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Abstract

The aim of this work is to study some properties of the normal connec-
tion and the Lie derivative of the symmetric connection on Riemannian
submanifold M.

1 Introduction

The concept of Lie derivative appeared in the early 30s and was related
to the works of Slebodzinski, Dantzig, Schouten and Van Campen ([17]). The
Lie differentiation theory plays an important role in studying automorphisms
of differential geometric structures. Moreover, the Lie derivative also is an
essential tool in the Riemannian geometry. The Lie derivative of forms and
its application was investigated by many authors (see [14], [15], [16], [21],[23],
[24],[29] and the references given therein). In 2010, Sultanov used the Lie
derivative of the linear connection to study the curvature tensor and the sorsion
tensor on linear algebras (see [24], pp. 362-412). In 2012, basing on the Lie
derivative of real-valued forms on the Riemannian n—dimensional manifold,
N. H. Quang, K. P. Chi and B. C. Van constructed the Lie derivative of the
currents on Riemann manifolds and given some applications on Lie groups (see
[5]). In 2015, B. C. Van and T. T. K. Ha studed some properties of the Lie
derivative of the linear connection V, the conjugate derivative dy with the
linear connection and using them for searching the curvature, the torsion of
a space R™ along the linear flat connection V (see [28]). In 2007, Jeong-Sik
Kim, Mohit Kumar Dwivedi and Mukut Mani Tripathi used derivatives on
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172 On the Lie derivative of symmetric connections

the module of normal vector fields to study the Gauss curvature, the Ricci
curvature on the Riemannian k—dimensional manifold (see [13], pp. 395-406).
The primary goal of our work is the extension of the operations of Lie derivative
to objects defined on the vector-valued differential forms of a manifold. The
main goal of the present work is to investigate some properties on the Lie
derivative of the flat connection V' and the normal curvature tensor, the
normal connection on the submanifold M.

In section 3, we introduce some properties of normal connection on the
submanifold M in M and by using the conjugate derivative with the normal
connection for presenting the normal curvature of the submanifold M in M.
In section 4, we construct the Lie derivative of a linear connection on the
Riemannian manifold M and given some properties of the Lie derivative of the
symmetric connection on M.

2 Notation and Preliminaries

Let M be an n-dimensional submanifold of an m-dimensional Riemannian
manifold M equipped with a Riemannian metric g. We denote the vector space
of all smooth vector fields on M and M by B(M) and B (M) respectively. We
denote %, v and v+ are the Levi-Civita, induced Levi-Civita induced normal
connections in M, M and the normal bundle D9t(M) of M respectively. We use
the inner product notation (,) ( or -) for both the metrics § of M and the
induced metric g on the submanifold M.

At each p € M, the ambient tangent space T,,Mv splits as an orthogonal
direct sum T, M = T, M @ N, M, where N,M := (T,,M)* is the normal space

at p with respect to the inner product g on T, M. The set M(M) = |J NpM
peEM

is called the normal bundle of M. If X,Y are vector fields in B(M), we can

extend them to vector fields on M , apply the ambient covariant derivative
operator v/ , and then decompose at points of M to get

%XY = (%XY)T + (%XY)l (2.1)

The Gauss and Weingarten formulas are given respectively by ([18], pp. 135)
VxY = VxY +0(X,Y)and U x N = —AxyX + V% N, (2.2)

forall X, Y € B(M) and N € M(M), where o is the second fundamental form
of M from B(M) x B(M) to 9(M) given by

o(X,Y) = (VxY)", (2.3)
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where X and Y are extended arbitrarily to M and the shape operator Ay :
X — AnX, forall X € B(M), N € N(M).

The Weingarten Equation is given by (see [18], pp. 136)

(VxN,Y) = = (N,o(X,Y)). (2.4)
Thus, o is the second fundamental form related to the shape operator A by

The equation of Gauss is given by (see [18], pp. 136)

R(XaKZ7 W) = R(XaKZ7 W) - <U(Xa W)a U(K Z)> + <U(Xa Z)a U(K W)> )
(2.6)
forall X, Y, Z, W € B(M), where R and R are the Riemann curvature tensors

of M and M respectively. The curvature tensor R* of the normal bundle of M
is defied by

RYX,Y)N =vx vy N — vy Vx N = Vixy N, (2.7)

for any X,Y € B(M) and N € M(M). If R+ =0, then the normal connection
v+ of M is said to be flat.

