of
contraction and the definition of π•.

10This is equivalent to requiring: a) that there exists at least an object in C0 (the vertex of a co-cone on

the empty diagram); b) for any two objects A1, A2 ∈ C
0, there exists a co-cone A1

α1
−−→ C

α2
←−− A2; c) for any

finite diagram consisting of pair of parallel arrows A1
f ,g
−−→ A2, there exists a co-cone A1

α1
−−→ C

α2
←−− A1 and

hence α2 ◦ f = α1 = α2 ◦ g.
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A filtered co-limit is a co-limit for a diagram D
D
−→ B with filtered 1-category D.

A finitary functor is a functor A
F
−→ B that preserves filtered co-limits.

A finitely presentable object is an object A ∈ C0 whose associated covariant Hom-
functor HomC(A,−) is finitary.

A category C is locally finite presentable if the following properties are satisfied:

I C is co-complete (it admits all co-limits of diagrams D
D
−→ C with small D),

I the full subcategory of finitely presentable objects of C is essentially small, 11

I every object of C is a filtered co-limit of at least one diagram of finitely pre-
sentable objects.

This first lemma is a consequence of [Leinster 2004, theorems 6.5.1, 6.5.2 and 6.5.4
in appendix D].

Lemma 2.25. If T is a finitary Cartesian monad on a Cartesian category E , the

forgetful functor OT
•

U
−→ E T

• has a left adjoint and the adjunction is monadic.

In particular, from proposition 2.11, we have that O T̂
•

U
−→ QT̂

• is monadic.

Furthermore U is finitary [Leinster 2004, appendix G page 353].

This second lemma follows from a direct construction contained in [Leinster 2004,
appendix G page 352].

Lemma 2.26. The forgetful functor QT̂ ,κ
•

W
−→ QT̂

• is finitary, has a left adjoint and the
adjunction is monadic.

This third lemma is dealt with in [Leinster 2004, appendix G page 352] using that QT̂
•

is a pre-sheaf category.

Lemma 2.27. The category QT̂
• is locally finitely presentable.

Lemma 2.28. [Kelly 1980, proposition 27.1] In the (big) category C of functors

between 1-categories, consider the co-span A
A
−→ X

B
←− B and assume that:

I X is a locally finitely presentable 1-category,

I the functors A and B are both finitary and monadic,

11Recall that in a locally small category C, for all objects A, B ∈ C0, HomC(A, B) is a set; a locally small
category is small if and only if C0 is a set; a category is essentially small if and only if it equivalent to a
small category.



24 Involutive Weak Globular ω-categories

I the span A
Â
←−W

B̂
−→ B is a strict pull-back of of the diagram A

A
−→ X

B
←− B

W
Â //

B̂

��

B

B

��
A

A

// X.

.

The functor W
A◦Â=B◦B̂
−−−−−−−→ X is also monadic.

As a consequence [Leinster 2004, corollary G.1.2] the category W has an initial ob-
ject.

Theorem 2.23 follows applying the previous lemmata in the case of the strict pull-back
of forgetful functors:

O T̂ ,κ
•

Ûκ //

ÛO

��

O T̂
•

UO

��
QT̂ ,κ
•

Uκ

// QT̂
• .

Here is the basic notion of weak ω-category from [Leinster 2004, definition III.9.2.3].

Definition 2.29. A weak ω-category is an algebra for any monad L, that is an initial
object in O T̂ ,κ

• .

2.3.4 Examples

The basic way to provide examples of weak globular ω-categories in Leinster’s ap-
proach is described in [Leinster 2004, Example 9.2.4]:
any contracted T̂ -operad (P, κ, µ, η) ∈ O T̂ ,κ

• (this means for every choice of a contrac-
tion on a monad over • in the bicategory QT̂ ) induces (since L is initial) a unique

morphism L
!
−→ P in O T̂ ,κ that produces a strict functor from algebras over P to alge-

bras over L (that are, by definition, weak globular ω-categories). Hence an example
of weak globular ω-category is obtained as soon as we are given:

I (P, π, κ, µ, η) a contracted T̂ -operad (that is just a contraction on a monad in QT̂ ),

I an algebra X ∈ QT̂ for the contracted T̂ -operad P (that is just an algebra for the
previous monad).

Notable examples of weak globular ω-categories in Leinster’s approach include:
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I strict globular ω-categories (see example [Leinster 2004, 9.2.5]): these are just
algebras for the terminal contracted T̂ -operad T̂ (•) ∈ O T̂ ,κ, 12

I the globular ω-homotopy groupoid Πω(S ) of a topological space S : in [Lein-
ster 2004, example 9.2.7] it is shown that, for every topological space S , the
ω-homotopy groupoid Πω(S ) is an algebra for a certain contracted T̂ -operad.

3 Involutive Leinster Weak Globular ω-categories
In the present section we proceed to study how to introduce weak involutions on a
weak globular ω-category.

We start in subsection 3.1 from involutions on strict globular ω-categories, as defined
in our previous paper [Bejrakarbum Bertozzini 2017] that extended to the ω-category
case the notion of fully involutive strict globular n-category introduced in [Bertozzini
Conti Lewkeeratiyutkul Suthichitranont 2020, section 4].

Subsection 3.2 contains our tentative definition of involutive weak globularω-category
based on an initial generalized operad L? in the bicategory QT̂? induced by the free
involutive globular omega category monad T̂? over the same Cartesian bicategory Q
of globular ω-sets.

3.1 Involutive Strict Globular ω-categories
We quickly recall the basic definitions and contructions of free strict involutive globu-
larω-categories, closely following our previous paper [Bejrakarbum Bertozzini 2017].

Definition 3.1. A (reflexive) ω-quiver Q := Q0
s0

⇔
t0

Q1
s1

⇔
t1
· · ·

sn−2

⇔
tn−2

Qn−1
sn−1

⇔
tn−1

Qn
sn

⇔
tn
· · ·

is fully self-dual if it is equipped with a family (γq)q∈N endomorphisms Q
γq
−→ Q, for

all q ∈ N, such that:

I for all q ∈ N, γq is q-contravariant: γ
q
q ◦ sq = tq ◦ γ

q+1
q , γ

q
q ◦ tq = sq ◦ γ

q+1
q ,

I for all p, q ∈ N such that p , q, γq is p-covariant: γ
p
q ◦ sp = sp ◦ γ

p+1
q ,

γ
p
q ◦ tp = tp ◦ γ

p+1
q .

A (reflexive) globular ω-set (respectively a (reflexive) globular ω-magma) is said to be
self-dual whenever its underlying ω-quiver is self-dual in the previous sense.13

12The terminal object in O T̂ ,κ
• is •

!
←− T̂ (•)

ι(T̂ (•))
−−−−−→ T̂ (•), we will describe in more detail this point for our

new monad T̂? in remark 3.11.
13Here we interpret ◦, ι, γ as partially defined binary, nullary, unary operations, and we do not impose

any algebraic axiom for magmas.
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A strict globular ω-category (C, ◦, ι) that is also a fully self-dual ω-quiver (C, ∗) is a
fully involutive strict globular ω-category if its family (∗q)q∈N of self-duality endo-
morphisms (here denoted by x 7→ x∗

k
q , for x ∈ Ck and k ∈ N) satisfies the following

algebraic axioms:

I (q-contravariance):
(x ◦k

q y)∗
k
q = y∗

k
q ◦k

q x∗
k
q , ∀k, q ∈ N such that 0 ≤ q < k and (x, y) ∈ Ck ×Cq Ck,

(x◦k
qy)∗

k
p = x∗

k
p◦k

qy∗
k
p , ∀k, p, q ∈ N such that 0 ≤ q , p < k and (x, y) ∈ Ck×CqCk,

I (unitality): (ιk(x))∗
k+1
q = ιk(x∗

k
q ), for all k, q ∈ N and for all x ∈ Ck,

I (involutivity): (x∗
k
q )∗

k
q = x, for all k, q ∈ N, and all x ∈ Ck,

I (commutativity): (x∗
k
q )∗

k
p = (x∗

k
p )∗

k
q , for all k, p, q ∈ N, and all x ∈ Ck,

I (q-grounding): x∗
k
q = x, for all k, q ∈ N such that k ≤ q and all x ∈ Ck.

A self-dual morphism between self-dual ω-quivers (and similarly between self-dual
(reflexive) globular ω-sets or self-dual (reflexive) globular ω-magmas) is a morphism

(Q, γ)
φ
−→ (Q̂, γ̂) such that γ̂ ◦ φ = φ ◦ γ.

An involutive ω-functor C
φ
−→ Ĉ between fully involutive strict globular ω-categories

is just a self-dual morphism for the underlying self-dual globular ω-magmas.

This involutive version of proposition 2.3 was proved in [Bejrakarbum Bertozzini
2017, propositions 3.1, 3.2].

Proposition 3.2. Let C ? denote the strict 1-category of covariant involutive ω-func-
tors between fully involutive strict globular ω-categories.

For any globular ω-set Q in Q, a free strict involutive globular ω-category over Q

is a morphism of globular ω-sets Q
η?Q
−−→ U?(C), into the underlying globular ω-set

U?(C) of a strict involutive globular ω-category C, satisfying the following universal

factorization property: for any morphism of globular ω-sets Q
φ
−→ U?(Ĉ), into the un-

derlying globular ω-set U?(Ĉ) of a strict involutive globular ω-category Ĉ, there exists

a unique involutive ω-functor C
φ̂
−→ Ĉ of fully involutive strict globular ω-categories

such that φ = φ̂ ◦ η?Q.

The forgeful functor C ? U?

−−→ Q (forgetting compositions, identities and involutions of
objects in C ?) admits a left-adjointF? a U? free strict involutive globularω-category

functor C?
F?

←−− Q that is uniquely determined via a specific construction of free

involutive strict globular ω-category Q
η?Q
−−→ U?(C) over a globular ω-set Q.
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Proof. For convenience of the reader, we recall an explicit construction of the free

strict globular involutive ω-category Q
η?Q
−−→ F?(Q) over a given globular ω-set Q.

a. We first produce the free globular self-dual relfexive ω-magma Q
ζQ
−−→ M(Q),

over the globular ω-set Q, with respect to all the partial binary compositions,
the unary involutions and the nullary identities involved in the definition of strict
globular involutive ω-category.

b. Then we consider in M(Q) the smallest congruence relation of globular self-
dual reflexive ω-magmas Ξ ⊂ M(Q) ×M(Q) containing all the pairs of terms
appearing into the algebraic axioms that are involved in the definition of strict
globular involutive ω-category.

c. Finally, considering the quotient morphismM(Q)
$
−→ M(Q)/Ξ of globular self-

dual reflexive ω-magmas and the map of globular ω-sets Q
$◦ζQ
−−−−→ M(Q)/Ξ, we

notice that F?(Q) := M(Q)/Ξ is a strict involutive globular ω-category and that
η?Q := $ ◦ ζQ satisfies the universal factorization property for free involutive
globular ω-categories over Q.

a.
The free globular self-dual reflexive ω-magma Q

ζQ
−−→ M(Q) over the globular ω-set Q

is obtained by a recursive definition. We first provide a 1-quiverM(Q)0 ⇔ M(Q)1.

