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Abstract

Let P(n) = F2[x1, x2, ..., xn] be the polynomial algebra in n variables
xi, of degree one, over the field F2 of two elements. The mod-2 Steenrod
algebra A acts on P(n) according to well known rules. The hit problem,
set up by F.Peterson, of determining A+P(n), the subspace of all polyno-
mials in the image of the action of the mod-2 Steenrod algebra has been
studied by several authors. We are interested in the related problem of
determining a basis for the quotient vector space Q(n) = P(n)/A+P(n).
In this paper, we give an explicit formula for the dimension of Q(n) in
degree thirteen.

1 Introduction

Let P(n) = F2[x1, x2, ..., xn] be the polynomial algebra in n variables xi, of
degree one, over the field F2 of two elements. The mod-2 Steenrod algebra A
acts on P(n) by the formula

Sqi(xj) =

⎧⎪⎨⎪⎩
xj, i = 0
x2

j , i = 1
0, otherwise
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and subject to the Cartan formula

Sqn(uv) =
n∑

i=0

Sqi(u)Sqn−i(v)

for u, v ∈ P(n). A polynomial f ∈ P(n) is in the image of the the action of the
Steenrod algebra if

f =
∑
i>0

Sqi(fi)

for some polynomials fi ∈ P(n). That means f belongs to A+P(n), the sub-
space of all hit polynomials. The problem of determining A+P(n) is called
the hit problem and has been studied by several authors. In this paper, we
are interested in the related problem of finding a basis for the quotient vector
space

Q(n) = P(n)/A+P(n).

This problem was first studied by Peterson [7], Wood[15], Singer[11], Priddy[9],
Carlisle-Wood[1], who showed its relationship to several classical problems in
homotopy theory. The quotient Q(n) has been calculated by Peterson[8] for
k = 2 and by Kameko[3] for k = 3 in his thesis. For n = 4, the problem has
explicitly been determined in Sum [13] for the cases of the degree 2s+t +2s − 2
and the other cases have explicitly been determined in Sum [14]. This problem
has been completely solved in all degrees less than 13, Mothebe et al [4]. The
results are used to study the Singer algebraic transfer which is a homomorphism
from the homology of the mod-2 Steenrod algebra, TorAn,n+d(F2, F2), to the
subspace of QP d(n) consisting of all the GLn-invariant classes of degree d. The
Singer algebraic transfer is a useful tool in describing the homology groups of
the Steenrod algebra.

The following result is useful for determining A-generators for P(n). Let
α(m) denote the number of digits 1 in the binary expansion of m. In [15],
Wood proved the following.

Theorem 1.1. Let u ∈ P(n) be a monomial of degree d. If α(n+d) > n, then
u is hit.

Our main result is Theorem 1.2 below which is based on and expands the
previous work of Mothebe et al [4]. We explicitly determine the dimension of
Q13(n) for all n ≥ 1. We have:

Theorem 1.2. For all n ≥ 1:

dim(Q13(n)) =
∑

3≤j≤13

(
n

j

)
Cj

where Cj, 3 ≤ j ≤ 13, are determined by the following table:
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j 3 4 5 6 7 8 9 10 11 12 13
Cj 3 23 105 268 415 438 322 164 55 11 1

The following tables shows the results obtained using Theorem 1.2

n 1 2 3 4 5 6 7 8 9 10

dim(Q13(n)) 0 0 3 35 250 1303 5406 18920 58096 160824

n 11 12 13
dim(Q13(n)) 409200 969068 4241740

We use the convention that
(
n
i

)
= 0 if n < i.

In Section 2, we recall some results on admissible monomials and hit mono-
mials in P(n). Theorem 1.2 will be proved in Section 3.

2 Preliminaries

In this section, we recall some results in Kameko[3], Singer[12], Sum[13] and
Mothebe [5] on admissible monomials and hit monomials in P(n). These results
will be used in Section 3.

Let αi(a) denote the i-th coefficient in the binary expansion of a nonnegative
integer a. That means a = α0(a)20 +α1(a)21 + ..., for αi(a) = 0 or 1 and i ≥ 0.
Let x = xa1

1 xa2
2 ...xan

n ∈ P(n). We define two sequences associated with x by

ω(x) = (ω0(x), ω1(x), ..., ωi(x), ...),
σ(x) = (a1, a2, ..., an),

where ωi(x) =
∑

1≤j≤n αi(aj). ω(x) is called the weight vector of the mono-
mial x and σ(x) is called the exponent vector of the monomial x.

Given two sequences p = (u0, u1, . . . , ul, 0, . . .), q = (v0, v1, . . . , vl, 0, . . .), we
say p < q if there is a positive integer k such that ui = vi for all i < k and
uk < vk. We are now in a position to define an order relation on monomials.

Definition 2.1. Let a, b be monomials in P(n). We say that a < b if and only
if one of the following holds:

1. ω(a) < ω(b),

2. ω(a) = ω(b) and σ(a) < σ(b).

The order on the set of sequences of nonnegative integers is the lexicographical
one.

Following Kameko [3] we define:
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Definition 2.2. A monomial x is said to be inadmissible if there exists
monomials y1, y2, ..., yk such that

x ≡ y1 + y2 + ... + yk mod A+P(n) and yj < x, j = 1, 2, ..., k

x is said to be admissible if it is not inadmissible. The set of all the classes
represented by the admissible monomials in P(n) is a basis for Q(n).

The following Theorem is our main tool.

Theorem 2.3. (Kameko[3], Sum[13]). Let x, w be monomials in P(n) such
that ωi(x) = 0 for i > r > 0. If w is inadmissible, then xw2r

is also inadmissi-
ble.

Proposition 1. If a = xm1
1 ...xmn

n ∈ P(n) is an admissible monomial then
m1 = 2λ − 1 for some λ ≥ 0.

Proof. The lemma is clearly true if n = 1. Suppose that m1 = 2λ − 2. Let
b = xe1

1 ...xen
n be the monomial obtained from a by replacing m1 by

2λ − 3. Then a = Sq1(b) + x2λ−3
1 Sq1(xm2

2 ...xmn
n ) and the fact that all terms

in x2λ−3
1 Sq1(xm2

2 ...xmn
n ) are of lower order than a shows that a is inadmissible.

But every monomial with m1 �= 2λ − 1 is of the form cd2r for some monomial
d = xt1

1 ...xtn
n with t1 = 2λ − 2 so the general result follows from Theorem 2.3.

�
Now, we recall a result of Singer[12] on hit monomials in P(n).

Definition 2.4. A monomial z = xa1
1 xa2

2 ... xan
n is called a spike if aj = 2sj − 1

for sj a nonnegative integer and j = 1, 2, ..., n. For convenience we assume that
s1 ≥ s2 ≥ ...sn ≥ 0. If z is the spike with s1 ≥ s2 ≥ ... ≥ sr−1 ≥ sr ≥ 0 and
sj−1 = sj only if j = r or sj+1 = 0, then it is called the minimal spike.

Note that the minimal spike is the spike of lowest weight order amongst all
spikes in a given degree. Spikes are admissible monomials as a spike can never
appear as term in a hit polynomial.

The following is a useful criterion for hit monomials in P(n).

Theorem 2.5. (Singer[12]). Suppose x ∈ P(n) is a monomial of degree d,
where α(d + n) ≤ n. Let z be the minimal spike of degree d. If ω(x) < ω(z),
then x is hit.

We note the following stronger version of Theorem 2.5. Let b be a mono-
mial of degree d. For l > 0 define dl(b) to be the integer dl(b) =

∑
j≥l ωj(b)2j−l.

