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Abstract

Let P(n) = F2[z1, z2, ..., xn] be the polynomial algebra in n variables
x;, of degree one, over the field Fy of two elements. The mod-2 Steenrod
algebra A acts on P(n) according to well known rules. The hit problem,
set up by F.Peterson, of determining A1P(n), the subspace of all polyno-
mials in the image of the action of the mod-2 Steenrod algebra has been
studied by several authors. We are interested in the related problem of
determining a basis for the quotient vector space Q(n) = P(n)/ AP (n).
In this paper, we give an explicit formula for the dimension of Q(n) in
degree thirteen.

1 Introduction

Let P(n) = Fz[x1,zo, ..., y] be the polynomial algebra in n variables z;, of
degree one, over the field Fy of two elements. The mod-2 Steenrod algebra A
acts on P(n) by the formula

Ty, =0
Sq'(z) = x3, i=1
0, otherwise
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and subject to the Cartan formula

for u,v € P(n). A polynomial f € P(n) is in the image of the the action of the
Steenrod algebra if
F=_ 54
i>0
for some polynomials f; € P(n). That means f belongs to ATP(n), the sub-
space of all hit polynomials. The problem of determining ATP(n) is called
the hit problem and has been studied by several authors. In this paper, we
are interested in the related problem of finding a basis for the quotient vector
space
Q(n) =P(n)/ATP(n).

This problem was first studied by Peterson [7], Wood[15], Singer[11], Priddy[9],
Carlisle-Wood[1], who showed its relationship to several classical problems in
homotopy theory. The quotient Q(n) has been calculated by Peterson[8] for
k = 2 and by Kameko[3] for kK = 3 in his thesis. For n = 4, the problem has
explicitly been determined in Sum [13] for the cases of the degree 257t +25 —2
and the other cases have explicitly been determined in Sum [14]. This problem
has been completely solved in all degrees less than 13, Mothebe et al [4]. The
results are used to study the Singer algebraic transfer which is a homomorphism
from the homology of the mod-2 Steenrod algebra, Torfm +q(F2,F2), to the
subspace of QP%(n) consisting of all the G L,,-invariant classes of degree d. The
Singer algebraic transfer is a useful tool in describing the homology groups of
the Steenrod algebra.

The following result is useful for determining .A-generators for P(n). Let
a(m) denote the number of digits 1 in the binary expansion of m. In [15],
Wood proved the following.

Theorem 1.1. Let u € P(n) be a monomial of degree d. If a(n+d) > n, then
u 1s hit.

Our main result is Theorem 1.2 below which is based on and expands the
previous work of Mothebe et al [4]. We explicitly determine the dimension of
Q"3(n) for all n > 1. We have:

Theorem 1.2. For alln > 1:
am(@*w) = Y. ("),
3<j<13 M

where C;, 3 < j <13, are determined by the following table:
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i 13 4 5 6 7 8 9 10 11 12 13
C, |3 23 105 268 415 438 322 164 55 11 1

The following tables shows the results obtained using Theorem 1.2

n 1 2 3 4 5 6 7 8 9 10
dim(Q™(n) |0 0 3 35 250 1303 5406 18920 58096 160824

n 11 12 13
dim(Q™(n)) | 409200 969068 4241740

We use the convention that (') =0 if n < .

In Section 2, we recall some results on admissible monomials and hit mono-
mials in P(n). Theorem 1.2 will be proved in Section 3.

2 Preliminaries

In this section, we recall some results in Kameko[3], Singer[12], Sum[13] and
Mothebe [5] on admissible monomials and hit monomialsin P(n). These results
will be used in Section 3.

Let ;(a) denote the i-th coefficient in the binary expansion of a nonnegative
integer a. That means a = ag(a)2°+aq(a)2* +..., for a;(a) = 0or 1 and i > 0.

Let z = z7'z5?...x%" € P(n). We define two sequences associated with = by

w(x) = (wo(z),w1(x), ..., wi(x),...),

o(x) = (a1,az,...,an),

where w;(z) = >, < ;<,, @i(a;). w(z) is called the weight vector of the mono-
mial z and o(z) is called the exponent vector of the monomial x.

Given two sequences p = (ug, u1, - - -, u;,0,...), ¢ = (vo, v1,...,v,0,...), we
say p < q if there is a positive integer k such that u; = v; for all ¢ < k and
ur < vr. We are now in a position to define an order relation on monomials.