Starting from Q0, we constructM(Q)0 := Q0.
We then introduce Q0

ι := {(x, ι0) | x ∈ Q0} (that is a disjoint copy of Q0 repre-
senting freely added identities of elements in Q0) and M(Q)1[1]0 := Q1 ] Q0

ι with
source/target given by s0

M(Q)(x) := s0
Q(x), t0

M(Q)(x) := t0
Q(x), for all x ∈ Q1 and

s0
M(Q)(x, ι) := x =: t0

M(Q)(x, ι), for all x ∈ Q0. If M(Q)1[1] j has been already con-
structed, we define M(Q)1[1] j+1 := {(x, γ0) | x ∈ M(Q)1[1] j} (that introduces freely
added self-dualities of elements in M(Q)1[1] j) with source s0

M(Q)(x, γ0) := t0
M(Q)(x)

and target t0
M(Q)(x, γ0) := s0

M(Q)(x); defining M(Q)1[1] :=
⋃+∞

j=1M
1(Q)[1] j, we get a

1-quiverM(Q)0 ⇔ M(Q)1[1].
We proceed to define M(Q)1[2]0 :=

{
(x, 0, y) | (x, y) ∈ M(Q)1[1] ×M(Q)0 M(Q)1[1]

}
(whose elements represent freely added compositions) with sources and targets given
by s0

M(Q)(x, 0, y) := s0
M(Q)(y) and t0

M(Q)(x, 0, y) := t0
M(Q)(x). Exactly as done before,

we define M(Q)1[2] :=
⋃+∞

j=1M(Q)1[2] j, that freely introduces arbitrary iterations
of γ0-self-dualities of the 1-cells in M(Q)1[2]0, obtaining a new 1-quiver as follows
M(Q)0 ⇔ M(Q)1[1] ∪M(Q)1[2].
Supposing, by recursion, that the 1-quiver M(Q)0 ⇔

⋃k
n=1M(Q)1[n] is already de-

fined, we extend it freely adding compositions

M(Q)1[k + 1]0 := {(x, 0, y) | (x, y) ∈ M(Q)1[i] ×M(Q)0 M(Q)1[ j], i + j = k + 1},
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with sources/targets s0
M(Q)(x, 0, y) := s0

M(Q)(y), t0
M(Q)(x, 0, y) := t0

M(Q)(x), and freely
adding arbitrary iterations of γ0-self-dualities to getM(Q)1[k + 1] :=

⋃+∞
j=1M(Q)1[k] j

and the 1-quiverM(Q)0 ⇔ M(Q)1, where we haveM(Q)1 :=
⋃+∞

k=1M(Q)1[k].

The previous 1-quiver, becomes reflexive defining ι0 : M(Q)0 → M(Q1) as follows
x 7→ (x, ι0); it further becomes self-dual 1-quiver defining γ0 : M(Q)1 → M(Q)1 via
x 7→ (x, γ0); a binary composition ◦1

0 : M(Q)1 ×M(Q)0 M(Q1)→ M(Q)1 is also present
defining ◦1

0 : (x, y) 7→ (x, 0, y) and hence we have a reflexive self-dual (globular)
1-magma.

Supposing by recursion that a reflexive self-dual globular magma for the n-quiver
M(Q)0 ⇔ · · · ⇔ M(Q)n has been already defined, we will obtain a reflexive self-dual
globular magmaM(Q)0 ⇔ · · ·⇔ M(Q)n ⇔ M(Q)n+1.

We start with M(Q)n+1[0]0 := Qn+1 ∪M(Q)n
ι , where M(Q)n

ι := {(x, ιn) | x ∈ M(Q)n}

with sources and targets sM(Q)(x, ιn) := x =: tM(Q)(x, ιn); we then introduce the sets
M(Q)n+1[0] j+1 := {(x, γq) | x ∈ M(Q)n+1[0] j, q = 0, . . . , n}, with sources/targets
sM(Q)/tM(Q)(x, γq) = sM(Q)/tM(Q)(x), if q < n, and, for q = n, sM(Q)(x, γn) = tM(Q)(x),
tM(Q)(x, γn) = sM(Q)(x); and we get M(Q)n+1[0] :=

⋃+∞
j=1M(Q)n+1[0] j. Next, assum-

ing for recursion thatM(Q)n+1[k] (with its source and target maps) have been already
defined, we introduce free depth-p compositions

M(Q)n+1[k + 1]0 :=
{
(x, p, y) | p = 0, . . . , n, (x, y) ∈ M(Q)n+1[i] ×M(Q)p M(Q)n+1[ j],

i + j = k + 1
}
,

with source targets defined by sM(Q)(x, p, y) := (sM(Q)(x), p, sM(Q)(y)) and respec-
tively by tM(Q)(x, p, y) := (tM(Q)(x), p, tM(Q)(y)), whenever 0 ≤ p < n, and otherwise
sM(Q)(x, n, y) := sM(Q)(y) and tM(Q)(x, p, y) := tM(Q)(x).
Subsequently we introduce free iterated self-duals of the previous (n + 1)-cells by
M(Q)n+1[k + 1] :=

⋃+∞
j=0M(Q)n+1[k + 1] j where, as above, we consider

M(Q)n+1[k + 1] j+1 :=
{
(x, γq) | q = 0, . . . , n, x ∈ M(Q)n+1[k + 1] j

}
with similarly defined source/target maps.
Finally we setM(Q)n+1 :=

⋃+∞
k=0M(Q)n+1[k] obtaining in this way the required globu-

lar (n+1)-quiver that is reflexive, with the map ιn(x) := (x, ιn), for x ∈ M(Q)n; self-dual
with the maps x 7→ (x, γq), for all x ∈ M(Q)n+1 and all q ∈ {0, . . . , n}; and a magma for
the partial compositions x ◦n+1

p y := (x, p, y), for all (x, y) ∈ M(Q)n+1 ×M(Q)p M(Q)n+1

and all p ∈ {0, . . . , n}.

The recursive construction of the globular reflexive self-dual ω-magma

M(Q)0 ⇔ · · ·⇔ M(Q)n ⇔ · · ·

is now completed and we further produce the morphism Q
ηQ
−−→ M(Q) of globular

ω-sets by the inclusion of Qn intoM(Q)n[0]0 ⊂ M(Q)n, for all n ∈ N.
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We only need to check the universal factorization property for Q
ηQ
−−→ M(Q). Suppose

that Q
φ
−→ M̂ is a morphism of reflexive self-dual globular ω-sets into a reflexive self-

dual globular ω-magma. Any grade-preserving mapM(Q)
φ̂
−→ M̂ such that φ = φ̂ ◦ ηQ

must necessarily satisfy x 7→ φ(x), for all x ∈ Qn ⊂ M(Q)n. Using the fact the φ̂ must
be a morphism of reflexive self-dual globular ω-magmas, by induction, we obtain that,
for all n ∈ N, φ̂(x, ιn) = ι̂n

M̂
(φ(x)), for all x ∈ M(Q)n, φ̂(x, p, y) = φ(x)◦̂n

pφ(y), for all
(x, y) ∈ M(Q)n ×M(Q)p M(Q)n and 0 ≤ p < n, and φ̂(x, γq) = φ(x)∗

n
q , for all x ∈ M(Q)n

and 0 ≤ q < n. This uniquely defined map M(Q)
φ̂
−→ M̂ is a morphism of relfexive

self-dual globular ω-magmas as required.

b.
From [Bejrakarbum Bertozzini 2017, section 3.2] we recall that, given globular ω-sets
(Q, sQ, tQ), (Q̂, sQ̂, tQ̂) the Cartesian product of globular ω-sets is the globular ω-set
(Q× Q̂, sQ×Q̂, tQ×Q̂) defined, for all n ∈ N, as (Q× Q̂)n := Qn × Q̂n, with source/targets
sn

Q×Q̂
:= (sn

Q, s
n
Q̂

) and tn
Q×Q̂

:= (tn
Q, t

n
Q̂

) acting componentwise; and that whenever

(Q, sQ, tQ, ιQ, γQ, ◦Q), (Q̂, sQ̂, tQ̂, ιQ̂, γQ̂, ◦Q̂) are globular self-dual reflexive ω-mag-
mas, also their Cartesian product Q × Q̂ is a globular self-dual reflexive ω-magma
with the componentwise defined nullary ιn

Q×Q̂
:= (ιnQ, ι

n
Q̂

), unary γ(Q×Q̂)n

q := (γQn

q , γQ̂n

q )

and binary ◦(Q×Q̂)n

p := (◦Qn

p , ◦Q̂n

p ) operations.

We also recall that a congruence X in a globular self-dual reflexive ω-magma M is a
globular self-dual reflexive ω-magma X such that Xn ⊂ Mn × Mn, for all n ∈ N, in

such a way that the inclusion X
φ
−→ M×M is a morphism of globular self-dual reflexive

ω-magmas.

Inside the free globular self-dual reflexive ω-magma M(Q) over Q constructed in
a. above we consider the congruence Ξ ⊂ M(Q) × M(Q) generated 14 by the union
of all of the following families of pairs:

{
(x ◦n

p (y ◦n
p z), (x ◦n

p y) ◦n
p z)

∣∣∣ n > p ∈ N,

(x, y, z) ∈ M(Q)n ×M(Q)p M(Q)n ×M(Q)p M(Q)n
}

{
((ιn−1 ◦ · · · ιp ◦ tp ◦ · · · ◦ tn−1(x)) ◦n

p x, x)
∣∣∣ n > p ∈ N, x ∈ M(Q)n

}
{
(x, x ◦n

p (ιn−1 ◦ · · · ιp ◦ sp ◦ · · · ◦ sn−1(x)))
∣∣∣ n > p ∈ N, x ∈ M(Q)n

}
14Since intersection of congruences is a congruence, Ξ is just the intersection of all the conguences

containing the given pairs.
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{
(ιn(x) ◦n+1

p ιn(y), ιn(x ◦n
p y))

∣∣∣ n > p ∈ N, (x, y) ∈ M(Q)n ×M(Q)q M(Q)n
}

{
((x ◦n

p y) ◦n
q (z ◦n

p w), (x ◦n
q z) ◦n

p (y ◦n
q w))

∣∣∣ n > p, q ∈ N,

(x, y), (z,w) ∈ M(Q)n ×M(Q)p M(Q)n,

(x, z), (y,w) ∈ M(Q)n ×M(Q)q M(Q)n
}

{
(γn

q(γn
q(x)), x)

∣∣∣ n > q ∈ N, x ∈ M(Q)n
}

{
(γn

q(γn
p(x)), γn

p(γn
q(x)))

∣∣∣ n > q, p ∈ N, x ∈ M(Q)n
}

{
(γn

q(x ◦n
p y), γn

q(x) ◦n
p γ

n
q(y))

∣∣∣ n > p , q ∈ N,

(x, y) ∈ M(Q)n ×M(Q)p M(Q)n
}

{
(γn

q(x ◦n
p y), γn

q(y) ◦n
p γ

n
q(x))

∣∣∣ n > p = q ∈ N,

(x, y) ∈ M(Q)n ×M(Q)p M(Q)n
}

{
(ιn(γn

q(x)), γn+1
q (ιnq(x)))

∣∣∣ n > q ∈ N, x ∈ Mn(Q)
}

{
(γn

q(x), x)
∣∣∣ n ≤ q ∈ N, x ∈ M(Q)n

}
.

c.
As quotient of a globular self-dual relfexive ω-magma by a globular ω-congruence,
the quotientM(Q)/Ξ is a globular ω-set with

(M(Q)/Ξ)n := M(Q)n/Ξn =
{
[x]Ξn | x ∈ M(Q)n

}
and sn

M(Q)/Ξ([x]Ξn+1 ) := [sn
M(Q)(x)]Ξn , tn

M(Q)/Ξ([x]Ξn+1 ) := [tn
M(Q)(x)]Ξn , for n ∈ N and

x ∈ M(Q)n+1; and M(Q)/Ξ is actually a globular self-dual reflexive ω-magma with
well-defined compositions given by [x]Ξn ◦

(M(Q)/Ξ)n

p [y]Ξn := [x◦M(Q)n

p y]Ξn , self-dualties
γq([x]Ξn ) := [γq(x)]Ξn , and reflexive maps ιn

M(Q)/Ξ([x]Ξn ) := [ιn
M(Q)(x)]Ξn+1 , whenever

n > p ∈ N, q ∈ N, x, y ∈ M(Q)n. Furthermore, since all the algebraic axioms for strict
globular involutive ω-category are already included in Ξ, we have that the quotient
M(Q)/Ξ is actually a strict globular involutive ω-category and the quotient morphism
$ : M(Q) → M(Q)/Ξ, defined as $n(x) := [x]Ξn , for all n ∈ N and x ∈ M(Q)n, is a
morphism of globular self-dual reflexive ω-sets.