In [10] Silverman proved that:

Theorem 2.6. (Silverman[10]). Let b ∈ P(n) be a monomial of degree d,
where α(n + d) ≤ n. Let v be the minimal spike of degree d. If dl(b) > dl(v)
for some l ≥ 1, then b is hit.
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We shall require the following result of Mothebe[5]:

Theorem 2.7. (Mothebe[5]). If u = xm1
1 ... xmk

k ∈ Pd(k) and v = xe1
1 ... xer

r ∈
Pd′

(r)are admissible monomials, then for each permutation σ ∈ Sk+r for which
σ(i) < σ(j), i < j ≤ k and σ(s) < σ(t), k < s < t ≤ k + r, the monomial

xm1
σ(1)... xmk

σ(k)x
e1
σ(k+1)... xer

σ(k+r) ∈ Pd+d′
(k + r)

is admissible.

Theorem 2.7 is a generalization of the following result of Mothebe and Uys
[6]:

Notation 2.8. Let u = xm1
1 ... x

mn−1
n−1 ∈ P(n − 1) be a monomial of degree d′.

Given any pair of integers (j, λ), 1 ≤ j ≤ n, λ ≥ 0, we write hλ
j (u) for the

monomial xm1
1 ... x

mj−1
j−1 x2λ−1

j x
mj

j+1... x
mn−1
n ∈ Pd′+(2λ−1)(n).

Theorem 2.9. (Mothebe, Uys[6]). Let u ∈ P(n − 1) be a monomial of degree
d′, where α(d′+n−1) ≤ n−1. If u is admissible, then for each pair of integers
(j, λ), 1 ≤ j ≤ n, λ ≥ 0, hλ

j (u) is admissible.

As a corollary to Theorem 2.9, suppose that λ is fixed and that d′ is also
fixed. Let x2λ1−1

1 ... x2λn−2
n−2 be the minimal spike of degree d′. If λ ≥ λ1, then

for all j, 1 ≤ j ≤ n, we have

Corollary 2.10. u = xm1
1 ... x

mn−1
n−1 ∈ Pd′

(n − 1) is admissible if and only if
hλ

j (u) ∈ Pd(n) is admissible.

In Corollary 2.10 the converse is an immediate consequence of Theorem 2.6
and the Cartan formula.

One of the main tools in the study of the hit problem is Kameko’s squaring
operation S̃q

0

∗ : Q(n) → Q(n). This homomorphism is induced by the F2-linear

map, also denoted by S̃q
0

∗ : P(n) → P(n), given by

S̃q
0

∗(x) =

{
y, if x = x1x2...xny2,

0, otherwise,

for any monomial x ∈ P(n).
For any nonnegative integer k, set μ(k) = min{m ∈ Z : α(m + k) ≤ m}.

Theorem 2.11. (Kameko[3]). Let d′ be a positive integer. If μ(2d′ + n) = n,

then (S̃q
0

∗)m : Q2d′+n(n) → Qd′
(n) is an isomorphism of F2-vector spaces.
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Let r, 1 ≤ r ≤ n, be an integer. For latter use, we let P0(r) be the subspace
of P(r) generated by monomials x = xa1

1 xa2
2 ...xar

r for which a1a2...ar = 0 and
P+(r) be the subspace of P(r) generated by monomials x = xa1

1 xa2
2 ...xar

r for
which a1a2...ar �= 0. It is easy to see that P0(r) and P+(r) are A-submodules
of P(r). Furthermore, we have Q(r) = QP0(r)

⊕
QP+(r) where

QP+(r) = P+(r)/A+P+(r)

and

QP0(r) = P0(r)/A+P0(r).

Then for each n ≥ 1 we have a direct sum decomposition:

Q(n) ∼=
n⊕

r=1

(n
r)⊕

k=1

QP+(r)

Thus for any integer d > 0 we have the following inexplicit formula for the
dimension of Qd(n)

dim(Qd(n)) =
n∑

r=1

(
n

r

)
dim(QPd

+(r)) (1)

Our main result is obtained by evaluating Formula (1) explicitly when d = 13.
For any I = (i0, i1, ..., ir), 0 < i0 < i1 < ... < ir ≤ k, 0 ≤ r < k, we define

the homomorphism pI : P(n) → P(n − 1) of algebras by substituting

pI(xj)) =

⎧⎪⎨⎪⎩
xj, if 1 ≤ j < i0,∑

0≤s≤r xis−1, if j = i0,

xj−1, if i0 < j ≤ n.

Then pI is a homomorphism of A-modules. In particular, for I = (i), we have
pi(xi) = 0.

3 Proof of Theorem 1.2

The result of Theorem 1.2 is a consequence of Lemma 3.1 which we prove below.
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Lemma 3.1.

1. dim(QPn
+(n)) = 1 for all n ≥ 1

2. dim(QPn
+(n − 1)) = n − 2 for all n ≥ 3

3. dim(QPn
+(n − 2)) =

(n − 2

2

)
for all n ≥ 6

4. dim(QPn
+(n − 3)) =

(n − 4

3

)
+ (n − 3)(n− 5) for all n ≥ 7

5. dim(QPn
+(n − 4)) =

((n − 5

4

)
− 1

)
+
(n − 4

2

)
+ (n − 4)

(n − 6

2

)
+
(n − 5

2

)
for all n ≥ 10

6. dim(QPn
+(n − 5)) = n − 6 +

(n − 5)!

2(n − 7)(n − 9)!
+
(n − 5

2

)
+
(n − 6

2

)
+ (n − 5)

(n − 7

3

)
+ 2

(
n−8∑
i=2

( i

2

))
+
(n − 8

2

)
+

((n − 7

2

)
− 1

)
+

((n − 6

5

)
− 3

)
for all n ≥ 13

7. dim(QPn
+(n − 6)) ≥ n − 6 + ((n − 7)(n − 8) − 2) +

(n − 6

2

)
+
(n − 6

3

)
+ (n − 6)

(n − 8

2

)
+

(n − 7)!

4(n − 11)!
+ (n − 8)

(n − 9

2

)
+
(n − 9

2

)
+

((n − 6

3

)
− 1

)
+ 2

(n − 7

3

)
− (n − 9)

+ (n − 6)

((n − 8

4

)
− 1

)
+ (n − 8)

(n − 9

3

)
for all n ≥ 13

8. dim(QP13
+ (6)) = 268

9. dim(QP13
+ (5)) = 105

10. dim(QP13
+ (4)) = 23

11. dim(QP13
+ (3)) = 3

The cases 1 − 5 are proved in [4], 6 − 7 are partially dealt with in [4] and
10 − 11 are known cases. Thus in this paper we shall justify the formulae in 6
and 7 and obtain results 8 and 9.
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3.1 Dimension of QP13
+ (5)