The mean curvature vector H is given by H = Ltrace(o). The submanifold M
is totally geodesic in M if o = 0, and minimal if H = 0.

Let {E,..., En} and {Ny41, ..., N} be an orthonormal basis of B(M) and
MN(M). The map
hj:B(M) — B(M)
~ T (2.8)
X = hi(X) =~ (VXNJ')

for any j =n+1,...,m is called the Weingarten mapping partially .

By using Weingarten Equation (2.4) and for any j =n + 1, ...,m, we have

(o5 B 3) = = (75.) B (2.9)
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So that
1 n
H=-T - (E;, ;)
race(o == ; o
| om = (2.11)
:ﬁz :ﬁz Trace(h;).N.
j=n-+ j=n-+1
where H = (Hy, ..., Hy,) is the mean curvature vector of M at p.
Let N € 9{(M), the Weingarten map hy : B(M) — B(M) give by
~ T
hv(X) = = (VxN) (2.12)

for all X € B(M). We easily get the following properties of the Weingarten
mapping hy

hn (X +Y) =hy (X) + by (V) hy (0X) = phy (X)), (2.13)

and
hn (0X).Y = ohy (V) X, (2.14)

for all X,Y € B(M), p € F(M). Suppose that N = > ., ¢;N; be a normal
vector field. Then the mean curvature of M give by the following formula

lTTace(hN) = % Z (hn(E;), E;) = % Z <_(%EiN)T, E1>

n 1=1 1=1
n m T
= ; <_ VEl( Z Pj aE1>
i=1 j=n+1
1 n m . T
= ;Z > <— (VE ( ij)) ,E¢>
i=1 j=n+1 (2.15)
= %Z > (o(Bi, Ei), ¢;N;)
1=1 j=n+1
:lz<a ElaE')a Z Pj >
n i=1 j=n-+1

Now, we define the Weingarten normal mapping and the derivative of the map
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hy along a vector field X.

ha : B(M) — N(M)

2.16
X o hE(X) =GN (2.16)

is called the Weingarten normal mapping. We get the following properties
(2.17), (2.18) of Weingarten normal mapping hy

hy (X +Y) =hy (X)+hy (Y), VX, Y € B(M). (2.17)

hy (pX) = phy (X), VX € B(M), ¥y € F(M). (2.18)
Let N, K € (M) and ¢ € §(M), we obtain

hxyx = by +hi, and hisy = ohy. (2.19)
Next, the derivative of the mapping hy along a vector field X is the mapping

Vxhy : B(M) — N(M)

2.20
Y = (Uxhy)(Y) = vx (hy (Y)) = hy (VxY) 220

We easily get the mapping hy and 7 xhy are modular homomorphics. Indeed,
forall X, Y, Z € B(M),p € F(M), we have

(VxhW)(Y +2) = (xhw)(Y) + (Vxhy) (), (2.21)

and
(Vxhw)(e-Y) =@ (Vxhy)(Y). (2.22)

Since v/, 1, hy are modular homomorphics, thus for all X,Y, Z € B(M), we
have

y (h§(2)) = by (Vx1v (2))

(hy(2)) = hy (Vx(Z) + vy (Z))
(hx(2)) — b (Vx(Z)) = hy(Vy (Z))

) = hy (Vx(2)] + [Vy (hn(2)) — by (Vy (2))]
+(Vyhw)(2)

(thN+vyhi)( ), YZ € B(M).

(VX+Yhﬁ)( )=

L 1
Vy N(
L 1
Vy N(

(2.23)
Thus,
Vx+vhy = Vxhy + Vyhy- (2.24)
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Let X, Y € B(M) and ¢ € §(M), we have

(Voxhy)(Y) = Vpx(hL(Y)) hy(Vex (V)
= vx (hn(Y)) = hy(p vx (V)
= Vx (hy(Y)) = phy(Vx(Y)) (2.25)
= ¢ [Vx(hy(Y)) = hy(vx(Y))]

= (o vx hy)(Y) VY € B(M).