We only need to check that the morphism of globular ω-sets Q
η?Q
−−→ M(Q)/Ξ, with

η?Q := $ ◦ ζQ, into the globular involutive ω-categoryM(Q)/Ξ, satisfies the universal

factorization property. For any other morphism Q
φ
−→ C of globular self-dual reflex-

ive ω-sets, into a strict globular involutive ω-category C, since Q
ζQ
−−→ M(Q) is a free

globular self-dual reflexive ω-magma, there exists a unique morphism M(Q)
φ
−→ C of

globular self-dual reflexive ω-magmas such that φ = φ ◦ ζQ. Consider now the kernel
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globular ω-congruence Ξφ induced by the morphism φ of ω-magmas: for all n ∈ N,

we have Ξn
φ

:=
{
(x, y) ∈ M(Q)n×M(Q)n | φ(x) = φ(y)

}
and, since all the axioms of strict

globular involutive ω-category are already satisfied in C, we have Ξ ⊂ Ξφ and hence
M(Q)/Ξφ is already a strict globular involutive ω-category, furthermore the assign-

ment φ̃ : [x]Ξφ
7→ φ(x) is a well-defined covariant involutive ω-functorM(Q)/Ξφ

φ̃
−→ C,

that is actually the unique morphism such that φ = φ̃◦$φ, whereM(Q)
$φ

−−→ M(Q)/Ξφ

is the quotient morphism of globular self-dual reflexive ω-magmas defined as usual by
$φ : x 7→ [x]Ξφ

, for x ∈ M(Q). From Ξ ⊂ Ξφ, we obtain a unique involutive ω-functor

M(Q)/Ξφ

θ
−→ M(Q)/Ξ, θ : [x]Ξ 7→ [x]Ξφ

, for x ∈ M(Q), such that $φ ◦$ = θ. Defining

φ̂ := φ̃ ◦ θ, we have that M(Q)/Ξ
φ̂
−→ C is the unique involutive ω-functor such that

φ̂ ◦ η?Q = φ̃ ◦ θ ◦$ ◦ ζQ = φ̃ ◦$φ ◦ ηQ = φ ◦ ηQ = φ. �

Remark 3.3. The existence of algebras (with a given signature) that are free over a
set is known; 15 propositions 2.3 and 3.2 are essentially special cases of a general
existence theorem for “ω-algebras” that are free over a globular ω-set that (for the
ω-globular setting) is vertically categorifying the case of algebras over sets. y

In paralled with corollary 2.9, from proposition 3.2 we obtain a new monad in the
involutive ω-category case.

Corollary 3.4. On the 1-category Q of morphisms of globular ω-sets, we have the
following

I free involutive strict globular ω-category monad T̂? := U? ◦ F?.

3.2 Involutive Weak Globular ω-categories
The following is the “involutive case” version of proposition 2.11.

Proposition 3.5. The 1-category Q of small globular ω-sets with morphisms of glob-
ular ω-sets is Cartesian. The 1-category C ? of small strict globular involutive ω-cat-

egories with involutive ω-functors is Cartesian. The forgetful 1-functor C ? U?

−−→ Q

and the free strict globular involutive ω-category 1-functor C ? F?

←−− Q are Cartesian.
The free strict globular involutive ω-category monad T? := U? ◦ F? is Cartesian.

Proof. The Cartesianity of the 1-category Q of globular ω-sets is already known by
proposition 2.11. Following the exposition in [Bejrakarbum 2023, section 3.2], we

recall that, given a span Q
φ
−→ X

ψ
←− R of globular ω-sets in Q, a pull-back can be

constructed via the co-span of globular ω-sets Q
ψ̂
←− Q ×X R

φ̂
−→ R defined by

Q ×X R :=
(
(Q ×X R)n

sn

⇔
tn

(Q ×X R)n+1
)

n∈N

15See section 6 in the n-Lab entry: https://ncatlab.org/nlab/show/variety+of+algebras#literature.

https://ncatlab.org/nlab/show/variety+of+algebras#literature
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where we have (Q ×X R)n := Qn ×Xn Rn := {(q, r) ∈ Qn × Rn | φn(q) = ψn(r)},
with sn(q, r) := (sn

Q(q), sn
R(r)) and tn(q, r) := (tn

Q(q), tn
R(r)), with φ̂n(q, r) := r and

ψ̂n(q, r) := q, for n ∈ N.

To prove the Cartesianity of the 1-category C ?, from [Bejrakarbum 2023, section 3.3],

we recall that given any co-span A
φ
−→ X

ψ
←− B in C ?, a pull-back can be constructed

via the previous span A
ψ̂
←− A×X B

φ̂
−→ B in Q, noting that the globular ω-set A×X B

becomes a strict involutive globular ω-category, with componentwise compositions
(a1, b1) ◦n

q (a2, b2) := (a1 ◦A
n
q a2, b1 ◦A

n
q b2), identities ιn(a, b) := (ιn

A
(a), ιn

B
(b)), in-

volutions (a, b)∗q := (a∗
A
q , b∗

B
q ); and that the above-defined φ̂ and ψ̂ turn out to be

involutive covariant ω-functors.

From the previous explicit definitions of pull-backs in Q and C ?, it follows that the
forgetful functor U? is Cartesian, since it associates to the standard pull-back of strict
involutive globular ω-categories the standard pull-back of their underlying globular
ω-sets.

In order to prove the Cartesianity of the free strict involutive globular ω-category

functorF?, we simply notice thatF?(Q)
F?(ψ̂)
←−−−− F?(Q×XR)

F?(φ̂)
−−−−→ F?(R) is canonically

C ?-isomorphic to the standard C ?-pull-back

F
?(Q)

F̂?(ψ)
←−−−− F?(Q) ×F?(X) F

?(R)
F̂?(φ)
−−−−→ F?(R)

of the co-span F?(Q)
F?(φ)
−−−−→ F?(X)

F?(ψ)
←−−−− F?(R), via an involutive ω-functor.

The composition of Cartesian functors is Cartesian, hence the Cartesianity of the
monad T? := U? ◦ F?.

For the Cartesianity of the natural transformation η?, we must show that, for any

morphism Q1
φ
−→ Q2 of globular ω-sets, the solid square commuting diagram below

is a pull-back in Q; for this purpose, for any span Q2
β
←− R

α
−→ T̂?(Q1) such that

T̂?(φ) ◦α = η?Q2
◦ β, we must see that there exists a unique morphism R

θ
−→ Q1 making

commutative the two triangle diagrams below: α = η?Q1
◦ θ, β = φ ◦ θ.

R
α

**

β

""

θ

&&
Q1

η?Q1 //

φ

��

T̂?(Q1)

T̂?(φ)
��

Q2

η?Q2 // T̂?(Q2)
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From the explicit construction of the free involutive globular ω-category of a globular
ω-set recalled in proposition 3.2 we have that η?Q(x) = $ ◦ ζQ(x) = [x]Ξ, for all
x ∈ Q, is a singleton containing only x. Hence, for all r ∈ R, η?Q2

(β(r)) = [x2]Ξ2 is a
singleton in T̂?(Q2), with x2 ∈ Q2; since T̂?(φ), using the fact that every morphism of
globular ω-sets, is “degree-preserving”, there exists a unique element θ(r) ∈ Q0

1 such
that (T̂?(φ))([θ(r)]Ξ1 ) = [x2]Ξ2 . Such θ satisfies our requirements.

For the Cartesianity of the natural transformation µQ, we must show that, for any

morphism Q1
φ
−→ Q2 of globular ω-sets, the solid square commuting diagram below is

a pull-back in Q; for this purpose, for any span (T̂? ◦ T̂?)(Q2)
β
←− R

α
−→ Q1 such that

φ ◦ α = µ?Q2
◦ β, we must see that there exists a unique morphism R

θ
−→ (T̂? ◦ T̂?)(Q1)

making commutative the two triangle diagrams below: β = ((T̂? ◦ T̂?)(φ)) ◦ θ and
α = µ?Q1

◦ θ.

R
α

++

β

%%

θ
((

(T̂? ◦ T̂?)(Q1)
µ?Q1 //

(T̂?◦T̂?)(φ)
��

T̂?(Q1)

T̂?(φ)
��

(T̂? ◦ T̂?)(Q2)
µ?Q2 // T̂?(Q2)

Since for all r ∈ R, we have α(r) ∈ T̂?(Q1), the only possible element in (T̂?◦ T̂?)(Q1)
that maps, via µ?Q1

to α(r), must necessarily be (α(r)) and the assignment r 7→ (α(r))
is a morphism of globular ω-sets satisfying the required conditions. �

As direct application of proposition 2.12 to the Cartesian monad T̂? on the Cartesian
category Q we obtain:

Corollary 3.6. There is a bicategory QT̂? .

The notion of Leinster contraction in definition 2.17 remains unchanged and, as antici-
pated in remark 2.21, we have a parallel version of definition 2.18 and proposition 2.20
that reformulate as follows, for the case of the free involutive globular ω-category
monad T̂?.

Definition 3.7. Let • ∈ Q denote a terminal object in the category of globular ω-sets.

A globular T̂?-collection is a morphism Q
π
−→ T̂?(•) in Q; a globular contracted

T̂?-collection consists of a Leinster contraction κ on a globular T̂?-collection π:
Par(π)

κ
−→ Q

π
−→ T̂?(•).

Similarly, using the bicategory QT̂? , for the Cartesian monad T̂?, definition 2.16 al-
ready provides the notion of globular (contracted) T̂?-operad over •. For technical
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reasons, in the proof of the subsequent theorem 3.16, we actually need to introduce
the following more general “magma structure” internal to QT̂? .

Definition 3.8. A globular T̂?-operadic magma 16 (M, πM , ηM , µM) over • is a 1-cell

•
M
−→ • in the bicategory QT̂? (hence a globular T̂?-collection M

πM
−−→ T̂?(•)) that is

equipped with a unit 2-cell •
ηM
−−→ M and a multiplication 2-cell M ◦1

0 M
µM
−−→ M as

specified in the following commutative diagrams 17 in the category Q

•

•

$$

M

::�� ηM • =

•

!