In this section we show that dim(QP13
+ (5)) = 105. We first note that in P13

+ (5)
the monomials that do not meet the hit criterion of Theorem 2.6 are

a = x1x
3
2x

3
3x

3
4x

3
5 b = x1x2x3x

3
4x

7
5 c = x1x2x

3
3x

5
4x

3
5 d = x1x

2
2x

3
3x

3
4x

4
5

e = x1x2x
6
3x

3
4x

2
5 f = x1x2x

2
3x

2
4x

7
5 g = x1x

3
2x

5
3x

2
4x

2
5

and all their permutation representatives. We know that a, b and all their
permutation representatives are admissible. By Theorem 2.7 the following per-
mutation representatives of c, d, e, f and g are admissible:

a1 = x1x
3
2x

3
3x

5
4x5 a2 = x3

1x2x
3
3x

5
4x5 a3 = x3

1x
3
2x3x

5
4x5 a4 = x3

1x
3
2x

5
3x4x5

a5 = x1x
3
2x

5
3x

3
4x5 a6 = x3

1x2x
5
3x

3
4x5 a7 = x3

1x
5
2x3x

3
4x5 a8 = x3

1x
5
2x

3
3x4x5

a9 = x1x2x
3
3x

3
4x

5
5 a10 = x1x

3
2x3x

3
4x

5
5 a11 = x1x

3
2x

3
3x4x

5
5 a12 = x1x2x

3
3x

5
4x

3
5

a13 = x1x
3
2x3x

5
4x

3
5 a14 = x1x

3
2x

5
3x4x

3
5 a15 = x3

1x2x
5
3x4x

3
5 a16 = x3

1x
5
2x3x4x

3
5

a17 = x3
1x2x3x

3
4x

5
5 a18 = x3

1x2x
3
3x4x

5
5 a19 = x3

1x2x3x
5
4x

3
5 a20 = x3

1x
3
2x3x4x

5
5

a21 = x3
1x2x

3
3x

4
4x

2
5 a22 = x1x

3
2x

3
3x

4
4x

2
5 a23 = x1x

3
2x

4
3x

3
4x

2
5 a24 = x1x

3
2x

4
3x

2
4x

3
5

a25 = x3
1x

3
2x3x

4
4x

2
5 a26 = x3

1x2x
4
3x

3
4x

2
5 a27 = x3

1x2x
4
3x

2
4x

3
5 a28 = x3

1x2x3x
2
4x

6
5

a29 = x1x
3
2x3x

2
4x

6
5 a30 = x1x2x

3
3x

2
4x

6
5 a31 = x1x2x

2
3x

3
4x

6
5 a32 = x1x2x

2
3x

6
4x

3
5

a33 = x3
1x

3
2x

4
3x4x

2
5 a34 = x3

1x
4
2x

3
3x4x

2
5 a35 = x3

1x
4
2x3x

3
4x

2
5 a36 = x3

1x
4
2x3x

2
4x

3
5

a37 = x3
1x2x3x

6
4x

2
5 a38 = x1x

3
2x3x

6
4x

2
5 a39 = x1x2x

3
3x

6
4x

2
5 a40 = x1x2x

6
3x

3
4x

2
5

a41 = x1x2x
6
3x

2
4x

3
5 a42 = x3

1x2x
2
3x4x

6
5 a43 = x1x

3
2x

2
3x4x

6
5 a44 = x1x

2
2x

3
3x4x

6
5

a45 = x1x
2
2x3x

3
4x

6
5 a46 = x1x

2
2x3x

6
4x

3
5 a47 = x3

1x2x
6
3x4x

2
5 a48 = x1x

3
2x

6
3x4x

2
5

a49 = x1x
6
2x

3
3x4x

2
5 a50 = x1x

6
2x3x

3
4x

2
5 a51 = x1x

6
2x3x

2
4x

3
5 a52 = x3

1x2x
2
3x

5
4x

2
5

a53 = x1x
3
2x

2
3x

5
4x

2
5 a54 = x1x

2
2x

3
3x

5
4x

2
5 a55 = x1x

2
2x

5
3x

3
4x

2
5 a56 = x1x

2
2x

5
3x

2
4x

3
5

a57 = x3
1x

3
2x3x

2
4x

4
5 a58 = x3

1x2x
3
3x

2
4x

4
5 a59 = x3

1x2x
2
3x

3
4x

4
5 a60 = x3

1x2x
2
3x

4
4x

3
5

a61 = x1x
3
2x

3
3x

2
4x

4
5 a62 = x1x

3
2x

2
3x

3
4x

4
5 a63 = x1x

3
2x

2
3x

4
4x

3
5 a64 = x1x

2
2x

3
3x

3
4x

4
5

a65 = x1x
2
2x

3
3x

4
4x

3
5 a66 = x1x

2
2x

4
3x

3
4x

3
5 a67 = x7

1x2x3x
2
4x

2
5 a68 = x1x

7
2x3x

2
4x

2
5

a69 = x1x2x
7
3x

2
4x

2
5 a70 = x1x2x

2
3x

7
4x

2
5 a71 = x1x2x

2
3x

2
4x

7
5 a72 = x7

1x2x
2
3x4x

2
5

a73 = x1x
7
2x

2
3x4x

2
5 a74 = x1x

2
2x

7
3x4x

2
5 a75 = x1x

2
2x3x

7
4x

2
5 a76 = x1x

2
2x3x

2
4x

7
5

a77 = x1x
3
2x

5
3x

2
4x

2
5 a78 = x3

1x2x
5
3x

2
4x

2
5 a79 = x3

1x
5
2x3x

2
4x

2
5 a80 = x3

1x
5
2x

2
3x4x

2
5

By the Kameko homomorphism the monomials a1 to a20 are the only permu-
tation representatives of c that are admissible. By Corollary 2.10 a permutation
representative of f is admissible if and only if a permutation representative of
x1x2x

2
3x

2
4 is admissible in P6(4). Thus the monomials a67 to a76 are the only
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permutation representatives of f that are admissible. The monomials d, e, g
and their permutation representatives are of the form ux3

j , 1 ≤ j ≤ 5, for some
u ∈ P10(4). In the same vein as for f every permutation representative of the
monomial e is admissible if and only if the monomial u ∈ P10(4) is admissible.
Thus the above listed permutation representatives of e are the only ones that
are admissible. It is easy to see that all the permutation representatives of
d and g which are not in the list above are in inadmissible . For example,
x3

1x
5
2x

2
3x

2
4x5 is inadmissible since

x3
1x

5
2x

2
3x

2
4x5 ≡ x3

1x
5
2x

2
3x4x

2
5 + x3

1x
5
2x3x

2
4x

2
5 mod A+P(5)

The monomials a and b have 5 and 20 permutation representatives respec-
tively. Thus the number of monomials in a basis for QP13

+ (5) is 80 + 20 + 5 =
105.That is, dim(QP13

+ (5)) = 105.

3.2 Dimension of QP13
+ (6)

We now show that dim(QP13
+ (6)) = 268.

If n ≥ 12, then the monomials in the basis of Pn
+(n−7) with ω0(−) = n−8

and that do not meet the hit criterion of Theorem 2.6 are

an−7 = x1... xn−9x
2
n−8x

7
n−7

bn−7 = x1... xn−9x
3
n−8x

6
n−7

cn−7 = x1... xn−10x
3
n−9x

3
n−8x

4
n−7

dn−7 = x1... xn−11x
2
n−10x

3
n−9x

3
n−8x

3
n−7

en−7 = x1... xn−10x
2
n−9x

3
n−8x

5
n−7

and their permutation representatives.
If n ≥ 13, then the monomial in the basis of Pn

+(n − 7) with weight order
(n − 10, 5) and that does not meet the hit criterion of Theorem 2.6 is

gn−7 = x1... xn−12x
2
n−11x

2
n−10x

2
n−9x

3
n−8x

3
n−7

and its permutation representatives. If n = 13, then the monomials in the
basis for P13

+ (6) with weight order (3, 3, 1) are x1x2x
2
3x

2
4x

2
5x

5
6, x1x2x

3
3x

2
4x

2
5x

4
6,

x1x2x3x
2
4x

2
5x

6
6 and their permutation representatives.