Hence,
Voxhy = ¢ Vx hy- (2.26)
Let N, K € W(M), for any X,Y € B(M), and using Equation (2.19) we have

(Y))

(Y)) = hx(vx(Y))

)) = h(Vx(Y))
(Y)) = hx(vx(Y))]

(VXhﬁJrK)(Y) ZV)lf(hﬁJrK( ) — hN+K(

h (Y) + hi(Y)) = hy(
V) + vx(hg(Y)) — by (vx(Y

= [Vx(hy (V) = hy(vx (V)] + [Vx (hx
)+

Vx
Vx

[
= (Vxhm)(Y) + (Vxhg)(Y)
= (Vxhy +Vxhg)(Y), YY € B(M).
(2.27)
Hence,
Vxhnix = Vxhy + Vxhi. (2.28)

Suppose that X, Y € B(M), p € F(M), and using Equation (2.19), we obtain

(Vxhin)(Y) = 7% (i (V) — By (9 (V)
= Tk (hk (V) — ph (7x (V)
= X [¢] (V) + o 7% (b (V) — ok (T (V)
= X [g] hh (V) + 9 [VE(EY) - hh(wxr)] 329

So that
Vxhy = h)lq@].zv + 9 Vx hy. (2.30)
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3 The normal connection of submanifold

In this section, we introduce some properties of the normal connection on
an n-dimensional submanifold M of an m-dimensional Riemannian manifold M
and by using the conjugate derivative with the normal connection for presenting
the normal curvature of the submanifold M in M.

Let X € B(M) be a vector field on the submanifold M in M. The normal
connection V% along a vector field X, is defined by the mapping

V : N(M) — N(M)
N — VxN

We denote by K = {V5 | X € B(M)} the space of the normal connection
along a vector field. The operators on K is defined by:

i) (V§ + V$)(N) = VE(N) + VE(N), for all X,Y € B(M), N € 0W(M);
ii) (p.V)(N) = ¢.(VxN), for all X € B(M), ¢ € F(M);

iil) [V, VE] (V) = VR (VE(N)—-VE(VE(NV)), forall X,Y € B(M), for
all N € M(M).

By using i), ii) and for any X,Y € B(M), N, N € N(M), and for all ¢ € F(M),
we have

Vx +Vy = Viiy, (3.1)
Vox =¢-Vx, (3.2)

and _ ~
V(N +N)=VxN+VxN. (3.3)

Suppose that X € B(M),N € N(M), ¢ € F(M), we have

Vi (o.N) = (ﬁx (<p.N))l - (X (0] N + <p.%XN)l
= X [¢] .N 4+ ¢.VxN, for any N € N(M).

Hence,
Vx(¢.N) = X[¢].N + ¢.V%N. (3.5)

From Equations (3.3, 3.5), we easily get V% the derivative on the module
N(M).

Theorem 3.1. i) Suppose that X,Y € B(M), N € N(M). Then we have

RY(X,Y,N).N = ([Vx,V§] (V) .N; (3.6)
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it) K is a module on §(M) with operations i) and i), and the operation iii)
is antisymmetric, satisfying Jacobi’s identity.

Proof.
i) Suppose that X, Y € B(M), N € (M), we have
N?2=1
= [X,Y][N?] =0,VX,Y € B(M)

= (Vi N) N =0. (3.7)
Thus, using Equation (3.7), we obtain
R (X,Y,N).N = (VXVYN VEVEN — Vi ) N
= ([V%, V¥] (V) .N — (V[Xy]N) N (3.8)
= ([VXaVY] ) -N.

ii) Note that operations i) and ii), K is a module on §(M) and the opera-
tion iii) is antisymmetric. Now, we prove the operation iii) satisfying Jacobi’s
identity. Indeed, for every XY, Z € B(M), one has

[[Vx,V¥],Vz] = VxVyVz — ViVxVz — VzVxVy + VZzVyVxk; (3.9)
[[V¥,VZ] ., Vx] = V§VEVx —VZVyVx —Vx ViV +Vx VZ V5 (3.10)
[[VZ.Vx].Vy] = VzVxVy —VxV;Vy —VyVZVx + V3V VZ. (3.11)
Using Equations (3.9, 3.10, 3.11), it is easy to obtain
[[Vx: V¥],VZ] + [[Vy, VZ] . Vx] + [[VZ: Vx|, V¥] =0.
O

In particular, if M is the hypersubface in M = R™ and N is an unit
normal vector of M, then R*(X,Y,N) = 0, for any X,Y,Z € B(M) (Since
VN =VEN =0).