��
ηM

��

ηT̂?
•

||
T̂?(•) •

M

πM

bb

!

@@ =

•

!

��

ηM // M

πM

��
•

ηT̂?(•) // T̂?(•)

(3.1)

•

M◦1
0 M
$$

M

::�� µM • =

M ×T̂?(•) T̂?(M)
µT̂?
• ◦T̂

?(πM )◦π2

xx

!

%%µM

��

T̂?(•) •

M

πM

gg

!

88 (3.2)

=

M ◦1
0 M

µM //

πM◦
2
0πM

��

M

πM

��
T̂?(•) ◦1

0 T̂?(•)
µT̂? (•) // T̂?(•)

that are not necessarily required to satisfy the operadic axioms 2.3.

A globular T̂?-operad is a globular T̂?-operadic magma with unit and multiplication
that satisfy the monadic associativity and unitality axioms 2.3.

Proposition 3.9. For any terminal object • ∈ Q0, we have the following categories:

I the category QT̂?

• of globular T̂?-collections over •,

I the category QT̂?,κ
• of globular contracted T̂?-collections over •,

16Of course, although the definition is here given in the special case of the bicategory QT̂? , it remains
perfectly valid when applied to an arbitrary bicategory ET , for a given Cartesian monad T ; furthermore one
can define multicategorical magmas over E using a given object E in place of a terminal • in ET .

17For the description of the notation required in the square diagrams on the right, refer to remark 3.11
below.
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I the category M T̂?

• of globular T̂?-operadic magmas over •,

I the category O T̂?

• of globular T̂?-operads over •,

I the category M T̂?,κ
• of globular contracted T̂?-operadic magmas over •,

I the category O T̂?,κ
• of globular contracted T̂?-operads over •.

There are commuting diagram (in the category of functors between 1-categories) of
forgetful functors:

O T̂?,κ
•

Û?κ //

Û?O
��

O T̂?

•

U?O

��
QT̂?,κ
•

U?κ

// QT̂?

•

M T̂?,κ
•

Û?κ //

Û?M
��

M T̂?

•

U?M

��
QT̂?,κ
•

U?κ

// QT̂?

• .

The categories O T̂?

• , respectively O T̂?,κ
• are full subcategories of M T̂?

• , respectively of
M T̂?,κ
• .

Remark 3.10. Exactly as already noticed in remark 2.22, it is possible to introduce
more restrictive notions of globular T̂?-operadic magma contraction and globular
T̂?-operadic contraction.

A globular T̂?-operadic magma contraction over • (M, πM , κM , ηM , µM) consists of
a globular contracted T̂?-operadic magma over • that further satisfies the commuta-
tivity of the following two diagrams in QT̂?

• :

Par(π•)

κ•

��

ParηM // Par(πM)

κM

��
•

ηM // M

Par(πM ◦
2
0 πM)

κM◦
2
0κM

��

ParµM // Par(πM)

κM

��
M ◦1

0 M
µM // M.

(3.3)

A globular T̂?-operadic contraction over • is just a globular contracted T̂?-operad
(M, πM , κM , ηM , µM) that also satisfies the previous commutative diagrams.

We can introduce the category MK T̂?

• , of globular T̂?-operadic magma contractions
over •, as the full subcategory of M T̂?,κ

• ; similarly the category OK T̂?

• , of globular
T̂?-operadic contractions over •, as the full subcategory of O T̂?,κ

• . y

The following remark is absolutely crucial for us: it identifies the terminal contracted-
T̂?-operad in O T̂?,κ

• .
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Remark 3.11. Notice that the globular ω-set T̂?(•) is naturally a globular T̂?-col-

lection T̂?(•)
πT̂?(•)
−−−−→ T̂?(•) with projection πT̂?(•) the identity morphism of globular

ω-sets,

I for any T̂?-collection Q
π
−→ T̂?(•), the projection π is a morphism in QT̂?

• ,

Q π //

π
&&

T̂?(•)

πT̂?(•)ww
T̂?(•)

πT̂?(•) : x 7→ x.

It also naturally becomes a contracted globular T̂?-collection

Par(πT̂?(•))
κT̂? (•)
−−−−→ T̂?(•)

πT̂?(•)
−−−−→ T̂?(•)

with contraction κT̂?(•) : (y+, y, y−) 7→ y on

Par(πT̂?(•)) =
{
(y+, y, y−) ∈ T̂?(•) × T̂?(•) × T̂?(•)

∣∣∣ y+

��

y−
==�� y
}
,

I for any contracted T̂?-collection Par(π)
κ
−→ Q

π
−→ T̂?(•), the projection π is a

morphism in QT̂?,κ
• :

Par(π)

Parπ
��

κ // Q

π

��
Par(πT̂?(•))

κT̂? (•) // T̂?(•)

κT̂?(•) : (y+, y, y−) 7→ y, Parπ : (x+, y, x−) 7→ (π(x+), y, π(x−)).

Furthermore T̂?(•) is a globular T̂?-operad with operadic unit •
ηT̂? (•)
−−−−→ T̂?(•) coincid-

ing with the T̂?-monadic unit ηT̂?(•) := ηT̂?

• , and operadic multiplication

T̂?(•) ◦1
0 T̂?(•)

µT̂?(•)
−−−−→ T̂?(•) given by µT̂?(•) := ν ◦ (πT̂?(•), µ

T̂?

• ),

T̂?(•) ◦1
0 T̂?(•) = T̂?(•) ×T̂?(•) T̂?(T̂?(•))

= T̂?(•) ×T̂?(•) (T̂?)2(•)
(πT̂? (•),µ

T̂?
• )

−−−−−−−−→ T̂?(•) ×T̂?(•) T̂?(•)
ν
−→ T̂?(•),

where T̂?(•) ×T̂?(•) T̂?(•)
ν
−→ T̂?(•) is an isomorphism and (T̂?)2(•)

µT̂?
•

−−−→ T̂?(•) is the
T̂?-monadic multiplication.
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To show that T̂?(•) is a T̂?-operad, one verifies (using the definitions (2.7) (2.5) (2.6)
of associators and unitors via universal factorization property of pull-backs in the
Cartesian category QT̂? and the equations (2.4) for the monad T̂?) the associativity
and unitality properties already described in (2.3), here in the case of T̂?(•):

µT̂?(•) ◦
2
1 (ηT̂?(•) ◦

2
0 ι

1
T̂?(•)

) = ν ◦ (ιT̂?(•), µ
T̂?

• ) ◦ (ηT̂?

• , ιT̂?(•)) = λ,

µT̂?(•) ◦
2
1 (ι1

T̂?(•)
◦2

0 ηT̂?(•)) = ν ◦ (µT̂?

• , ιT̂?(•)) ◦ (ιT̂?(•), η
T̂?

• ) = ρ,

can be respectively obtained by the commutativity of the following two diagrams and
the unicity of λ and ρ,

• � (T̂?)2(•)
π2

''

π1

yy

λ

**

(ηT̂?
• , ιT̂? (•))
��

• T̂?(•) � (T̂?)2(•)
!◦π1oo π2 //

(ιT̂?(•),µ
T̂?
• )
��

(T̂?)2(•)

T̂?(•) � T̂?(•)

ν

��
ν

��

77ee

T̂?(•)

!

\\

ηT̂?

T̂?(•)

??

(T̂?)2(•) � •
π2

%%

π1

ww

ρ

tt

(ιT̂? (•), η
T̂?
• )
��

(T̂?)2(•) (T̂?)2(•) � T̂?(•)
π1oo !◦π2 //

(µT̂?
• ,ιT̂?(•))
��

•

T̂?(•) � T̂?(•)

ν

��

99gg

T̂?(•)

!

BB

ηT̂?

T̂?(•)

__

the operadic associativity of T̂?(•), that consists of the following identity

µT̂?(•) ◦
2
1 (ι1

T̂?(•) ◦
2
0 µT̂?(•)) ◦

2
1 α = µT̂?(•) ◦

2
1 (µT̂?(•) ◦

2
0 ι

1
T̂?(•)),

can be obtained reconsidering the unicity of α := αT̂?(•)T̂?(•)T̂?(•) in diagram (2.8),
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reproduced here in our case,

T̂?(•) � T̂?(T̂?(•) � (T̂?)2(•))
T̂?(π2)◦1

0π2//

tP1◦π1

��

(T̂?)3(•)

µT̂?

T̂? (•)
��

ι1
(T̂? )3(•) // (T̂?)3(•)

T̂?(µT̂?
• )//

µT̂?

T̂? (•)
��

(T̂?)2(•)

µT̂?
•

��
• (T̂?)2(•)

ι1
(T̂? )2(•)

// (T̂?)2(•)
µT̂?
•

// T̂?(•)

(T̂?(•) � (T̂?)2(•)) � T̂?(•)

tP1◦π1◦π1

OO α

aa

π2

55

and simply noting the structural properties of the multiplication maps involved:

• •

T̂?(•)

dd

(T̂?(•)�(T̂?)2(•))�T̂?(•)
zz
�� =

(T̂?(•) � (T̂?)2(•)) � T̂?(•)
!

ww

µT̂?
• ◦π2

((
µT̂? (•)◦

2
1(µT̂? (•)◦

2
0ι

1
T̂? (•)

)
��

• T̂?(•)!oo
ι1
T̂?(•) // T̂?(•),

• •

T̂?(•)

dd

T̂?(•)�T̂?(T̂?(•)�(T̂?)2(•))
zz
�� =

T̂?(•) � T̂?(T̂?(•) � (T̂?)2(•))
!

vv

µT̂?
• ◦T̂

?(µT̂?
• )◦(π2◦

1
0T̂?(π2))

))
µT̂?(•)◦

2
1(µT̂? (•)◦

2
0ι

1
T̂?(•)

)
��

• T̂?(•)!oo
ι1
T̂? (•) // T̂?(•).

I for any (contracted) globular T̂?-operadic magma (M, πM , ηM , µM), and hence
for any (contracted) globular T̂?-operad, the projection M

πM
−−→ T̂?(•) is a mor-

phism in M T̂?

• (and respectively in M T̂?,κ
• ):

•
ηM //

!

��

M

πM

��
•

ηT̂? (•) // T̂?(•)

where ηT̂?(•) := ηT̂?

• and •
!
−→ • is the terminal morphism;

M ◦1
0 M

µM //

πM◦
2
0πM

��

M

πM

��
T̂?(•) ◦1

0 T̂?(•)
µT̂?(•) // T̂?(•)

with µT̂?(•) := ν ◦ (πT̂?(•), µ
T̂?

• )

and πM ◦
2
0 πM : (x, y) 7→

(
πM(x), T̂?(πM))(y)

)
, where we have
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M ◦1
0 M = M ×T̂?(•) T̂?(M)

πM◦
2
0πM

−−−−−−→ T̂?(•) ×T̂?(•) T̂?(T̂?(•)) = T̂?(•) ◦1
0 T̂?(•).

The (contracted) operad T̂?(•) is final in O T̂?,κ
• : for any other (contrated) T̂?-operad

(P, πP, µP, ηP, κP) the unique morphism of (contracted) T̂?-operads into T̂?(•) is given

by the projection P
πP

−−→ T̂?(•).