We first determine the number of monomials in Pn
+(n−7) with ω0(−) = n−8
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that are admissible. If n = 12, it is known that QP12
+ (5) is generated by

b1 = x1x2x3x
7
4x

2
5 b2 = x1x2x

7
3x4x

2
5 b3 = x1x2x

7
3x

2
4x5 b4 = x1x2x3x

2
4x

7
5

b5 = x1x2x
2
3x4x

7
5 b6 = x1x2x

2
3x

7
4x5 b7 = x1x

2
2x3x4x

7
5 b8 = x1x

2
2x3x

7
4x5

b9 = x1x
7
2x3x4x

2
5 b10 = x7

1x2x3x4x
2
5 b11 = x7

1x2x3x
2
4x5 b12 = x1x

7
2x3x

2
4x5

b13 = x7
1x2x

2
3x4x5 b14 = x1x

7
2x

2
3x4x5 b15 = x1x

2
2x

7
3x4x5 b16 = x1x2x3x

3
4x

6
5

b17 = x1x2x
3
3x4x

6
5 b18 = x1x2x

3
3x

6
4x5 b19 = x1x2x3x

6
4x

3
5 b20 = x1x2x

6
3x4x

3
5

b21 = x1x2x
6
3x

3
4x5 b22 = x1x

6
2x3x4x

3
5 b23 = x1x

6
2x3x

3
4x5 b24 = x1x

3
2x3x4x

6
5

b25 = x3
1x2x3x4x

6
5 b26 = x3

1x2x3x
6
4x5 b27 = x1x

3
2x3x

6
4x5 b28 = x3

1x2x
6
3x4x5

b29 = x1x
3
2x

6
3x4x5 b30 = x1x

6
2x

3
3x4x5 b31 = x1x2x

2
3x

3
4x

5
5 b32 = x1x

2
2x3x

3
4x

5
5

b33 = x1x
2
2x

3
3x4x

5
5 b34 = x1x

2
2x

3
3x

5
4x5 b35 = x1x2x

2
3x

5
4x

3
5 b36 = x1x

2
2x3x

5
4x

3
5

b37 = x1x
2
2x

5
3x4x

3
5 b38 = x1x

2
2x

5
3x

3
4x5 b39 = x1x2x

3
3x

2
4x

5
5 b40 = x1x

3
2x3x

2
4x

5
5

b41 = x1x
3
2x

2
3x4x

5
5 b42 = x1x

3
2x

2
3x

5
4x5 b43 = x1x2x

3
3x

5
4x

2
5 b44 = x1x

3
2x3x

5
4x

2
5

b45 = x1x
3
2x

5
3x4x

2
5 b46 = x1x

3
2x

5
3x

2
4x5 b47 = x3

1x2x3x
2
4x

5
5 b48 = x3

1x2x
2
3x4x

5
5

b49 = x3
1x2x

2
3x

5
4x5 b50 = x3

1x2x3x
5
4x

2
5 b51 = x3

1x2x
5
3x4x

2
5 b52 = x3

1x2x
5
3x4x

2
5

b53 = x3
1x

5
2x3x4x

2
5 b54 = x3

1x
5
2x3x

2
4x5 b55 = x3

1x
5
2x

2
3x4x5 b56 = x1x2x

3
3x

3
4x

4
5

b57 = x1x
3
2x3x

3
4x

4
5 b58 = x1x

3
2x

3
3x4x

4
5 b59 = x1x

3
2x

3
3x

4
4x5 b60 = x1x2x

3
3x

4
4x

3
5

b61 = x1x
3
2x3x

4
4x

3
5 b62 = x1x

3
2x

4
3x4x

3
5 b63 = x1x

3
2x

4
3x

3
4x5 b64 = x3

1x2x3x
3
4x

4
5

b65 = x3
1x2x

3
3x4x

4
5 b66 = x3

1x2x
3
3x

4
4x5 b67 = x3

1x2x3x
4
4x

3
5 b68 = x3

1x2x
4
3x4x

3
5

b69 = x3
1x2x

4
3x

3
4x5 b70 = x3

1x
3
2x3x4x

4
5 b71 = x3

1x
3
2x3x

4
4x5 b72 = x3

1x
3
2x

4
3x4x5

b73 = x3
1x

4
2x3x4x

3
5 b74 = x3

1x
4
2x3x

3
4x5 b75 = x3

1x
4
2x

3
3x4x5 b76 = x3

1x2x
2
3x

3
4x

3
5

b77 = x1x
3
2x

2
3x

3
4x

3
5 b78 = x1x

2
2x

3
3x

3
4x

3
5 b79 = x3

1x2x
3
3x

2
4x

3
5 b80 = x1x

3
2x

3
3x

2
4x

3
5

b81 = x3
1x2x

3
3x

3
4x

2
5 b82 = x1x

3
2x

3
3x

3
4x

2
5 b83 = x3

1x
3
2x3x

2
4x

3
5 b84 = x3

1x
3
2x3x

3
4x

2
5

b85 = x3
1x

3
2x

3
3x4x

2
5

For all n ≥ 12, let Q∗Pn
+(n− 7) denote the set of all admissible monomials

in Pn
+(n − 7) with ω0(−) = n − 8. Note that Q∗P12

+ (5) = QP12
+ (5). Then we

claim that:

Q∗Pn+1
+ (n − 6) =

n−6⋃
j=1

h1
j (Q

∗Pn
+(n − 7)). (2)

The only permutation representatives of an−7 that may not be obtained
from QP12

+ (5) by inductively applying Formula (2) are those of the form
x2

1x
m2
2 ... x

mn−7
n−7 as well as the monomial x7

1x
2
2x3... xn−7 all of which are clearly

inadmissible. Hence the number of permutation representatives of an−7 that
are admissible is (n − 7)(n − 9).
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The only permutations representatives of bn−7 that may not be obtained
from QP12

+ (5) by inductively applying Formula (2) are those of the form
x6

1x
m2
2 ... x

mn−7
n−7 as well as the monomial x3

1x
6
2x3... xn−7 all of which are clearly

inadmissible. Hence the number of permutation representatives of bn−7 that
are admissible is (n − 7)(n − 9).

The only permutations representatives of cn−7 that may not be obtained
from QP12

+ (5) by inductively applying Formula (2) are those of the form
x4

1x
m2
2 ... x

mn−7
n−7 , x1x

4
2x

m3
3 ... x

mn−7
n−7 as well as those of the form x1x2x

4
3x4... x

mn−7
n−7

all of which are clearly inadmissible. Hence the number of permutation repre-
sentatives of cn−7 that are admissible is 2

(
n−7

3

)
.

The only permutations representatives of dn−7 that may not be obtained
from QP12

+ (5) by inductively applying Formula (2) are those of the form
x2

1x
m2
2 ... x

mn−7
n−7 , x3

1x
2
2x

m3
3 ... x

mn−7
n−7 , x3

1x
3
2x

2
3x

m3
4 ... x

mn−7
n−7 as well as the monomial

x3
1x

3
2x

3
3x

2
4x5... xn−7 all of which are clearly inadmissible. Hence the number of

permutation representatives of dn−7 that are admissible is (n − 11)
(
n−7

3

)
.