Theorem 3.2. Let X € B(M) and {Np+1, ..., N} the orthonormal basis on
M(M). Then the matriz of Vx is the antisymmetric matriz.

Proof. For any X € B(M) and for each j =n+ 1,...,m, we have
NZ=1= X [N?] =0= (VxN;).N; =0
~ T N
= ((VXNj) + v)l(Nj) Ny =0= (VEN;).N; =0
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Thus P
V%N; = A1;.Nyy1 4o+ Ajj Ny + oo+ A j-Ni,
(Here Alj-Nn+1 + ...+ Aj—lj-Nn+j—1 + Aj+1j-Nn+j+1 + ...+ Am—nj-Nm is

written as Alj-Nn+1 —+ ...+ Ajj-Nn+j —+ ...+ Am—nJNm)
Hence, the matrix Ax of the normal connection V3 for the basis
{Nn+1, ... N} may be written in the form

0 A1z o Atm—n

Ao 0 oo Asmen
A p— . . . .
Am—n 1 Am—n 2 et O

Next, one has

N;.N,=0,Vj#he{n+1,..,m}
= X[N;.Ny] =0

= (VN ) Ny == (Vo) .
= (VxN;).Ny = — (VxNy) .N;
= Ajp=—-An;,Vj#he{n+1,..,m}.

Therefore
0 A1z o Atm—n
—Ai2 0 oo Asmen
A p— . . . .
_Al m—n _AQ m—n e O

So that the matrix of V% is the antisymmetric matrix.
This proves the theorem. ([

Let ¢ : B(M) — N(M) be a modular homomorphic. Then the conjugate
derivative dy . with the normal connection V+ of ¢ is defined by

(dy29) (X,Y) = Vxo (V)= Vyp (X)—¢ (X, Y]) VX, Y, Z € B(M). (3.12)
Example 3.3. Consider M is a subface S in M = R® determined by
r:R?* - R3
(u,v) — r(u,v)
and the unit normal vector of S is given by

Ry N R,

N=_—*v
[Ru A Ryl
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where R, = aa—ur (u,v), Ry = %r (u,v) . We consider the mapping
@ B(S) — N(S)
X = fi.Ru+ fa.Ry = o(X) = (/L + f2).N

Then we have

(dv+¢) (Rus Ro) = Vi N = Vi, N = ¢ ([Ru, Ru]) = 0.
Proposition 3.4. Let ¢ : B(M) — N(M) be a module homomorphic. Then
the map dyip : B(M) x B(M) — N(M) is the bilinear antisymmetric map-
ping.
Proof. We prove that dy . ¢ is a bilinear mapping for the first variable and the

proof analogous for the second variable. Indeed, for every X, X' Y € B(M),
we have

(dyre) (X +X"Y)=Vx,x0Y) = Vyp (X + X') — o ([X + X', Y])
=Vxp(Y) + Ve (X) = Vyp (X) = Vip (X') — o ([X,Y]) — ¢ (X, Y])
= (dy1¢) (X,Y) + (dgr o) (X',Y).
On the other hand, we have
(dy1) (fX,Y) = VExp (V) = Vi (£.X) — o (If.X, Y])
— £V (V) = Y If] 9 (X) — fV0 (X) = fp (X, Y]) = Y [f] 0 (X)
= [ (Vxe(Y) = Vye (X) — ¢[X,Y])
= f(dyro) (X,Y).

Next, we prove dy . is the antisymmetric mapping. Indeed, VX,Y € B(M),
we have

(dyre) (X,Y) = Vxo(Y) = Vyp (X) — o ([X,Y))
=~ [Vyp (X) = Vxp (Y) — ¢ ([Y, X])]
=—(dvy1p) (Y, X).
This proves the proposition. O
Theorem 3.5. Suppose that X, Y € B(M), N € 0U(M). Then we have
(dyrhy) (X,Y) = R+ (X,Y,N). (3.13)

Proof. Forevery X,Y € B(M), N € NM(M), we have
(de-hk) (X,Y) = V& (& (V) = VE (i (X)) — b (X, Y))
=Vx (V¥N) = Vy (VxN) = Vix y|N
=R+ (X,Y,N).
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This proves the theorem. O

By using the directional derivative of Weingarten normal mapping hy along
a vector field X, we get the following Theorem.

