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Abstract

We prove that the following generalized version of Egorov’s theorem
is independent from the ZFC axioms of the set theory.

Let {fn}n∈ω, fn : 〈0, 1〉 → R, be a sequence of functions (not nec-
essarily measurable) converging pointwise to zero for every x ∈ 〈0, 1〉.
Then for every ε > 0, there are a set A ⊂ 〈0, 1〉 of Lebesgue outer
measure m∗ > 1 − ε and a sequence of integers {nk}k∈ω with {fnk}k∈ω

converging uniformly on A.

The following question was asked by F. Di Biase in connection with some
problem related to the behaviour of bounded harmonic functions on the open
unit disc in R2 (see [3]):

Suppose that {fn}n∈ω, fn : 〈0, 1〉 → R, is a sequence of functions converging
pointwise to zero for each x ∈ 〈0, 1〉. Is it true that for every ε > 0, there are a
set A ⊂ 〈0, 1〉 of outer measure m∗ > 1 − ε and a sequence {nk}k∈ω such that
{fnk}k∈ω converges uniformly on A?

Notice that, by the well-known Egorov’s theorem, the answer is positive, if
we assume that {fn}n∈ω is a sequence of measurable functions.

This paper is a slightly renewed version of the older article by the author (see [7]) which was
accepted for the publication in the East-West Journal of Mathematics in 2004, but it has
not appeared yet. Since [7] receives a lot of citations (see [2]–[6]), the author has decided to
publish its original 2003 version and to enlarge it by a list of some later articles related to
Egorov’s theorem in which the subject is studied more thoroughly.
Key words: Egorov’s Theorem, generalized Egorov’s statement, infinite combinatorics on
ω
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In this paper, we show that Di Base’s conjecture is independent from the
ZFC axioms. Throughout the proof we assume that the reader is familiar with
basic facts from set theory and forcing.

Theorem 1. In the Laver real model M of ZFC, Di Base’s conjecture holds.

Proof. Let M be a model obtained by an ℵ2-iteration with countable supports
of Laver forcing over a countable standard model M0 of ZFC and the continuum
hypothesis (CH) (see [1] for details). Suppose that {fn}n∈ω, with fn : 2ω → R,
is a sequence of functions converging pointwise to zero. For x ∈ 2ω, define an
increasing functions gx ∈ N (Baire space) as follows.

gx(n) = the last m such that ∀k ≥ m|fk(x)| <
1
n

.

Let G = {gx : x ∈ 2ω ∩ M0}. Clearly, |G| ≤ ℵ1. Thus there is an intermediate
model Mα, where α < ℵ2, such that G ⊆ Mα. Let g ∈ N ∩ Mα+1 be a
dominating function added by Laver forcing, that is, ∀h ∈ N ∩ Mα h ≤∗ g,
where h ≤∗ g iff ∃m∀n ≥ m h(n) ≤ g(n).

For n ∈ ω, let Dn = {x ∈ 2ω ∩ M0 : ∀m ≥ n gx(m) ≤ g(m)}. Clearly,⋃
n∈ω Dn = 2ω ∩M0. Put D′

n = D0 ∪ · · · ∪ Dn.
By the factor lemma (see [1]), we may assume without loss of generality

that each D′
n belongs to M0. Since the outer measure m∗ of any set A ∈ M0,

calculated in M0, is the same as the outer measure m∗ of A calculated in M
(see [1]), we have that for some n0 ∈ ω, m∗(D′

n0
) > 1 − ε.

Clearly,

∀n ≥ n0 ∀m ≥ g(n)∀x ∈ D′
n0

|fm(x)| <
1
n

.

Thus {fn}n∈ω converges uniformly to zero on D′
n0

.
To see that this finishes the proof of Theorem 1, notice that the standard

surjective function f : 2ω → 〈0, 1〉, where f(x) =
∑

i∈ω
f(i)
2i+1 , preserves measure.

�

Theorem 2. Assume that the continuum hypothesis (CH) holds. Then there
is a sequence {fn}n∈ω, fn : 〈0, 1〉 → R, converging pointwise to zero, such that
there are no set A ⊂ 〈0, 1〉 of positive outer measure and no sequence {nk}k∈ω,
so that {fnk}k∈ω converges uniformly on A

Proof. Let {xα}α<c be a bijective enumeration of 〈0, 1〉. We define a sequence
{fn}n∈ω, fn : 〈0, 1〉 → R, converging to zero, by constructing values fn(xα),
n ∈ ω, for each real number xα. To do this, we apply the following easy lemma.

Lemma 3. Suppose that F ⊆ N , G ⊆ [ω]ω (the set of all infinite subsets of ω)
are such that |F | ≤ ℵ0, |G| ≤ ℵ0. Then there is an increasing function h with
the property
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a) ∀f ∈ F f ≤∗ h,

b) ∀g ∈ G g ∩ range(h) is finite.