The only permutations representatives of en−7 that may not be obtained
from QP12

+ (5) by inductively applying Formula (2) are those with a factor of
the form x5

i x
3
jx

2
k, i < j < k, or of the form x5

t x
2
rx

3
s, t < r < s, or those of the

form x2
1x

m2
2 ... x

mn−7
n−7 or of the form x3

1x
2
2x

m3
3 ... x

mn−7
n−7 , all of which are clearly

inadmissible. Hence the number of permutation representatives of en−7 that
are admissible is

(
n−7

3

)
+ 3
(
n−8

3

)
+
(
n−9

2

)
.

Thus for all n ≥ 12 the number of admissible monomials in Pn
+(n− 7) with

ω0(−) = n − 8 is equal to

2(n − 7)(n − 9) + 2
(

n − 7
3

)
+ (n − 11)

(
n − 7

3

)
+
(

n − 7
3

)
+ 3
(

n − 8
3

)
+
(

n − 9
2

)
.

If n = 13 this formula yields 184 admissible monomials with ω0(−) = 5.
If n = 13, then gn−7 = x1x

2
2x

2
3x

2
4x

3
5x

3
6. By Theorem 2.7, the following

permutation representative of x1x
2
2x

2
3x

2
4x

3
5x

3
6 are admissible in P13

+ (6)

f1 = x3
1x

3
2x3x

2
4x

2
5x

2
6 f2 = x3

1x2x
3
3x

2
4x

2
5x

2
6 f3 = x3

1x2x
2
3x

3
4x

2
5x

2
6

f4 = x3
1x2x

2
3x

3
4x

2
5x

2
6 f5 = x3

1x2x
2
3x

2
4x

2
5x

3
6 f6 = x1x

3
2x

3
3x

2
4x

2
5x

2
6

f7 = x1x
3
2x

2
3x

3
4x

2
5x

2
6 f8 = x1x

3
2x

2
3x

2
4x

3
5x

2
6 f9 = x1x

3
2x

2
3x

2
4x

2
5x

3
6

f10 = x1x
2
2x

3
3x

3
4x

2
5x

2
6 f11 = x1x

2
2x

3
3x

2
4x

3
5x

2
6 f12 = x1x

2
2x

3
3x

2
4x

2
5x

3
6

f13 = x1x
2
2x

2
3x

3
4x

3
5x

2
6 f14 = x1x

2
2x

2
3x

3
4x

2
5x

3
6 f15 = x1x

2
2x

2
3x

2
4x

3
5x

3
6

We see that if x �= ft, ∀t, 1 ≤ t ≤ 15, then x is of the form x2
1x

m2
2 ... x

mn−7
n−7 ,

x3
1x

2
2x

m3
3 ... x

mn−7
n−7 or of the form x3

1x
3
2x

2
3x

m3
4 ... x

mn−7
n−7 , all of which are clearly
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inadmissible. For example

x3
1x

3
2x

2
3x4x

2
5x

2
6 ≡ x3

1x
3
2x3x

2
4x

2
5x

2
6 + x4

1x
3
2x3x4x

2
5x

2
6

+ x3
1x

4
2x3x4x

2
5x

2
6 mod A+P(6).

Thus there are 15 permutation representatives of x1x
2
2x

2
3x

2
4x

3
5x

3
6 which are ad-

missible.

We now determine the admissible permutation representatives of the mono-
mials of weight order (3, 3, 1). By Theorem 2.7, the following permutation rep-
resentative of x1x2x

2
3x

2
4x

3
5x

4
6 are admissible in P13

+ (6)

c1 = x3
1x2x

2
3x4x

2
5x

4
6 c2 = x1x

3
2x

2
3x4x

2
5x

4
6 c3 = x1x

2
2x

3
3x4x

2
5x

4
6

c4 = x1x
2
2x3x

3
4x

2
5x

4
6 c5 = x1x

2
2x3x

2
4x

3
5x

4
6 c6 = x1x

2
2x3x

2
4x

4
5x

3
6

c7 = x3
1x2x3x

2
4x

2
5x

4
6 c8 = x1x

3
2x3x

2
4x

2
5x

4
6 c9 = x1x2x

3
3x

2
4x

2
5x

4
6

c10 = x1x2x
2
3x

3
4x

2
5x

4
6 c11 = x1x2x

2
3x

2
4x

3
5x

4
6 c12 = x1x2x

2
3x

2
4x

4
5x

3
6

c13 = x3
1x2x3x

2
4x

4
5x

2
6 c14 = x1x

3
2x3x

2
4x

4
5x

2
6 c15 = x1x2x

3
3x

2
4x

4
5x

2
6

c16 = x1x2x
2
3x

3
4x

4
5x

2
6 c17 = x1x2x

2
3x

4
4x

3
5x

2
6 c18 = x1x2x

2
3x

4
4x

2
5x

3
6

c19 = x3
1x2x

2
3x4x

4
5x

2
6 c20 = x1x

3
2x

2
3x4x

4
5x

2
6 c21 = x1x

2
2x

3
3x4x

4
5x

2
6

c22 = x1x
2
2x3x

3
4x

4
5x

2
6 c23 = x1x

2
2x3x

4
4x

3
5x

2
6 c24 = x1x

2
2x3x

4
4x

2
5x

3
6

c25 = x3
1x2x

2
3x

4
4x5x

2
6 c26 = x1x

3
2x

2
3x

4
4x5x

2
6 c27 = x1x

2
2x

3
3x

4
4x5x

2
6

c28 = x1x
2
2x

4
3x

3
4x5x

2
6 c29 = x1x

2
2x

4
3x4x

3
5x

2
6 c30 = x1x

2
2x

4
3x4x

2
5x

3
6

c31 = x1x2x
3
3x

4
4x

2
5x

2
6 c32 = x1x

3
2x

4
3x4x

2
5x

2
6 c33 = x1x

3
2x

4
3x

2
4x5x

2
6

c34 = x1x
3
2x3x

4
4x

2
5x

2
6 c35 = x3

1x2x3x
4
4x

2
5x

2
6 c36 = x3

1x2x
4
3x4x

2
5x

2
6

c37 = x3
1x2x

4
3x

2
4x5x

2
6 c38 = x3

1x
4
2x3x4x

2
5x

2
6 c39 = x3

1x
4
2x3x

2
4x5x

2
6

We see that if x �= ct, ∀t, 1 ≤ t ≤ 39, then x is of one of the following forms:

(i) x2
1x

m2
2 ...xm6

6 ,

(ii) x4
1x

m2
2 ...xm6

6 ,

(iii) x3
1x

2
2x

m3
3 ...xm6

6 ,

(iv) x1x
4
2x

m3
3 ...xm6

6 ,

(v) x1x2x
4
3x

m4
4 ...xm6

6 ,

(vi) x1x
2
2x

2
3x

m4
4 ...xm6

6 ,

(vii) x3
1x

4
2x

2
3x

m4
4 ...xm6

6 ,

(viii) x3
1x

4
2x3x

2
4x

2
5x6

(ix) x3
1x2x

2
3x

2
4x

m5
5 xm6

6 ,

(x) x3
1x2x

2
3x

4
4x

2
5x6,

(xi) x1x
3
2x

2
3x

2
4x

m5
5 xm6

6 ,

(xii) x1x
3
2x

2
3x

4
4x

2
5x6,

(xiii) x1x
2
2x

3
3x

2
4x

m5
5 xm6

6 ,

(xiv) x1x
3
2x

4
3x

2
4x

2
5x6,
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(xv) x1x
2
2x

3
3x

4
4x

2
5x6,

(xvi) x1x
2
2x

4
3x

2
4x

m5
5 xm6

6 ,

(xvii) x1x
2
2x

4
3x

3
4x

2
5x6,

(xviii) x3
1x2x

4
3x

2
4x

2
5x6,

all of which are clearly inadmissible. For example

x3
1x2x

2
3x

2
4x5x

4
6 ≡ x3

1x2x
2
3x4x

2
5x

4
6 + x3

1x2x3x
2
4x

2
5x

4
6 mod A+P(6).