Actually T̂?(•) is also a T̂?-operadic contraction since it furthermore satisfies, by
direct computation, the following compatibility properties between contraction and
operad structures (see diagrams (3.4) and (3.5)):

µT̂?(•) ◦ (κT̂?(•) ◦
2
0 κT̂?(•)) = κT̂?(•) ◦ ParµT̂?(•)

, ηT̂?(•) ◦ κπ• = κT̂?(•) ◦ ParηT̂? (•)
.

I for any globular T̂?-operadic contraction magma (M, πM , ηM , µM) (and for any
globular T̂?-operadic contraction) the projection M

πM
−−→ T̂?(•) is a morphism in

MK T̂?

• (and respectively in OK T̂?

• ):

Par(π•)

κ•
""

ParηM //

Par!

��

Par(πM)

ParπM

��

κM

yy
•

!

��

ηM // M

πM

��
•

ηT̂? (•) // T̂?(•)

Par(π•)

κπ•

==

ParηT̂? // Par(πT̂?(•))

κT̂?(•)

ee

where:

(3.4)

Par(π•) =
{
(x+, y, x−) |

x+

��

x−

==�� y ∈ •
}
,

ParηT̂? : (x+, y, x−) 7→ (x+, ηT̂?

(y), x−),

κT̂?(•) : (x+, ηT̂?

(y), x−) 7→ ηT̂?

(y), κπ• : (x+, y, x−) 7→ y;
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Par(πM ◦
2
0 πM)

ParµM //

Par
πM◦

2
0πM

��

κM◦
2
0κM ((

Par(πM)
κM

yy

ParπM

��

M ◦1
0 M

µM //

πM◦
2
0πM

��

M

πM

��
T̂?(•) ◦1

0 T̂?(•)
µT̂?(•) // T̂?(•)

Par(πT̂?(•) ◦
2
0 πT̂?(•))

κT̂? (•)◦
2
0κT̂? (•)

66

ParµT̂? (•) // Par(πT̂?(•)).

κT̂? (•)

ee

(3.5)

Par(πT̂?(•) ◦
2
0 πT̂?(•)) ' Par(πT̂?(•)) ◦

1
0 Par(πT̂?(•)),

κT̂?(•) : (µ(x+
1 , x

+
2 ), µ(y1, y2), µ(x−1 , x

−
2 )) 7→ µ(y1, y2),

κµT̂? (•)
: (y1, y2) 7→ µ(y1, y2).

κT̂?(•) ◦
2
0 κT̂?(•) : ((x+

1 , y1, x−1 ), (x+
1 , y1, x−1 )) 7→ (y1, y2),

ParµT̂?(•)
: ((x+

1 , y1, x−1 ), (x+
1 , y1, x−1 )) 7→ (µ(x+

1 , x
+
2 ), µ(y1, y2), µ(x−1 , x

−
2 )).

The T̂?-operadic magma contraction (respectively the T̂?-operadic contraction) T̂?(•)
is final in MK T̂?

• (respectively in OK T̂?

• ): the projection M
πM
−−→ T̂?(•) being the

terminal morphism from any other object M. y

The following is the fundamental theorem in our paper, allowing the definition of
weak involutive ω-categories.

Theorem 3.12. The category O T̂?,κ
• of globular contracted T̂?-operads has initial

objects.

Proof. Instead of following Leinster’s original line of proof in section 2.3.3, we give
a direct argument.

I The category QT̂?

• has an initial object I: the empty T̂?-collection I
π
−→ T̂?(•)

given by In := ∅, for all n ∈ N, where all the source/target maps and the
projection π are empty functions.

I Left-adjoint functors preserve colimits (see [Riehl 2016, theorem 4.5.3]) and
hence they preserve initial objects (that are colimits of the empty diagram).
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I Hence, if U?O ◦ Û
?
κ = U?κ ◦ Û

?
O has a left-adjoint QT̂?

•

L
−→ O T̂?,κ

• , the object

L? := L0(I) is initial in O T̂?,κ
• .

The theorem is now reduced to providing the existence of a free contracted T̂?-operad
over a T̂?-collection. This is achieved below, in the theorem 3.16, by an argument
substantially similar to that used in our construction of the free self-dual Penon’s con-
tractions in [Bejrakarbum Bertozzini 2017, proposition 3.3]. �
First we need to define suitable free structures over T̂?-collections. 18

Definition 3.13. A free globular contracted T̂?-operad (P, ζ) over a T̂?-collection
Q := Q

π
−→ T̂?(•) consists of a contracted T̂?-operad P := (P, πP, κP, µP, ηP) and a

morphism Q
ζ
−→ U?κ ◦ Û

?
O(P) in QT̂?

• that satisfies the following universal factorization

property: for every other morphism Q
φ
−→ U?κ ◦ Û

?
O(P̂) in QT̂?

• , where P̂ is another

contracted T̂?-operad, there exists a unique morphism P
φ̂
−→ P̂ in O T̂?,κ

• such that
φ = φ̂ ◦ ζ.

A free globular contracted T̂?-operadic magma M := (M, πM , κM , µM , ηM) over a

T̂?-collection, is defined in a similar way, via a morphism Q
ξQ
−−→ U?κ ◦ Û

?
M (M), sub-

stituting “operads” with “operadic magmas” above.

As in any universal factorization property construct, free contracted T̂?-operad(ic
magma)s are unique, modulo a unique isomorphism compatible with the universal
factorization property. Existence is shown in theorem 3.16.

Before embarking on the proof, we need to introduce relevant notions of congruence
and quotient structure.

Definition 3.14. A globular ω-equivalence relation is an equivalence relation E in a
globular ω-set Q that is graded 19 E ⊂ Q×N Q := {(x, y) ∈ Q×Q | ∃n ∈ N : x, y ∈ Qn}

and source/target preserving: 20

(x1, x2) ∈ E ⇒ (s(x1), s(x2)) ∈ E, (x1, x2) ∈ E ⇒ (t(x1), t(x2)) ∈ E, ∀x, y ∈ Q.

(3.6)

A T̂?-collection congruence is a globular ω-equivalence relation E in the globular
ω-set Q of a globular T̂?-collection Q

π
−→ T̂?(•) that is projection-preserving:

(x, y) ∈ E ⇒ π(x) = π(y)
18Of course the definitions, that for convenience are here stated for the specific case of T̂?, work for any

Cartesian monad T .
19This is equivalent to say that E consists of a sequence En ⊂ Qn ×Qn of equivalence relations in Qn, for

all n ∈ N.
20In this way, the globular source and target product maps (s, s), (t, t) : Q ×N Q → Q ×N Q restrict to

(necessarily globular) source and target maps on E and hence (E, (s, s)|E
E
, (t, t)|E

E
) becomes a globular ω-set

canonically included in Q ×N Q.



42 Involutive Weak Globular ω-categories

and hence E ⊂ Q ×π Q. 21

A congruence of contracted T̂?-collection is a T̂?-collection congruence E in a con-
tracted T̂?-collection Par(π)

κ
−→ Q

π
−→ T̂?(•) that is also contraction-preserving: 22

∀(x+
1 , x

+
2 ), (x−1 , x

−
2 ) ∈ E :

(x+
1 , y1, x−1 ), (x+

2 , y2, x−2 ) ∈ Par(π)⇒ (κ(x+
1 , y1, x−1 ), κ(x+

2 , y2, x−2 )) ∈ E. (3.7)

A congruence of (contracted) T̂?-operadic magma (M, µM , ηM) is a congruence E
of the underlying (contracted) T̂?-collection Par(π)

κM
−−→ M

πM
−−→ T̂?(•) that is unit-

preserving and multiplication-preserving: 23

(x, y) ∈ E ◦1
0 E = E ×T̂?(•) T̂?(E) ⇒

(
(µM , µM) ◦ τM ◦ (ε ◦1

0 ε)
)

(x, y) ∈ E,
(3.8)

E ◦1
0 E

ε◦2
0ε // (M ×πM M) ◦1

0 (M ×πM M)
τM // (M ◦1

0 M) ×πM◦
2
0πM

(M ◦1
0 M)

(µM ,µM)

��
M ×πM M

with τM denoting the canonical isomorphism of T̂?-collections between pull-back of
products and product of pull-backs in QT̂?

• and ! as the unique isomorphism of termi-
nal objects. 24

The previous congruences have been defined, for our convenience, for 1-cells in QT̂?

• ,
but they actually work for 1-cells in the bicategory QT , where T is any Cartesian
monad on the category of globular ω-sets Q.

As usual, congruences produce quotients of the corresponding algebraic structures.

21This means that the globular ω-set (E, (s, s), (t, t)) is a T̂?-collection E
πE
−−→ T̂?(•) equipped with the

projection πE : (x, y) 7→ π(x) = π(y); and we have a canonical inclusion morphism of T̂?-collections

E
εE
−−→ Q ×π Q into the product T̂?-collection Q ×π Q

(π,π)
−−−→ T̂?(•).

22This entails that the T̂?-collection E
πE
−−→ T̂?(•) has a contraction κE : Par(πE)→ E with κE := (κ, κ).

23The congruence E is always unit-preserving since the product morphism • ×ηT̂?
•

(ηM ,ηM )
−−−−−−→ M ×πM M

has always image inside E; hence E is equipped with a canonical unit •
ηE
−−→ E given by composing the maps

•
!
−→ • ×ηT̂?

•
(ηM ,ηM )|E
−−−−−−−−→ E with isomorphism ! of terminal objects.

24In this way, denoting by E ◦1
0 E

µE
−−→ E the restiction µE := (µM , µM) ◦ τM ◦ (ε ◦1

0 ε)|E
E◦10E

and by •
ηE
−−→ E

the restriction ηE := (ηM , ηM)◦!|E• , we have that (E, ηE, µE) is itself a (contracted) T̂?-operadic magma
and that the inclusion E

ε
−→ M ×πM M is a morphisms of (contracted) T̂? operadic magmas. Whenever

(M, πM , κM , ηM , µM) is a (contracted) T̂?-operad, also (E, πE, κE, ηE, µE) is.
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Proposition 3.15. Given a globular ω-relation E ⊂ Q ×N Q on a globular ω-set
Q, the family of quotients Q/E := (Qn/En)n∈N becomes a globular ω-set with well-
defined sources and targets sQ/E([x]E) := [sQ(x)], tQ/E([x]E) := [tQ(x)]E; furthermore
the quotient map Q

$E
−−→ Q/E, defined as usual by $E : x 7→ [x]E, is a morphism of

globular ω-sets.

Given a congruence E ⊂ Q ×π Q of (contracted) T̂?-collection Q
π
−→ T̂?(•), the

quotient globular ω-set Q/E becomes a (contracted) T̂?-collection Q/E
πQ/E
−−−→ T̂?(•)

with projection πQ/E : [x]E 7→ π(x) (contraction κQ/E : ([x+]E, [x−]E) 7→ [κ(x+, y, x−)]E
on Par(πQ/E) = {([x+]E, y, [x−]E) | (x+, y, x−) ∈ Par(π)}); furthermore the quotient map
Q

$E
−−→ Q/E is a morphism of (contracted) T̂?-collections.