Definition 2.1. Let a, b be monomials in P(n). We say that a < b if and only
if one of the following holds:

1. w(a) < w(b),
2. w(a) = w(b) and o(a) < o(b).

The order on the set of sequences of nonnegative integers is the lexicographical
one.
Following Kameko [3] we define:
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Definition 2.2. A monomial z is said to be inadmissible if there exists
monomials y1, Y2, ..., Yx such that

T=y1+y2+...+yry mod ATP(n)and y; < z,5=1,2,....k

z is said to be admissible if it is not inadmissible. The set of all the classes
represented by the admissible monomials in P(n) is a basis for Q(n).

The following Theorem is our main tool.

Theorem 2.3. (Kameko[3], Sum[15]). Let x,w be monomials in P(n) such
that wi(x) = 0 for i > r > 0. If w is inadmissible, then xw?" is also inadmissi-
ble.

Proposition 1. If a = z"'..2" € P(n) is an admissible monomial then
m1=2)‘—1f0rsome)\20.

Proof. The lemma is clearly true if n = 1. Suppose that m; = 2» — 2. Let
b=z7'...x5* be the monomial obtained from a by replacing m, by
92X — 3. Then a = Sq*(b) + 22 ~3Sq! (2%...2™) and the fact that all terms
in x%k_gSql (x5*2...x") are of lower order than a shows that a is inadmissible.
But every monomial with m; # 2* — 1 is of the form c¢d®" for some monomial
d =z .. .xtn with t; = 2% — 2 so the general result follows from Theorem 2.3.
U

Now, we recall a result of Singer[12] on hit monomials in P(n).

Definition 2.4. A monomial z = z{*z52... 2%~ is called a spike if a; = 2% —1
for s; a nonnegative integer and j =1, 2, ..., n. For convenience we assume that
$1 > So > ...8, > 0. If z is the spike with s > s9 > ... > 5,1 > 5. > 0 and

sj—1 =s; only if j =7 or s;4; = 0, then it is called the minimal spike.

Note that the minimal spike is the spike of lowest weight order amongst all
spikes in a given degree. Spikes are admissible monomials as a spike can never
appear as term in a hit polynomial.

The following is a useful criterion for hit monomials in P(n).

Theorem 2.5. (Singer[12]). Suppose x € P(n) is a monomial of degree d,
where a(d +n) < n. Let z be the minimal spike of degree d. If w(x) < w(z),
then x is hit.

We note the following stronger version of Theorem 2.5. Let b be a mono-
mial of degree d. For I > 0 define d;(b) to be the integer d;(b) = >+, wj(b)29 L.
In [10] Silverman proved that:

Theorem 2.6. (Silverman[10]). Let b € P(n) be a monomial of degree d,
where a(n +d) < n. Let v be the minimal spike of degree d. If d;(b) > di(v)
for some l > 1, then b is hit.
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We shall require the following result of Mothebe[5]:

Theorem 2.7. (Mothebe[5]). If u = 2" ... ] € P*(k) and v = x5"... x¢ €
P (r)are admissible monomials, then for each permutation o € Sk, for which
o(i) <o(y),i<j<kando(s) <o), k<s<t<k+r, the monomial

m m e er d+d’
Tty ToloTotkr1) Tohir) € P (k+r)
1s admissible.

Theorem 2.7 is a generalization of the following result of Mothebe and Uys
[6]:
My —1

Notation 2.8. Let u = z]"... z,";" € P(n — 1) be a monomial of degree d'.
Given any pair of integers (7,A), 1 < j < n, A > 0, we write hj‘(u) for the
mj—1,_ 22—1_m; M1 ePd’+(2*—1)(n).

. my
monomial x} e XX xS T

Theorem 2.9. (Mothebe, Uys|[6]). Let u € P(n — 1) be a monomial of degree
d', where a(d'+n—1) <n—1. Ifu is admissible, then for each pair of integers
(j,A),1<j<n, A>0, h;‘(u) is admissible.

As a corollary to Theorem 2.9, suppose that A is fixed and that d’ is also

fixed. Let x%xl_l... x?j_"Q_Q be the minimal spike of degree d’. If A > Ay, then
for all j, 1 < j < n, we have

My —1
n—1

Corollary 2.10. u = z{"... x € P (n — 1) is admissible if and only if

h}(u) € P%(n) is admissible.