We claim that the following permutation representative of x1x2x3x
2
4x

2
5x

6
6

are admissible in P13
+ (6)

c40 = x1x2x
2
3x

2
4x5x

6
6 c41 = x1x

2
2x3x

2
4x5x

6
6 c42 = x1x

2
2x3x

6
4x5x

2
6

c43 = x1x2x
2
3x

6
4x5x

2
6 c44 = x1x2x

2
3x4x

6
5x

2
6 c45 = x1x2x

2
3x4x

2
5x

6
6

c46 = x1x2x3x
2
4x

2
5x

6
6 c47 = x1x

6
2x3x4x

2
5x

2
6 c48 = x1x

6
2x3x

2
4x5x

2
6

c49 = x1x
2
2x3x4x

2
5x

6
6 c50 = x1x

2
2x3x4x

6
5x

2
6 c51 = x1x2x

6
3x4x

2
5x

2
6

c52 = x1x2x
6
3x

2
4x5x

2
6 c53 = x1x2x3x

2
4x

6
5x

2
6 c54 = x1x2x3x

6
4x

2
5x

2
6

c55 = x1x2x
2
3x

2
4x

6
5x6 c56 = x1x2x

2
3x

6
4x

2
5x6 c57 = x1x2x

6
3x

2
4x

2
5x6

c58 = x1x
6
2x3x

2
4x

2
5x6 c59 = x1x

2
2x3x

2
4x

6
5x6 c60 = x1x

2
2x3x

6
4x

2
5x6

We see that if x �= ct, ∀t, 40 ≤ t ≤ 60, then x is of one of the following forms:

(i) x2
1x

m2
2 ...xm6

6 ,

(ii) x6
1x

m2
2 ...xm6

6 ,

(iii) x1x
2
2x

2
3x

m4
4 ...xm6

6 ,

(iv) x1x
6
2x

2
3x

m4
4 ...xm6

6 ,

(v) x1x
2
2x

6
3x

m4
4 ...xm6

6 ,

all of which are which are clearly inadmissible. For example

x1x
6
2x

2
3x

2
4x5x6 ≡ x1x

6
2x

2
3x4x

2
5x6 + x1x

6
2x

2
3x4x5x

2
6 + x1x

6
2x3x

2
4x

2
5x6

+ x1x
6
2x3x

2
4x5x

2
6 + x1x

6
2x3x4x

2
5x

2
6 mod A+P(6)

That the monomials ct, 40 ≤ t ≤ 54, are admissible follows from Theorem 2.7.
We claim that the following permutation representative of x1x2x

2
3x

2
4x

2
5x

5
6

are admissible in P13
+ (6)

c61 = x1x2x
2
3x

2
4x

5
5x

2
6 c62 = x1x2x

2
3x

5
4x

2
5x

2
6 c63 = x1x

2
2x3x

2
4x

5
5x

2
6

c64 = x1x
2
2x

5
3x4x

2
5x

2
6 c65 = x1x

2
2x

5
3x

2
4x5x

2
6 c66 = x1x

2
2x3x

5
4x

2
5x

2
6

c67 = x1x2x
2
3x

2
4x

2
5x

5
6 c68 = x1x

2
2x3x

2
4x

2
5x

5
6 c69 = x1x

2
2x

5
3x

2
4x

2
5x6

We see that if x �= ct, ∀t, 61 ≤ t ≤ 69, then x is of one of the following forms:
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(i) x5
1x

m2
2 ...xm6

6 ,

(ii) x2
1x

m2
2 ...xm6

6 ,

(iii) x1x
2
2x

2
3x

m4
4 ...xm6

6 ,

(iv) x1x
5
2x

m3
3 ...xm6

6 ,

(v) x1x2x
5
3x

m4
4 ...xm6

6 ,

all of which are clearly inadmissible. For example

x1x
2
2x

2
3x4x

2
5x

5
6 ≡ x1x

2
2x3x

2
4x

2
5x

5
6 + x1x2x

2
3x

2
4x

2
5x

5
6 + x1x

2
2x3x4x

2
5x

6
6

+ x1x2x
2
3x4x

2
5x

6
6 + x1x2x3x

2
4x

2
5x

6
6 mod A+P(6)

That the monomials ct, 61 ≤ t ≤ 66, are admissible follows from Theorem 2.7.

Now, we prove that the set {ct : 1 ≤ t ≤ 69} is linearly independent.
Suppose there is a linear relation

S =
∑

1≤t≤69

γtct ≡ 0

with γt ∈ F2, 1 ≤ t ≤ 69. It is sufficient to prove that we must have γt = 0
for 55 ≤ t ≤ 60 and 67 ≤ t ≤ 69. By direct computation from the relations
p(i,j)(S) ≡ 0, 1 ≤ i ≤ 5, 1 < j ≤ 6, one gets γ55 = γ56 = γ57 = γ58 = γ59 =
γ60 = γ67 = γ68 = γ69 = 0.

This shows that dim(QP13
+ (6)) = 184 + 15 + 69 = 268.

3.3 Dimension of QP13
+ (7)

We now show that

dim(QPn
+(n − 6)) ≥ n − 6 + ((n − 7)(n − 8) − 2) +

(
n − 6

2

)
+
(

n − 6
3

)
+ (n − 6)

(
n − 8

2

)
+

(n − 7)!
4(n − 11)!

+ (n − 8)
(

n − 9
2

)
+
(

n − 9
2

)
+
((

n − 6
3

)
− 1
)

+ 2
(

n − 7
3

)
− (n − 9) + (n − 6)

((
n − 8

4

)
− 1
)

+ (n − 8)
(

n − 9
3

)
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with equality when n = 13. In [4] it is shown that if n ≥ 11 the monomials in
Pn

+(n − 6) that do not meet the hit criterion of Theorem 2.6 are :

an−6 = x1... xn−9x
3
n−8x

3
n−7x

3
n−6

bn−6 = x1... xn−7x
7
n−6

cn−6 = x1... xn−8x
3
n−7x

5
n−6

dn−6 = x1... xn−10x
2
n−9x

2
n−8x

3
n−7x

3
n−6

en−6 = x1x2... xn−9x
2
n−8x

3
n−7x

4
n−6

fn−6 = x1x2... xn−8x
2
n−7x

6
n−6

gn−6 = x1x2... xn−9x
2
n−8x

2
n−7x

5
n−6

and their permutation representatives, while

hn−6 = x1x2... xn−11x
2
n−10x

2
n−9x

2
n−8x

2
n−7x

3
n−6

kn−6 = x1x2... xn−10x
2
n−9x

2
n−8x

2
n−7x

4
n−6

and their permutation representatives have to be added to the list when n ≥ 13
and

ln−6 = x1x2... xn−12x
2
n−11x

2
n−10x

2
n−9x

2
n−8x

2
n−7x

2
n−6

and its permutation representatives has to be added to the list when n ≥ 14.
In [4] it is shown that the number of permutation representatives of an−6, bn−6,
cn−6, dn−6, en−6, fn−6, gn−6 that are admissible is

n − 6 + ((n − 7)(n − 8) − 2) +
(

n − 6
2

)
+
(

n − 6
3

)
+ (n − 6)

(
n − 8

2

)
+

(n − 7)!
4(n − 11)!