Given E ⊂ M ×πM M, a congruence on (M, πM , ηM , µM), a (contracted) T̂?-operadic

magma, the quotient (contracted) T̂?-collection M/E
πM/E
−−−→ T̂?(•) becomes a (con-

tracted) T̂?-operadic magma with operadic unit •
ηM/E
−−−→ M/E given by ηM/E := πE◦ηM

and with operadic multiplication M/E ◦1
0 M/E

µM/E
−−−→ M/E that is well-defined by

µM/E : ([x]E, [y]E) 7→ [µM(x, y)]E, for all (x, y) ∈ M ◦1
0 M = M ×T̂?(•) T̂?(M); fur-

thermore the quotient map M
$E
−−→ M/E is a morphism of (contracted) T̂?-operadic

magmas.

Given a morphism Q1
φ
−→ Q2 of the categories in proposition 3.9, a congruence E of

the respective type in Q2 naturally induces a congruence, of the same type, in Q1:

Eφ :=
{
(x, y) ∈ Q1 × Q1 | (φ(x), φ(y)) ∈ E

}
.

Furthermore if E1 is a congruence of the respective type in Q1 such that E1 ⊂ Eφ,

there exists a unique well-defined quotient morphism Q1/E1
φ̂
−→ Q2, well-defined by

φ̂ : [x]E1 7→ φ(x), such that φ = φ̂ ◦ πE1 .

Proof. By property (3.6), the source and target sn
Q/E, t

n
Q/E : Qn+1/En+1 → Qn/En, for

all n ∈ N, are well-defined and their globularity property follows from the globularity
of Q. For all n ∈ N, the quotient function $n

E
: Qn → Qn/En is well-defined by

x 7→ [x]En ; and $E := (πn
E
)N : Q → Q/E becomes a morphism in Q since we have

sn
Q/E($n+1

E
(x)) = sn

Q/E([x]En+1 ) = [sn
Q(x)]En = $n

E
(sn

Q(x)), for all x ∈ Qn+1, and similarly
for targets.

A congruence E ⊂ Q ×π Q of a collection Q
π
−→ T̂?(•) is necessarily a congruence

of globular ω-sets, hence we already have a quotient morphism Q
$E
−−→ Q/E in Q.

Since E ⊂ Q ×π Q, the assignment [x]E 7→ π(x) is a well-defined graded function
πQ/E : Q/E → T̂?(•) that is actually a morphism of globular ω-sets in Q: for all
[x]E ∈ Q/E, πQ/E(sQ/E[x]E) = πQ/E([sQ(x)]E) = π(sQ(x)) = s(π(x)) = sT̂?(•)(πQ/E[x]E)
and similarly for targets. Since πQ/E ◦ $E(x) = πQ/E([x]E) = π(x), for all x ∈ Q, the
quotient Q

$E
−−→ Q/E is a morphism of T̂?-collections in QT̂?

• .
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Suppose now that Par(π)
κ
−→ Q

π
−→ T̂?(•) is a contracted T̂?-collection and E ⊂ Q×π Q

is a congruence of contracted T̂?-collections. Considering the quotient T̂?-collection
Q/E

πQ/E
−−−→ T̂?(•), we have that [x1]E, [x2]E ∈ Q/E are πQ/E-parallel if and only if

x1, x2 are π-parallel and hence Par(πQ/E) =
{
([x+]E, y, [x−]E) | (x+, y, x−) ∈ Par(π)

}
.

Furthermore, since ParπQ/E : (x+, y, x−) 7→ ([x+], y, [x−]) there exists a unique relation

Par(πQ/E)
κQ/E
−−−→ Q/E that satisfies ParπE ◦κQ/E = κ and that is given by

κQ/E([x+]E, y, [x−]E) := [κ(x+, y, x−)]E.

Since E is a congruence of contracted T̂?-collections, from equation (3.7) we see that
κQ/E is actually a well-defined function and hence a contraction on Q/E and the map
Q

$E
−−→ Q/E is a morphism in QT̂?,κ

• .

Let E be a congruence of the (contracted) operadic magma (M, πM , κM , ηM , µM). We
already know that the quotient (M/E, πM/E, κM/E) is a (contracted) T̂?-collection and
that M

$E
−−→ M/E is a morphism in QT̂?,κ

• .
The operadic unit map ηM/E : • 7→ [ηM(•)]E is well defined, and we immediately get
ηM/E = πM/E ◦ ηM , hence the quotient morphism πM/E preserves units.
To describe the operadic multiplication, we first notice that we have a canonical ex-
change isomorphism (M/E) ◦1

0 (M/E)
χ
−→ (M ◦1

0 M)/(E ◦1
0 E); any multiplication mor-

phism (M/E) ◦1
0 (M/E)

µM/E
−−−→ M/E such that µM/E ◦ ($E ◦2

0 $E) = $E ◦ µM , must
necessarily be given by µM/E := µ̂M/E ◦ χ where, using the congruence property (3.8)
of E, we have that µ̂M/E : [(x, y)]E◦1

0E
7→ $E ◦ µM(x, y), for (x, y) ∈ M ◦1

0 M, is a
well-defined morphism of (contracted) T̂?-collections.
Since µM/E ◦ ($E ◦2

0 $E) = µ̂M/E ◦ χ ◦ ($E ◦2
0 $E) = µ̂M/E ◦$E◦1

0E
= $E ◦ µM , we see

that πE is a morphism of (contracted) T̂?-operadic magmas.

The family Eφ ⊂ Q1 × Q1 is an equivalence relation in Q1 and, since φ is grade-
preserving, we also have Eφ ⊂ Q1 ×N Q1 and hence Eφ consists of a family of equiva-
lence relations En

φ ⊂ Qn
1 ×Qn

1, for all n ∈ N. Since φ is always a morphism of globular
ω-sets, sn

Q2
◦ φn+1 = φn ◦ sn

Q1
(and similarly for targets), for all n ∈ N, and hence

property (3.6) holds and Eφ is a globular ω-equivalence relation in Q1.

If Q1
φ
−→ Q2 is a morphism of T̂?-collections in QT̂?

• ,

(x, y) ∈ Eφ ⇒ πQ2 (φ(x)) = πQ2 (φ(y))⇒ πQ1 (x) = πQ1 (y)

and hence Eφ ⊂ Q1 ×πQ1
Q1 is a congruence of T̂?-collections in Q1.

Suppose that φ is a morphism of contracted T̂?-collections in QT̂?,κ
• , consider a pair of

elements (x+
1 , y1, x−1 ), (x+

2 , y2, x−2 ) ∈ Par(π1) with (x+
1 , x

+
2 ), (x−1 , x

−
2 ) ∈ Eφ, we must show

(κ1(x+
1 , y1, x−1 ), κ1(x+

2 , y2, x−2 )) ∈ Eφ
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and this is equivalent to prove that

(κ2 ◦Parφ(x+
1 , y1, x−1 ), κ2 ◦Par(x+

1 , y1, x−1 )) = (φ◦κ1(x+
1 , y1, x−1 ), φ◦κ1(x+

1 , y1, x−1 )) ∈ E.

This final statement is true since we have (φ(x+
1 ), y1, φ(x−1 )), (φ(x+

2 ), y2, φ(x−2 )) ∈ Par(π2)
and (φ(x+

1 ), φ(x+
2 )), (φ(x−1 ), φ(x−2 )) ∈ E and hence also

(k2(φ(x1)+, y1, φ(x1)−),κ2(φ(x2)+, y2, φ(x2)−))
= (κ2 ◦ Parφ(x+

1 , y1, x−1 ), κ2 ◦ Par(x+
1 , y1, x−1 )) ∈ E.

This shows that Eφ is also a congruence of contracted T̂?-collection in Q1.

Finally if E is a congruence of (contracted) T̂?-operadic magma in Q2 and Q1
φ
−→ Q2

is a morphism in M T̂?

• :

(x, y) ∈ Eφ ◦1
0 Eφ ⇒ (φ ◦2

0 φ)(x, y) ∈ E ◦1
0 E ⇒ µE ◦ (φ ◦2

0 φ)(x, y) ∈ E

⇒ (φ ◦2
0 φ)(µE(x, y)) ∈ E ⇒ µE(x, y) ∈ Eφ,

hence Eφ is a congruence T̂?-operadic magmas. The same argument assures that, if φ
is a morphism in M T̂?,κ

• , Eφ is a congruence of contracted T̂?-operadic magmas.

Finally, whenever E1 ⊂ Eφ is a congruence (of the “same type” of the morphism φ)

in Q1, any relation Q1/E1
φ̂
−→ Q2 such that φ = φ̂ ◦ πE1 must necessarily associate

[x]E1 7→ φ(x) and this is a well defined function since [x]E1 ⊂ [x]Eφ and hence φ(x)
does not depend on the representative element.

We must show that Q1/E1
φ̂
−→ Q2 is a morphism in the same category of φ. From its

definition φ̂ is already a graded map: φ̂(Qn
1/E

n
1) ⊂ Qn

2, for all n ∈ N. For all x ∈ Q1,
we have sQ2 (φ̂([x]E1 )) = sQ2 (φ(x)) = φ(sQ1 (x)) = φ̂([sQ1 (x)]E1 ) = φ̂(sQ1/E1 ([x]E1 )) and
similarly for the target; hence φ̂ is a morphism in Q.
Since πQ2 (φ̂([x]E1 )) = πQ2 (φ(x)) = πQ1 (x) = πQ1/E1 ([x]E1 ), for all x ∈ Q1, we also
have that φ̂ is a morphism in QT̂?

• . Since φ̂ is already a morphism of T̂?-collections it
naturally induces a map Parφ̂ : Par(πQ1/E1 )→ Par(πQ2 ) and, whenever φ is a morphism
in QT̂?,κ, we show that κQ2 ◦ Parφ̂ = φ̂ ◦ κQ1/E1 :

κQ2 (Parφ̂([x+]E1 , y, [x−]E1 )) = κQ2 (Parφ̂ ◦Parπ Q1
E1

(x+, y, x−))

= κQ2 (Parφ(x+, y, x−)) = φ(κQ1 (x+, y, x−))

= φ̂(π Q1
E1

(x+, y, x−)) = φ̂(κ Q1
E1

([x+]E1 , y, [x−]E1 )),

for all (x+, y, x−) ∈ Par(πQ1 ), and hence φ̂ is a morphism in QT̂?

• .

Supposing now that Q1
φ
−→ Q2 is a morphism in M T̂?

• and E1 is a congruence of T̂?-op-
eradic magmas, we have φ̂ ◦ ηQ1/E1 = φ̂ ◦ πQ1/E1 ◦ ηQ1 = φ ◦ ηQ1 = ηQ2 . As regards
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multiplication, from φ = φ̂ ◦ πQ1/E1 we obtain (φ ◦2
0 φ) = (φ̂ ◦2

0 φ̂) ◦ (πQ1/E1 ◦
2
0 πQ1/E1 );

since µQ2 ◦ (φ ◦2
0 φ) = φ ◦ µQ1 and µQ1/E1 ◦ (πQ1/E1 ◦

2
0 πQ1/E1 ) = πQ1/E1 ◦ µQ1 , we get:

µQ2 ◦ (φ̂ ◦2
0 φ̂) ◦ (πQ1/E1 ◦

2
0 πQ1/E1 ) = µQ2 ◦ (φ ◦2

0 φ) = φ ◦ µQ1 = φ̂ ◦ πQ1/E1 ◦ µQ1

= φ̂ ◦ µQ1/E1 ◦ (πQ1/E1 ◦
2
0 πQ1/E1 ).