Theorem 3.6. Let X, Y € B(M) and N € M(M). Then we have

(dvihy) (X,Y) = (Vxhy)(Y) = (Vyhy)(X). (3.14)

Proof. For all X, Y € B(M) and for each N € 91(M), we have

(dyihy) (X,Y) = vx(hx(Y)) = vy (hy (X)) = by ([X, Y])
= (Vxh)(Y) + g (VxY) = (Vv ha)(X) = by (Vy X) — hy ([X, Y])
= (Vxhw)(Y) = (Vyhy)(X) + hy(VxY — 7y X - [X,Y])
= (Vxhy)(Y) = (Vv hy) (X).
This proves the theorem. O

4 The Lie derivative of symmetric connections

In this section, we construct the Lie derivative of a linear connection on
the Riemann manifold M and given some properties of the Lie derivative of
symmetric connections on M.

Definition 4.1. Suppose that 57 be a linear connection on the manifold M.
The mapping
Lxv7 :B(M) xB(M) — B(M)

satisfying the condition
(Lxv)(Y.Z) = Lx (Vv Z) = VixvZ — Vv (Lx Z), (4.1)

forallY, Z € B(M) is called the Lie derivative of the linear connection 57 along
a vector X.

Definition 4.2. [2/] Let V be a linear connection on M and T be a torsion
tensor of V.

1) If T =0, we will call V torsion free connection, or a symmetric connec-
tion;

ii) The vector field X € B(M) is called the parallel vector field on M if

VzX =0,for any Z € B(M).

Let V be a linear connection on the manifold M. For every X,Y € B(M),
we put VxY = Vy X + [X,Y]. Then V is the linear connection on M.
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Proposition 4.3. If V is a symmetric connection on the manifold M, then v
s a symmetric connection on M.

Proof. For every X, Y € B(M), we have

T(X,Y)=VxY —VyX — [X,Y]
= VyX 4+ [X,Y] = (VxY +[Y, X]) - [X,Y]
= VyX +[X,Y] - VxY +[X,Y] - [X,Y]
= —(VxY —VyX — [X,Y]) = -T(X,Y).

Since V is a symmetric connection on M, thus T(X,Y) = 0,VX,Y € B(M).
Hence, T'= 0. So that V is a symmetric connection on M.
This proves the proposition. (I

Proposition 4.4. Suppose that Vi v2 be symmetric connections on the man-
ifold M. Then, we have ¢.V'+ (1 —).V? is the symmetric connection on M,

for every ¢ € F(M).

Proof. Suppose that V', V? be symmetric connections on the manifold M.
Applying Proposition 4.3, we obtain V!, V2 are symmetric connections on M.
Hence, for every X, Y € B(M), we have

(<p.§1 - @ﬁ?) (X,Y) - (<p.§1 - @ﬁ?) (Y, X) - [X,Y]

= (VAY = 94X — [XV]) + (1= ) (V3Y - 93X — [X,Y]) =0,
Consequently, <p.§1 +(1- <p).§2 is the symmetric connection on M, for every
€ §(M). This proves the proposition. O
Proposition 4.5. Let X € B(M). Then we have

(LxV)(Y, Z) = (LxV)(Z,Y),¥Y, Z € B(M).

Proof. For every XY, Z € B(M), we have

(LxV)(Y.2) = Lx(V)(Y.Z) =ViyvZ = VyLxZ
=Ly (VY +[Y,Z)) = VzLxY — [LxY,Z] = Vi Y — [V, Lx 7]
=Lx (VzY)+Lx ([Y,Z)) = VzLxY — [X,Y],Z] = Vi, 2Y — [V,[X, Z]|
= (Lx (VzY) = ViyzY = VzLxY) + [X, [V, Z]] - [[X, Y], Z] - [V, [X, Z]]
— (LxV)(Z.Y) + [X, Y, Z]) + [Z,[X. Y]] + [V, [2, X]]
= (LxV)(Z,Y),VY,Z € B(M) (since Jacobian equation).
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Hence, (LxV)(Y,Z) = (LxV)(Z,Y),VY, Z € B(M).
This proves the proposition. O

Theorem 4.6. If V is a symmetric connection on M, then LxV = LxV,
for every X € B(M).