+ (n − 8)
(

n − 9
2

)
+
(

n − 9
2

)
+
((

n − 6
3

)
− 1
)

+ 2
(

n − 7
3

)
− (n − 9)

When n = 13 this formula yields 357 admissible monomials in P13
+ (7).

We now compute the number of permutation representatives of hn−6 and
kn−6 that are admissible when n = 13. By Theorem 2.7 the following permu-
tation representatives of x1x2x

2
3x

2
4x

2
5x

2
6x

3
7 are admissible:
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d1 = x3
1x2x3x

2
4x

2
5x

2
6x

2
7 d2 = x1x

3
2x3x

2
4x

2
5x

2
6x

2
7 d3 = x1x2x

3
3x

2
4x

2
5x

2
6x

2
7

d4 = x1x2x
2
3x

3
4x

2
5x

2
6x

2
7 d5 = x1x2x

2
3x

2
4x

3
5x

2
6x

2
7 d6 = x1x2x

2
3x

2
4x

2
5x

3
6x

2
7

d7 = x1x2x
2
3x

2
4x

2
5x

2
6x

3
7 d8 = x3

1x2x
2
3x4x

2
5x

2
6x

2
7 d9 = x1x

3
2x

2
3x4x

2
5x

2
6x

2
7

d10 = x1x
2
2x

3
3x4x

2
5x

2
6x

2
7 d11 = x1x

2
2x3x

3
4x

2
5x

2
6x

2
7 d12 = x1x

2
2x3x

2
4x

3
5x

2
6x

2
7

d13 = x1x
2
2x3x

2
4x

2
5x

3
6x

2
7 d14 = x1x

2
2x3x

2
4x

2
5x

2
6x

3
7 d15 = x3

1x2x
2
3x

2
4x5x

2
6x

2
7

d16 = x1x
3
2x

2
3x

2
4x5x

2
6x

2
7 d17 = x1x

2
2x

3
3x

2
4x5x

2
6x

2
7 d18 = x1x

2
2x

2
3x

3
4x5x

2
6x

2
7

d19 = x1x
2
2x

2
3x4x

3
5x

2
6x

2
7 d20 = x1x

2
2x

2
3x4x

2
5x

3
6x

2
7 d21 = x1x

2
2x

2
3x4x

2
5x

2
6x

3
7

d22 = x3
1x2x

2
3x

2
4x

2
5x6x

2
7 d23 = x1x

3
2x

2
3x

2
4x

2
5x6x

2
7 d24 = x1x

2
2x

3
3x

2
4x

2
5x6x

2
7

d25 = x1x
2
2x

2
3x

3
4x

2
5x6x

2
7 d26 = x1x

2
2x

2
3x

2
4x

3
5x6x

2
7 d27 = x1x

2
2x

2
3x

2
4x5x

3
6x

2
7

d28 = x1x
2
2x

2
3x

2
4x5x

2
6x

3
7

We see that if x �= dt, ∀t, 1 ≤ t ≤ 28, then x is of the form x2
1x

m2
2 ... x

mn−6
n−6

or h2
j(x1x

2
2x

2
3x

2
4x

2
5x6), 1 ≤ j ≤ 7, or x3

1x
2
2x

m3
3 ... x

mn−6
n−6 all of which are clearly

inadmissible.
For all n ≥ 13 the number of monomials in QPn

+(n − 6) that may be
obtained from the monomials dt, 1 ≤ t ≤ 28, by inductively applying Formula
(2) is (n − 6)

((
n−8

4

)− 1
)
.

We claim that the following permutation representative of x1x2x3x
2
4x

2
5x

2
6x

4
7

are admissible in P13
+ (7)

d29 = x1x
2
2x3x4x

2
5x

2
6x

4
7 d30 = x1x

2
2x3x4x

2
5x

4
6x

2
7 d31 = x1x

2
2x3x

2
4x5x

2
6x

4
7

d32 = x1x
2
2x3x

2
4x5x

4
6x

2
7 d33 = x1x

2
2x3x

2
4x

4
5x6x

2
7 d34 = x1x2x

2
3x4x

2
5x

2
6x

4
7

d35 = x1x2x
2
3x4x

2
5x

4
6x

2
7 d36 = x1x2x

2
3x

2
4x5x

2
6x

4
7 d37 = x1x2x

2
3x

2
4x5x

4
6x

2
7

d38 = x1x2x
2
3x

2
4x

4
5x6x

2
7 d39 = x1x

2
2x

4
3x4x5x

2
6x

2
7 d40 = x1x

2
2x

4
3x4x

2
5x6x

2
7

d41 = x1x2x
2
3x

4
4x5x

2
6x

2
7 d42 = x1x2x

2
3x

4
4x

2
5x6x

2
7 d43 = x1x2x3x

2
4x

2
5x

2
6x

4
7

d44 = x1x2x3x
2
4x

2
5x

4
6x

2
7 d45 = x1x

2
2x3x

4
4x

2
5x6x

2
7 d46 = x1x

2
2x3x

4
4x5x

2
6x

2
7

d47 = x1x2x3x
2
4x

4
5x

2
6x

2
7 d48 = x1x2x

2
3x4x

4
5x

2
6x

2
7 d49 = x1x

2
2x3x4x

4
5x

2
6x

2
7

d50 = x1x
2
2x3x

2
4x

2
5x6x

4
7 d51 = x1x

2
2x3x

2
4x

2
5x

4
6x7 d52 = x1x

2
2x3x

2
4x

4
5x

2
6x7

d53 = x1x
2
2x3x

4
4x

2
5x

2
6x7 d54 = x1x

2
2x

4
3x4x

2
5x

2
6x7 d55 = x1x2x

2
3x

2
4x

2
5x6x

4
7

d56 = x1x2x
2
3x

2
4x

2
5x

4
6x7 d57 = x1x2x

2
3x

2
4x

4
5x

2
6x7 d58 = x1x2x

2
3x

4
4x

2
5x

2
6x7

We see that if x �= dt, ∀t, 29 ≤ t ≤ 58, then x is of one of the following forms:
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(i) x2
1x

m2
2 ...xm7

7 ,

(ii) x4
1x

m2
2 ...xm7

7 ,

(iii) x1x
2
2x

2
3x

m4
4 ...xm7

7 ,

(iv) x1x
2
2x

4
3x

2
4...x

m7
7 ,

(v) x1x2x
4
3x

m4
4 ...xm7

7 ,

(vi) x1x2x3x
4
4x

m5
5 ...xm7

7 ,

(vii) x1x
4
2x

m3
3 ...xm7

7 ,

all of which are clearly inadmissible. For example

x1x
2
2x

2
3x

2
4x5x

4
6x7 ≡ x1x

2
2x

2
3x4x

2
5x

4
6x7 + x1x

2
2x

2
3x4x5x

4
6x

2
7 + x1x

2
2x3x

2
4x

2
5x

4
6x7

+ x1x
2
2x3x

2
4x5x

4
6x

2
7 + x1x

2
2x3x4x

2
5x

4
6x

2
7 + x1x2x

2
3x

2
4x

2
5x

4
6x7

+ x1x2x
2
3x

2
4x5x

4
6x

2
7 + x1x2x

2
3x4x

2
5x

4
6x

2
7

+ x1x2x3x
2
4x

2
5x

4
6x

2
7 mod A+P(7)

That the monomials dt, 29 ≤ t ≤ 49, are admissible follows from Theorem 2.7.
Now, we prove that the set {dt : 29 ≤ t ≤ 58} is linearly independent in

QP13
+ (7). Suppose that there is a linear relation

S =
∑

29≤t≤58

γtdt ≡ 0

with γt ∈ F2, 36 ≤ t ≤ 65. It is sufficient to prove that we must have γt = 0 for
50 ≤ t ≤ 58. By direct computation from the relations p(i,j)(S) ≡ 0, 1 ≤ i ≤ 3
,1 < j ≤ 6, one gets γ50 = γ51 = γ52 = γ53 = γ54 = γ55 = γ56 = γ57 = γ58 = 0.