Since (πQ1/E1 ◦
2
0 πQ1/E1 ) is an epimorphism, we finally have µQ2 ◦ (φ̂ ◦2

0 φ̂) = φ̂ ◦ µQ1/E1

and hence φ̂ is a morphism of (contracted) T̂?-operadic magmas. �

Theorem 3.16. A free contracted T̂?-operad over a T̂?-collection always exists.

Proof. We proceed with a direct iterative construction followed by a quotient.

a. starting from a globular T̂?-collection Q
πQ
−−→ T̂?(•) a new globular T̂?-collec-

tion M(Q)
πM(Q)
−−−−→ T̂?(•) is inductively constructed together with a morphism

ξQ : Q→ M(Q) of globular T̂?-collections;

b. we show that the T̂?-collectionM(Q)
πM(Q)
−−−−→ T̂?(•) can be equipped with a con-

traction κM(Q) : Par(πM(Q))→ M(Q), a unit ηM(Q) : • → M(Q) and a multiplica-
tion µM(Q) : M(Q) ◦1

0M(Q) = M(Q) ×T̂?(•) T̂?(M(Q))→ M(Q);

c. it is shown that Q
ξQ
−−→ M(Q) is a free contracted T̂?-operadic magma over the

T̂?-collection Q
πQ
−−→ T̂?(•);

d. we establish the existence of the smallest congruence EX generated by operadic
associativity and unitality axioms on the contracted operadic T̂?-magmaM(Q),

so that the quotientM(Q)
πEX
−−−→ P(Q) := M(Q)/EX becomes a morphism of con-

tracted operadic T̂?-magmas onto a contracted T̂?-operad P(Q)
πP(Q)
−−−→ T̂?(•)

with operadic multiplication µP(Q) : P(Q) ◦1
0 P(Q) → P(Q) operadic unit

ηP(Q) : • → P(Q) and contraction κP(Q) : Par(πP(Q)) → P(Q), as explained
in proposition 3.15;

e. the universal factorization property for free contracted T̂?-operads is proved for

Q
ζQ:=πEX◦ξQ

−−−−−−−−→ P(Q).

a.

We start by explicitly providingM(Q) j
π

j
M(Q)
−−−−→ T̂?(•) j, for j = 0, 1.

Define M(Q)0 := Q0 ⊎
Q0
η, disjoint union of Q0 and a singleton Q0

η := {•0
η}, and

π0
M(Q) : M(Q)0 → T̂?(•)0 = {•0} as the terminal map, necessarily coinciding with the

terminal map π0
Q on Q0 and given by •0

η 7→ •
0 on the singleton. Notice that, at this

level-0 stage, no contraction-cells or operadic multiplication-cells are added, but only
a “free operadic-unit 0-cell” •0

η.
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Passing to the level-1, we define M(Q)1[0] := Q1 ⊎
Q1
η

⊎
Q1
κ , where Q1

η := {•1
η} is

again a singleton (corresponding to a free operadic-unit 1-cell); Q1
κ := Par(π0

M(Q)) con-
sists of a copy of the set of free contraction 1-cells for the parallel 0-cells induced
by the projection π0

M(Q) at the level-0; we set π1
M(Q)[0] : M(Q)1[0] → T̂?(•)1 coin-

ciding with π1
Q on Q1, as a terminal map •1

η 7→ •
1 ∈ T̂?(•)1 on Q1

η, and as the map
(x+, y, x−) 7→ y on all (x+, y, x−) ∈ Q1

κ ; furthermore we introduce new source/target
maps s0

M(Q)[0], t0
M(Q)[0] : M(Q)1[0] → M(Q)0 coinciding with the original source/tar-

get maps on Q1; as •1
η 7→ •

0
η on Q1

η; and as s0
M(Q)[0] : (x+, y, x−) 7→ x−, respectively

t0
M(Q)[0] : (x+, y, x−) 7→ x+ on Q1

κ .
We introduce free operadic multiplication 1-cells byM(Q)1 :=

⊎+∞
k=0M(Q)1[k], where

we inductively have

M(Q)1[k + 1] :=
{
(x, µ, y) | (x, y) ∈ M(Q)1[k1]×T̂?(•) T̂?(M(Q)1[k2]), k1 + k2 = k

}
;

for all (x, y) ∈ M(Q)1[k1] ×T̂?(•) T̂?(M(Q)1[k2]), we recursively define the projection,
target and source maps:

π1
M(Q)[k + 1] : (x, µ, y) 7→ π1

M(Q)[k1](x) = µ?•
(
(T̂?(π1

M(Q)[k2]))(y)
)
,

t0
M(Q)[k + 1] : (x, µ, y) 7→ (t0

M(Q)[k1])(x),

s0
M(Q)[k + 1] : (x, µ, y) 7→ µ?

M(Q)

(
(T̂?(s0[k2]))(y)

)
,

where µ?
M(Q) denotes the operadic multipication that is inductively specified in the

following subsection b. 25

Assuming now inductively the existence of M(Q)n
πn
M(Q)
−−−−→ T̂?(•)n, we go to construct

M(Q)n+1
πn+1
M(Q)
−−−−→ T̂?(•)n+1: starting from M(Q)n+1[0] := Qn+1 ⊎

Qn+1
η

⊎
Qn+1
κ , where

Qn+1
η := {•n+1

η } is a singleton free operadic-unit (n + 1)-cell and Qn+1
κ := Par(πn

M(Q)) is
a family of free contraction (n+1)-cells induced by the already defined projection map
πn
M(Q) : M(Q)n → T̂?(•), then we proceed to introduce free operadic-multiplication

(n + 1)-cells by the recursive nesting

M(Q)n+1[k +1] :=
{
(x, µ, y) | (x, y) ∈ M(Q)n[k1]×T̂?(•) T̂?(M(Q)n[k2]), k1 +k2 = k

}
and we getM(Q)n+1 :=

⊎+∞
k=0M(Q)n+1[k].

The projection map πn+1
M(Q) is separately defined on each set of the disjoint union:

it coincides with πn+1
Q on Qn+1 ⊂ M(Q)n+1[0]; it is •n+1

η 7→ •n+1 on Qn+1
η ; it is

(x+, y, x−) 7→ y on Qn+1
κ ; and it is recursively given by

πn+1
M(Q) : (x, µ, y) 7→ πn

M(Q)[k1](x) = µT̂?

(
T̂?(πn

M(Q)[k2])(y)
)

25Notice that, sinceM(Q) is inductively defined and the functor T̂? preserves the inductive grading, the
definitions of the source sM(Q) and of the operadic multiplication µM(Q) are both perfectly sound.
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on the elements (x, µ, y) ∈ M(Q)n+1[k + 1]. Finally we obtain a globular T̂?-collection
with target/source maps given, for all (x, y) ∈ M(Q)n[k1] ×T̂?(•) T̂?(M(Q)n[k2]), by

tn+1
M(Q)[k + 1] : (x, µ, y) 7→ (tn+1

M(Q)[k1])(x),

sn+1
M(Q)[k + 1](x, µ, y) : (x, µ, y) 7→ µ?

M(Q)

(
(T̂?(sn+1

M(Q)[k2]))(y)
)
,

where again µM(Q) denotes the operadic multiplication described below, in section b.

The inclusions ξn
Q : Qn → Qn ⊎

Qn
η

⊎
Qn
κ = M(Q)n[0] ⊂ M(Q)n =

⊎+∞
k=0M(Q)n[k],

for all n ∈ N define level-by-level the map ξQ : Q→ M(Q) that is already a morphism
of globular T̂?-collections.

b.
We construct level-by-level the several structural maps involved in the definition of
contracted T̂?-operadic magma: the contraction κM(Q), the unit ηM(Q), the multiplica-
tion µM(Q).

The operadic unit ηM(Q) : • → M(Q) is defined as ηn
M(Q) : •n 7→ •n

η, for all n ∈ N.

The operadic multiplication µM(Q) : M(Q) ×T̂?(•) T̂?(M(Q))→ M(Q) is given, at each
level n ∈ N, for all k, k1, k2 ∈ N with k1 + k2 = k, by the maps

µn
M(Q)[k + 1] : M(Q)n[k1] ×T̂?(•) T̂?(M(Q)n[k2])→ M(Q)n[k + 1]

given as µn
M(Q)[k + 1] : (x, y) 7→ (x, µ, y).

The contraction κM(Q) : Par(πM(Q))→ M(Q) is provided by the maps

κn
M(Q) : Par(πn

M(Q))→ M(Q)n+1

defined, for all n ∈ N, as inclusions κn
M(Q) : Qn

κ → M(Q)n+1.

c.
Here we deal with the universal factorization property of Q

ξQ
−−→ M(Q): given another

contracted T̂?-operadic magma M̂
π̂
−→ T̂?(•) with contraction κ̂ : Par(π̂) → M̂, op-

eradic unit η̂ : • → M̂ and operadic multiplication µ̂ : M̂ ×T̂?(•) T̂?(M̂) → M̂, we
show the existence of a unique morphism φ̂ : M(Q) → M̂ of contracted T̂?-operadic
magmas such that φ = φ̂ ◦ ξQ.

Since, by construction, the inclusion Q
ξQ
−−→ M(Q), maps every element x ∈ Qn to the

same element x ∈ M(Q)n, for all n ∈ N, we must necessarily have that φ̂(x) := x, for
all x ∈ Q ⊂ M(Q). Since φ̂ should preserve the unit, φ̂ ◦ ηM(Q) = η̂, the explicit
construction of ηM(Q), necessarily entails φ̂ : ηM(•) 7→ η̂(•), for all the elements
ηM(Q)(•) ⊂ M(Q).



Paratat Bejrakarbum and Paolo Bertozzini 49

Similarly, since φ̂ should be contraction preserving, φ̂ ◦ κM(Q) = κ̂ ◦ (φ̂, φ̂), the only
possible choice for the restriction of φ̂ on κM(Q)(Par(πM(Q))) ⊂ M(Q) is given by:
φ̂(x+, y, x−) 7→ κ̂(φ̂(x+), y, φ̂(x−)). 26

Since φ̂ should preserve multiplications φ̂n ◦ (µM(Q))n = µ̂n ◦ (φ̂n, (T̂?(φ̂))n), for all
n ∈ N, the map φ̂n should be uniquely defined as (x, µ, y) 7→ µ̂(φ̂n(x), T̂?(φ̂)n(y)) on the
elements in µM(Q)

(
M(Q) ×T̂?(•) T̂?(M(Q))n

)
⊂ M(Q)n. 27 The already uniquely con-

structed φ̂ : M(Q) → M̂ is a morphism of globular contracted T̂?-operadic magmas
that also satisfies φ = φ̂ ◦ ξQ.

d.
The previously constructed free contracted T̂?-operadic magma M(Q) is not yet a
free contracted operad because its free unit ηM(Q) : • → M(Q) and free multi-
plication µM(Q) : M(Q) ◦1

0 M(Q) → M(Q) fail to satisfy the unitality and asso-
ciativity axioms for a monad in the bicategory QT̂? as specified by the commut-
ing diagrams in definition 2.6, in detail, denoting the associators and left/right uni-
tors morphisms by (M(Q) ◦1

0 M(Q)) ◦1
0 M(Q)

αM(Q)
−−−−→ M(Q) ◦1

0 (M(Q) ◦1
0 M(Q)) and

ι1(•) ◦1
0 M(Q)

λM(Q)
−−−−→ M(Q)

ρM(Q)
←−−−− M(Q) ◦1

0 ι
1(•), we need to get identified all the pairs

of terms inM(Q) contained in the following family X ⊂ M(Q) ×M(Q):

X :=
{ (
λM(Q)(x1) , µM(Q)

(
(ηM(Q) ◦

2
0 ι

1
M(Q))(x1)

)) ∣∣∣ x1 ∈ ι
1(•) ◦1

0M(Q)
}
∪{ (

ρM(Q)(x2) , µM(Q)

(
(ι1
M(Q) ◦

2
0 ηM(Q))(x2)

)) ∣∣∣ x2 ∈ M(Q) ◦1
0 ι

1(•)
}
∪ (3.9){ (

µM(Q)((ι1M(Q) ◦
2
0 µM(Q)) ◦ αM(Q)(x3)) , µM(Q)((µM(Q) ◦

2
0 ι

1
M(Q))(x3))

) ∣∣∣
x3 ∈ (M(Q) ◦1

0M(Q)) ◦1
0M(Q)

}
.