Proof of Lemma 3. Let {an}n∈ω be a partition of ω into infinite disjoint sub-
sets. Suppose that F = {f0, f1, . . .} and G = {g0, g1, . . .}. If n ∈ ω is such that
n ∈ ak, define h(n) to be equal to the least m, so that

a) m ≥ max{f0(n), . . . , fn(n)},

b) m ∈ gk and m > h(n − 1).

�
By Lemma 3 and by CH, we may assume that there exists a sequence

{hα}α<c ⊆ N of increasing functions satisfying the following conditions.

a) ∀α < β < c hα ≤∗ hβ,

b) ∀g ∈ [ω]ω ∀f ∈ N ∃α∀β > α f ≤∗ hβ and g ∩ range(hβ) is infinite.

Let xα0 be a fixed real number. We define fm(xα0) = 1
n−1 iff hα0(n) = m,

n ≥ 2, and we put zero otherwise. Clearly, {fn(xα0)}n∈ω, converges to zero.
We apply the same procedure to define {fn(x)}n∈ω, for every x ∈ 〈0, 1〉.

Now assume that there exist A ⊆ 〈0, 1〉, m∗(A) > 0, {nk}n∈ω, so that
{fnk}k∈ω converges uniformly on A.

Then
∀n ∈ ω ∃nk(n) ∀nk ≥ nk(n)∀x ∈ A fnk(x) <

1
n

. (∗)

Suppose that h enumerates bijectively the sequence {nk(n)}n∈ω. Let α be
such that xα ∈ A, h ≤∗ hα and {nk}k∈ω ∩ range(hα) is infinite. Then clearly
{fnk(xα)}k∈ω does not satisfy (∗), which is a contradiction. �

To finish the paper, we show that in Theorem 2, the continuum hypothesis
can be replaced by some lighter axioms.

Let b denote the cardinality of the smallest unbounded family in the sense
of ≤∗ relation, that is,

b = min{|F | : ∀g ∈ ωω ∃f ∈ F ∃n∞ f(n) ≥ g(n)}.

Assume that M is the ideal of meager subsets of R. We define

add(M) = min
{
|A| : A ⊆ M and

⋃
A /∈ M

}
and

cov(M) = min
{
|B| : B ⊆ M and

⋃
B �= R

}
.

Fact 4 (Miller, Truss). add(M) = min{cov(M), b}.
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Proof. See [1]. �
Fact 5 (Bartoszyński, Miller). For any cardinal κ the following are equiv-
alent.

1. cov(M) ≥ κ,

2. ∀F ∈ [ωω]<κ ∃g ∈ ω ∀f ∈ F ∃n∞f(n) = g(n).

3. ∀F ∈ [ωω]<κ ∀G ∈ ([ω]ω)<κ ∃g ∈ ωω ∀f ∈ F ∀X ∈ G ∃n∞ ∈ X f(n) =
g(n).

Proof. See [1]. �
Lemma 6. Assume that add(M) = c holds. Then for each F ⊆ N and
G ⊆ [ω]ω, with |F | < c, |G| < c, there is h ∈ N such that

a) ∀f ∈ F f ≤∗ h,

b) ∀g ∈ G g ∩ range(h) is infinite.

Proof. Define a sequence {In}n∈ω of finite disjoint intervals in ω as follows.
In = [f̄(n), f̄(n + 1)), for n ∈ ω, where f̄ is any increasing function with

∀f ∈ F f ≤∗ f̄ .
For g ∈ G, let hg ∈ N be such that hg(n) = min{m : m ∈ In and m ∈ g},

or hg(n) = 0 if g ∩ In = ∅, n ∈ ω.
Notice that we may assume without loss of generality that for every n ∈ ω

and every hg, g ∈ G, hg(n) ∈ {s ∈ 2In : |{n : s(n) = 1}| ≤ 1}. Let Xg be equal
to {n : hg(n) �= 0}, for g ∈ G, and G′ = {Xg : g ∈ G}.

By Fact 5, there is h̄ ∈ N such that

∀g ∈ G ∀X ∈ G′ ∃n∞ n ∈ X and hg(n) = h̄(n).

Put h(n) = m, if h̄(n)(m) = 1, and define h(n) = k, where k is any element
of In, if h̄(n) = 0. �
Theorem 7. Assume that add(M) = c holds. Then there is a sequence
{fn}n∈ω, fn : 〈0, 1〉 → R, converging pointwise to zero such that for any set
A ⊆ 〈0, 1〉 of positive outer measure, and every sequence {nk}k∈ω, {fnk}k∈ω

does not converge uniformly on A.

Proof. Use Lemma 6 and the same construction as in the proof of Theorem
2. Notice that add(M) = c implies that every subset of 〈0, 1〉 of cardinality
smaller than c has measure zero. �
Remark 8. It is easy to see that to prove Theorem 1 we can apply the following
property which holds in the iterated Laver real model (see [1]): the cardinality
of the smallest subset of 2ω of full outer measure is smaller than b. This fact
was known also to I. Rec�law.
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