Proof. For every XY, Z € B(M), we have

(LxV)(Y,Z) = (LxV)(Z,Y)
= [X,VyZ] = Vixy)Z — Vy [X, Z] - ([X,V2Y] - Vix.zY — VX, Y])
= [X,VyZ = VY] = (Vixy|Z = V2 [X,Y]) = (Vy [X, Z] = Vix zY)
=X, [V, Z]] - [[X, Y], Z] - [V, [X, Z]] (since T=0)
=[X,[Y,Z)| +[Z,[X,Y]] + [V, [Z, X]] = 0 (since Jacobian equation).
Thus, (LxV)(Y, Z) = (LxV)(Z,Y),VY, Z € B(M).
Hence, applying Proposition 4.5, we obtain
(LxV)(Y, 2) = (LxV)(Y, Z),¥Y, Z € B(M).

So that LxV = LxV,VX € ®B(M). This proves the proposition. O

Theorem 4.7. Suppose that X € B(M) and V be a symmetric connection on
the manifold M. Then, LxV + V is the symmetric connection on M.

Proof. Since V is a symmetric connection on M, thus, applying Proposition
4.3, we obtain V is the symmetric connection on M. Hence, we have

(LxV + V)Y, Z) - (LxV + V)(2,Y) - [V, Z]
= (LxV)(Y,2) + VyZ — (LxV)(Z2,Y) =V 7Y — Y, Z]
VyZ - V5 —[¥, 7)) + (Ex V)Y 2) - (ExV)(Z,Y)
= (LxV)(Y, 2) = (LxV)(Z.Y).

On the other hand, for every X,Y, Z € B(M), we have

(LxV)(Y, 2) — (LxV)(Z,Y)

= [X VYZ] - V[XY Z —Vy [X, Z] - ([X, V2Y] - V[Xz]Y —Vz [X, Y])

X, VyZ —-VzY]— (V[X,Y]Z - VzI[X, Y]) - (VY (X, Z] - V[XZ]Y)

=
=XV 2] = [[X, Y], Z] = [V, [X, Z]] (since T=0)
=[X, [V, Z]|+ [Z,[ X, Y]] + Y, [Z, X]] = 0 (since Jacobian equation).

I
/N
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Thus, (LxV)(Y,Z) = (LxV)(Z,Y),VY, Z € B(M).

Hence, by using Theorem 4.6, we obtain (LxV)(Y,Z) = (LxV)(Z,Y), for
every Y, Z € B(M). So that (LxV +V)(Y, Z)— (LxV+V)(Z,Y)—Y, Z] = 0.
Thus, the torsion tensor of the connection (LxV + V) is null. Hence, LxV +V
is the symmetric connection on M. This proves the theorem. U

From the Theorem 4.7, thus, the symmetric connection isn’t unique on M.

Let M = R™. Then the usual directional derivative give rise to a linear con-
nection. More precisely, if X = X*0; and Y = Y79;, then we define

VxY = Vyip,Y70; = X'0;(Y7)0;.
Then, V is called the canonical connection on R".

Proposition 4.8. Suppose that V be a canonical connection on R"™ and X be
a parallel vector field on R™. Then, we have LxV = 0.

Proof. We have

(LxV)(Y,2) = Lx (Vv Z) - Vixy)Z — Vy [X, Z]
= Ly (VY + Y. Z]) = V4[X.Y] - [X,Y], 2] - Vix 5Y — [V, [X. Z]]
— Lx(V2Y) + Lx([Y, 2)) = V2[X, Y] - [X, Y], 2] - Vix.2)Y — [V,[X, Z]
— Ly (V) = VAIX.Y] = VixzY + [X. V. Z]] + [Z,[X, Y]] + . 2. X]]
— Lx(V2Y) = V4[X,Y] = Vix 7V
= [X,V2Y] = V4[X,Y] - Vix.zV
=VxVzY —Vy, v X -VzVxY - VzVy X — V[X,Z]Y
=VxVzY = VzVxY — V(x 7Y (Since X is a parallel vector field)
= R(X,Y,Z) =0.