To solve this problem, we define EX as the smallest congruence of contracted T̂?-op-
eradic magma in M(Q) containing all the pairs of terms in X. From remark 3.11

T̂?(•)
πT̂?(•)
−−−−→ T̂?(•) is a contracted T̂?-operad and, since M(Q)

πM(Q)
−−−−→ T̂?(•) is mor-

phism of contracted T̂?-operadic magmas, by proposition 3.15 we know that the
canonical equivalence relation

EπM(Q) := M(Q) ×πM(Q) M(Q) =
{
(x, y) ∈ M(Q) ×M(Q) | πM(Q)(x) = πM(Q)(y)

}
is itself a congruence of contracted T̂?-operadic magmas with X ⊂ EπM(Q) and hence
EX can be taken as the intersection of the (non-empty) family of all such congruences
containing X inM(Q).

26Notice that, if (x+, y, x−) ∈ Par(πM(Q))n, we have x+, x− ∈ M(Q)n−1 and, since the construction
of (M(Q), πM(Q), κM(Q)), is produced inductively, for all n ∈ N, the definition of φ̂ on the elements
κM(Q)(Par(πM(Q)))n ⊂ M(Q)n requires only the knowledge of the already available map φ̂n−1.

27Notice again that, because of the inductive definition ofM(Q), the elements inM(Q)×T̂?(•) T̂?(M(Q))n

only require the knowledge of already defined φ̂k , for all k ≤ n on .
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By proposition 3.15, the quotient map M(Q)
πEX
−−−→ P(Q) := M(Q)/EX is a morphism

of contracted T̂?-operadic magmas and, since X ⊂ EX, furthermore we have that
the quotient P(Q) := M(Q)/EX

πP(Q)
−−−→ T̂?(•), where πP(Q) is the only morphism of

contracted T̂?-operadic magmas such that πM(Q) = πP(Q)◦πEX , is not only a contracted
T̂?-operadic magma, but it is already a contracted T̂?-operad.

The inclusion Q
ζQ
−−→ P(Q) given by ζQ := πEX ◦ ξQ is, by composition, a morphism of

globular ω-sets.

e.
Suppose that Q

φ
−→ P̂ is a morphism of T̂?-collections into another contracted T̂?-op-

erad P̂
π̂P
−−→ T̂?(•) with contraction κ̂P : Par(π̂P) → P̂, operadic unit η̂P : • → P̂ and

operadic multiplication µ̂P : P̂ ◦1
0 P̂→ P̂.

Since (forgetting the associativity and unitality axioms) every contracted T̂?-operad
is a contracted T̂?-operadic magma, by the previous point c. above, there exists a

unique morphismM(Q)
φ̃
−→ P̂ of contracted T̂?-operadic magmas, defined on the free

contracted T̂?-operadic magmaM(Q), such that φ = φ̃ ◦ ξQ.

The equivalence relation Eφ̃ := M(Q)×φ̃M(Q) = {(x, y) ∈ M(Q)×M(Q) | φ̃(x) = φ̃(y)}

induced by the morphismM(Q)
φ̃
−→ P̂ into the contracted T̂?-operad P̂, is a congruence

of contracted T̂?-operadic magma that contains all the terms X generating EX and
hence, by the minimality of EX, we have EX ⊂ Eφ̃. It follows, by proposition 3.15,

that there exists a unique quotient morphism P(Q)
φ̂
−→ P̂ of contracted T̂?-operads,

given by φ̂(πEX (x)) := φ̃(x), for all x ∈ M(Q). The universal factorization property for
free T̂?-operads over Q is satisfied since: φ̂ ◦ ζQ = φ̂ ◦ πEX ◦ ξQ = φ̃ ◦ ξQ = φ. �

Remark 3.17. The proof of theorem 3.16 could be obtained mimicking Leinster’s
techniques in section 2.3.3. Specifically, applying lemma 2.28 after showing that: a)
the category QT̂?

• is locally finitely presentable; b) T̂? is a finitary Cartesian monad
(and hence U?O is monadic) c) U?O is finitary d) U?κ is monadic and finitary. y

Our main definition in the T̂? case, is in perfect analogy with the Leinster’s defini-
tion 2.29:

Definition 3.18. A weak involutive globular ω-category is an algebra for an initial
object L? in O T̂?,κ

• .

Remark 3.19. It is perfectly possible to utilize the category OK T̂?

• introducted in
remark 3.10 instead of O T̂?,κ

• in order to define a slightly more restrictive notion of
involutive weak globular ω-category as an algebra for the initial object in OK T̂?

• .

The existence of such initial object can be obtained with techniques perfectly similar
to those utilized in theorems 3.12 and in the proof of theorem 3.16, just adding to
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the family X in equation (3.9) all the pairs of terms ofM(Q) required for the validity
of the additional axioms imposed by the commuting diagrams (3.3) and quotienting
by the smallest congruence of T̂?-operadic contraction containing X (such minimal
congruence always exists because T̂?(•) is a terminal object in OK T̂?

• ). y

3.3 Examples
The strategy used to provide examples of weak involutive globular ω-categories is
perfectly parallel to the one described in section 2.3.4 and consists of producing: a
contracted T̂?-operad P? and an algebra X? over it.

We just mention here some immediate available examples of involutive weak globular
ω-categories.

I strict involutive globular ω-categories: again, these coincide with algebras for
the monad given by the terminal contracted-T̂?-operad T̂?(•) ∈ O T̂?,κ

• described
in remark 3.11.

I globular ω-spans: following the same notation introduced in [Bertozzini Conti
Lewkeeratiyutkul Suthichitranont 2020, example 4.7] we define an ω-span as a

sequence (An tn

←− Qn+1 sn

−→ Bn)n∈N of 1-spans, where Qn := An ∪ Bn; a globular
ω-span is an ω-span Q := (Qn+1 ⇒ Qn) that is a globular ω-set (in this way any
x ∈ Qn determines, with all its sources/targets a unique globular n-cell). Intro-
ducing level-by-level the equivalence relation that identifies (n + 1)-cells having
the same source/target sets, we obtain a quotient ω-globular set X. A family of
globular ω-spans is hence determined by the quotient morphism Q

χ
−→ X. Con-

sidering such family Q
χ
−→ X

!
−→ • as “generators”, we apply the free involutive

magma functor (as constructed in point a. of the proof of proposition 3.2) to get

M(Q)
M(χ)
−−−→ M(X)

M(!)
−−−→ M(•), applying the forgetful functor to the category of

globularω-sets (that we omit to indicate) and using the quotient projection (con-

structed in point b. of proposition 3.2) onto T̂?(Q)
T̂?(χ)
−−−−→ T̂?(X)

T̂?(!)
−−−−→ T̂?(•),

we obtain a morphism of T̂?-collections as in the first diagram below:

M(Q)
M(χ) //

##

M(X)

{{
T̂?(•)

7→ P(Q)
P(χ) // P(X)

The involutive weak globular ω-category of globular ω-spans generated by
Q

χ
−→ X is given by the morphism of free globular contracted T̂?-operads to the

right of the diagram above (considered as algebras over themselves). Keeping
track of the projection onto X and P(X) is necessary to “coarse grain” recover-
ing the original spans and operations between them.
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I homotopy ω-groupoids Πω(X) of a topological space X: here, since the in-
volutions coincide with the weak inverse homotopies, one just show that the
contracted T̂ -operad utilized in [Leinster 2004, example 9.2.7] is actually a con-
tracted T̂?-operad.

4 Outlook
The construction of algebraic involutive versions of weak (globular) ω-categories
(either in Penon’s or in Leinster’s approaches), as done in our previous work [Be-
jrakarbum Bertozzini 2017] and in the present paper, is only the very first step in
the direction of a full operator algebraic categorical environment suitable for the
needs of categorical non-commutative geometry [Bertozzini Conti Lewkeeratiyutkul
2008], [Bertozzini Conti Lewkeeratiyutkul 2012].

Involutions, in the case of (weak) cubical ω-categories, are currently under inves-
tigation,28 following recent work by [Kachour 2022], including the study of condi-
tions (see [Al-Agl Brown, Steiner 2002]) assuring the equivalence between cubical
and globular involutive settings, extending previous still unpublished results already
achieved in the case of involutive 2-categories / double categories [Bertozzini Conti
Dawe Martins 2014].

Immediate further developments of the present work will concentrate on possible
algebraic definitions and examples of involutive weak ω-algebroids; subsequently
the treatment of uniform structures related to completeness and norms necessary for
the formulation of weak ω-C*-algebroids will have to be addressed, generalizing
(and possibly modifying) the strict n-C*-categorical notions tentatively put forward
in [Bertozzini Conti Lewkeeratiyutkul Suthichitranont 2020, section 5].

In the present paper, for simplicity, we have only considered monads and operads that
do not possess involutive symmetries, but it is already evident that certain “covariant”
involutions could have been introduced at the level of the operads in O T̂?

. Certain
involutive monads and operads (see [Yau 2020, chapter 4] and references therein) can
be used for this purpose. A full treatment of involutive bicategories and the discussion
of covariant vs contravariant involutive monads and operads in a bicategory will be
separately addressed in a companion paper 29 making direct use of hybrid-categories
as put forward in [Bertozzini Puttirungroj 2014].

In this work we have not considered any relaxing of the usual axioms for globular
higher categories, in particular we did not formulate a definition of weak involutive
globular ω-categories with non-commutative exchange property, as already proposed
in [Bertozzini Conti Lewkeeratiyutkul Suthichitranont 2020, section 3.3] for strict

28Bejrakarbum P, Bertozzini P, Theesoongnern S, Involutive Weak Cubical/Globular ω-categories (work
in progress).

29Bejrakarboom P, Bertozzini P, Puttirungroj C, Involutive Monads and Hybrid Categories (work in
progress).
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globular n-categories. We suspect that treatments of versions of non-commutative de-
rived geometries (homotopies, cobordisms, holonomies) will require some axiomatic
modification in such direction.
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