For all n ≥ 13 the number of monomials in QPn
+(n−6) that may be obtained

from the monomials dt, 29 ≤ t ≤ 58, by inductively applying Formula (2) is
(n − 8)

(
n−9

3

)
. This establishes Inequality 7 of Lemma 3.1.

Thus dim(QP13
+ (7)) = 357 + 58 = 415.

3.4 Dimension of QP13
+ (8)

We now show that

dim(QPn
+(n − 5)) = n − 6 +

(n − 5)!
2(n − 7)(n − 9)!

+
(

n − 5
2

)
+
(

n − 6
2

)
+ (n − 5)

(
n − 7

3

)
+ 2

(
n−8∑
i=2

(
i

2

))

+
(

n − 8
2

)
+
((

n − 7
2

)
− 1
)

+
((

n − 6
5

)
− 3
)

In [4] it is shown that if n ≥ 9, then the monomials in Pn
+(n − 5) that do not

meet the hit criterion of Theorem 2.6 are:
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an−5 = x1... xn−8x
2
n−7x

3
n−6x

3
n−5

bn−5 = x1x2... xn−7x
3
n−6x

4
n−5

cn−5 = x1x2... xn−7x
2
n−6x

5
n−5

dn−5 = x1x2... xn−6x
6
n−5

and their permutation representatives, while

en−5 = x1x2... xn−9x
2
n−8x

2
n−7x

2
n−6x

3
n−5

fn−5 = x1x2... xn−8x
2
n−7x

2
n−6x

4
n−5

and their permutation representatives have to be added to the list when n ≥ 10
and

gn−5 = x1x2... xn−11x
2
n−10x

2
n−9x

2
n−8x

2
n−7x

2
n−6x

2
n−5

and its permutation representatives has to be added to the list when n ≥ 13.

In [4] it is shown that the number of permutation representatives of an−5,
bn−5, cn−5, dn−5, en−5, fn−5 that are admissible is

n − 6 +
(n − 5)!

2(n − 7)(n − 9)!
+
(

n − 5
2

)
+
(

n − 6
2

)
+ (n − 5)

(
n − 7

3

)
+ 2

(
n−8∑
i=2

(
i

2

))

+
(

n − 8
2

)
+
((

n − 7
2

)
− 1
)

When n = 13 this formula yields 420 admissible monomials in P13
+ (8).

We now compute the number of permutation representatives of gn−5 that
are admissible when n = 13. We claim that the following permutation repre-
sentative of x1x2x3x

2
4x

2
5x

2
6x

2
7x

2
7 are admissible in P13

+ (8)

e1 = x1x
2
2x3x4x

2
5x

2
6x

2
7x

2
8 e2 = x1x

2
2x3x

2
4x5x

2
6x

2
7x

2
8 e3 = x1x

2
2x3x

2
4x

2
5x6x

2
7x

2
8

e4 = x1x
2
2x3x

2
4x

2
5x

2
6x7x

2
8 e5 = x1x

2
2x

2
3x4x5x

2
6x

2
7x

2
8 e6 = x1x

2
2x

2
3x4x

2
5x6x

2
7x

2
8

e7 = x1x
2
2x

2
3x4x

2
5x

2
6x7x

2
8 e8 = x1x

2
2x

2
3x

2
4x5x6x

2
7x

2
8 e9 = x1x

2
2x

2
3x

2
4x5x

2
6x7x

2
8

e10 = x1x2x
2
3x4x

2
5x

2
6x

2
7x

2
8 e11 = x1x2x

2
3x

2
4x5x

2
6x

2
7x

2
8 e12 = x1x2x

2
3x

2
4x

2
5x6x

2
7x

2
8

e13 = x1x2x
2
3x

2
4x

2
5x

2
6x7x

2
8 e14 = x1x2x3x

2
4x

2
5x

2
6x

2
7x

2
8 e15 = x1x

2
2x3x

2
4x

2
5x

2
6x

2
7x8

e16 = x1x
2
2x

2
3x4x

2
5x

2
6x

2
7x8 e17 = x1x

2
2x

2
3x

2
4x5x

2
6x

2
7x8 e18 = x1x2x

2
3x

2
4x

2
5x

2
6x

2
7x8
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We see that if x �= et, ∀t, 1 ≤ t ≤ 18, then x is of the form x2
1x

m2
2 ... xm8

8 or
of the form x1x

2
2x

2
3x

2
4x

2
5x

m6
6 ... xm8

8 , all of which are clearly inadmissible. For
example

x1x
2
2x

2
3x

2
4x

2
5x6x

2
7x8 ≡ x1x

2
2x

2
3x

2
4x5x

2
6x

2
7x8 + x1x

2
2x

2
3x

2
4x5x6x

2
7x

2
8

+ x1x
2
2x

2
3x4x

2
5x

2
6x

2
7x8 + x1x

2
2x

2
3x4x

2
5x6x

2
7x

2
8

+ x1x
2
2x3x

2
4x

2
5x

2
6x

2
7x8 + x1x

2
2x3x

2
4x

2
5x6x

2
7x

2
8

+ x1x
2
2x3x4x

2
5x

2
6x

2
7x

2
8 + x1x2x

2
3x

2
4x

2
5x

2
6x

2
7x8

+ x1x2x
2
3x

2
4x

2
5x6x

2
7x

2
8 + x1x2x

2
3x

2
4x5x

2
6x

2
7x

2
8

+ x1x2x3x
2
4x

2
5x

2
6x

2
7x

2
8 mod A+P(8)

That the monomials et, 1 ≤ t ≤ 14, are admissible follows from Theorem 2.7.
Now we prove that the set {et : 1 ≤ t ≤ 18} is linearly independent in

QP13
+ (8). Suppose that there is a linear relation

S =
∑

1≤t≤18

γtet ≡ 0

with γt ∈ F2, 1 ≤ t ≤ 18. It is sufficient to prove that we must have γt = 0 for
15 ≤ t ≤ 18. By direct computation from the relations p(i,j)(S) ≡ 0, 1 ≤ i ≤ 2
,1 < j ≤ 5, one gets γ15 = γ16 = γ17 = γ18 = 0.

For all n ≥ 13 the number of monomials in QPn
+(n − 5) that may be

obtained from the monomials et, 1 ≤ t ≤ 18, by inductively applying Formula
(2) is

(
n−6

5

)− 3. It is easy to show that any other monomial not obtained from
the monomials et, 1 ≤ t ≤ 18, in this way is inadmissible. This establishes
Formula 6 of Lemma 3.1.

Thus dim(QP13
+ (8) = 420 + 18 = 438.

3.5 Dimension of QP13
+ (n), 9 ≤ n ≤ 13

That

dim(QP13
+ (n)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if n = 13
11 if n = 12
55 if n = 11

164 if n = 10
322 if n = 9

follows from the cases of Lemma 3.1 that are proved in [4].
This completes the proof of Lemma 3.1 hence that of Theorem 1.2.
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