So that L X§ = 0. This proves the proposition. (I

Definition 4.9. i) Suppose that 6 : B(M) — B(M) be a modular homo-
morphic. The derivative direction Vx6 of 6 along a vector field X is given
by

(Vx0) (V) = Vx(0(Y)) - 0(VxY),VY € B(M).

ii) The Lie derivative Lx8 of 6 along a vector field X is given by
(Lx0) (V) = [X,0(Y)] - 0([X,Y]),VY € B(M).
iii) The Lie product [Lx,Vy] of Lx and Vy is given by

[Lx,Vy](2) = [X,VyZ] — Vy[X, Z],VZ € B(M).



N. H. QuaNG anD B. C. VaN 185

Let I:B(M) — B(M) be an identity mapping, by using Definition 4.9, we
have VxI =0 and LxI = 0. Indeed, we have

(VxHh(Y)=Vx(I(Y))—-I(VxY)=VxY -VxY =0.
On the other hand, we have
(LxD) (V) = [X, I(Y)] = I([X,Y]) = [X, Y] = [X, Y] = 0.

Proposition 4.10. Suppose that V be a symmetric connection and X,Y be
parallel vector fields on M. Then, we have [Lx,Vy|(Z) = R(X,Y, Z), for
every Z € B(M).

Proof. Since V is a symmetric connection on M, thus by using Theorem
4.6, we have Ly V = Ly V, VY € B(M). Hence, for every Z € B(M), applying
Definition 4.9, we obtain

L. ] (2) = [Lx, V¥](2) = [X, Vv Z) = Vv [X, Z]
=VxVyZ -Vvy,zX -VyVxZ -VyVzX"
=VxVyZ -VyVxZ

On the other hand, since V is a symmetric connection and X,Y are parallel
vector fields on M, thus [X,Y] =0.

Consequently, [Lx, %y} (Z)=VxVyZ—-VyVxZ— Vixy)Z = R(X,Y,Z).
This proves the proposition. ([

Corollary 4.11. Suppose that V be a symmetric connection and X,Y be par-
allel vector fields on M. Then, we have R(X,Y,Z) =0,YZ € B(M).

Proof. For every Z € B(M), applying Definition 4.9, we obtain

[Lx. 9] (2) = (X, 9y 2) - Vv[x, Z]
=[X,VzY +[Y, Z]] - Vix,21Y = [V, [X, Z]]
On the other hand, since V is a symmetric connection and X,Y are parallel
vector fields on M, thus [X,Y] =0.
Consequently, |:Lx,§y} (Z) = 0,VZ € B(M). Hence, applying Proposition
4.10, we have R(X,Y, Z) = 0,VZ € B(M). This proves the corollary. O

Now, let M, N be Riemannian manifolds and f : M — N be a diffeomor-
phism and f, be the push-forward of f. The mapping f. : B(M) — B(N); f is
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the modular isomorphism. The mapping V* : B(N) x B(N) — B(N) defined
by
V(£ X YY) = [o(VXY), VXY € B(M).

Then, V* is the linear connection on the manifold N.

Proposition 4.12. i) Let V be a symmetric connection on M. Then V* s
the symmetric connection on N;

i) [Lrx. Vi | (1:2) = £ ([Lx. V7] (2)), for all XY, Z € B().

Proof.

i) Let V be a symmetric connection on M. Applying Proposition 4.3, we
have V is the symmetric connection on M. Suppose that 7" be the sorsion
tensor of the connection V* on the manifold V. Then, we have

T*(f.X, £.Y) = Vi x(£.Y) = Viy (fX) = [£.X, £.Y]
= [.(VxY) = f.(VyX) — [.[X,Y]
= 1 (VxY = Vv X - [X,Y]) = L(T(X,Y)) = 0.
Thus, T = 0. Hence, V* is the symmetric connection on N.
ii) For every XY, Z € B(M), we have
(L1 Vv | (1:2) = [ X, V0 (£.2)] = Viy [1.X, £.2]
= [£X 1 (Vv 2)| = V5 (11X, 20)
= 1. ([x.9v2]) - 1. (Vv X, 2))
- ([X §yZ} ~ Sy (X, Z]) —f ([Lxﬁy} (Z)) .

This proves the proposition. O
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