In Corollary 2.10 the converse is an immediate consequence of Theorem 2.6
and the Cartan formula.
One of the main tools in the study of the hit problem is Kameko’s squaring

—~—0
operation Sq, : Q(n) — Q(n). This homomorphism is induced by the Fa-linear
—~0
map, also denoted by Sq, : P(n) — P(n), given by

S’VO( ) y, ifx= xlxg...xnyQ,
* x = .
1 0, otherwise,

for any monomial x € P(n).
For any nonnegative integer k, set p(k) = min{m € Z: a(m + k) < m}.

Theorem 2.11. (Kameko[3]). Let d’ be a positive integer. If pn(2d' +n) = n,

NO ’ !
then (Sq,)m : @** 1" (n) — Q% (n) is an isomorphism of Fa-vector spaces.
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Let r, 1 <r < n, be an integer. For latter use, we let Py(r) be the subspace

of P(r) generated by monomials z = x{*z32...2%" for which ajas...a, = 0 and

P. (r) be the subspace of P(r) generated by monomials xz = z{*z32...x%" for

which ajas...a, # 0. It is easy to see that Po(r) and P (r) are A-submodules
of P(r). Furthermore, we have Q(r) = QP (r) @ QP_ (r) where

QP (r) =P (r)/ATP,(r)

and
QP (r) = Po(r)/ATPy(r).

Then for each n > 1 we have a direct sum decomposition:

n ()
Q(n) = DD QP..()

r=1 k=1

Thus for any integer d > 0 we have the following inexplicit formula for the
dimension of Q%(n)

n

ann(@(n) = 3 () ann(@Pd 1) 0

r=1

Our main result is obtained by evaluating Formula (1) explicitly when d = 13.

For any I = (ig, i1, .., 0r),0 < ip < i1 < ... <1ir < k,0 <7 <k, we define
the homomorphism p; : P(n) — P(n — 1) of algebras by substituting

pr(z;)) = Zogsgrxis—la if j = 1o,
Tj-1, if ig <j<n.

Then p; is a homomorphism of A-modules. In particular, for I = (i), we have

3 Proof of Theorem 1.2

The result of Theorem 1.2 is a consequence of Lemma 3.1 which we prove below.
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Lemma 3.1.

1. dim(QP% (n)) 1

2. dim(QP} (n—1)) =n—2
3. dim(QPY (n —2)) = (n ; )
4. dim(QP’ (n — 3)) = (” B PG

5. dim(QP% (n —

"7")
(";5>

6. dim(QPY (n —5)) = _6+%+<n;5>+<n;6>

a2 (5 0) 05
(201050 -)

) () e (")

+

7. dm(@QPYL(n~6) 2 n— 6+ (- Dm-8) -2+ (" )+ (")

+(n—6)(n;8>+4gz )) +n-8)(" ;9)

O R (G BTV RGBS
om0 () -1) s (')

8. dim(QP}*(6)) =268
9. dim(QP*(5)) =105
10. dim(QP}3(4)) =23
11. dlm(QP 33) =3

157

for allm > 1
for alln >3

for alln > 6

foralln > 7

for all n > 10

for alln > 13

for alln > 13

The cases 1 — 5 are proved in [4], 6 — 7 are partially dealt with in [4] and
10 — 11 are known cases. Thus in this paper we shall justify the formulae in 6

and 7 and obtain results 8 and 9.
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3.1 Dimension of QP}(5)

In this section we show that dim(QP1*(5)) = 105. We first note that in P1*(5)
the monomials that do not meet the hit criterion of Theorem 2.6 are

a

e

= masririe

= 33133233233233

3

5 b= xlxgxgxixg

2 2,2 7
;[ =mxozsaiay

c = T1T07 8T T

— 3,.5,.2
g = T1T5X3T T

and all their permutation representatives.
permutation representatives are admissible. By Theorem 2.7 the following per-

mutation representatives of ¢, d, e, f and g are

a1

as —

ag =

a13

a7 =

a21
a25
a29

ass

asr =
41 =
a45 =

aq9 =

as3

as7 =

ag1
aes

ae9

arz =

arr =

= .231%3%%332335

$1$g$g$2$5
xlxgxgxixg
xlxgxgxixg
x?xgxgxixg
xfxgxgxﬁxg
xfx%xgxﬁxg
xlxgxgxixg
xfx%x§x4x§
x?xgxgxgxg
xlxgxgxixg
xlxgxgxixg
x1$g$§$4$§
xlxgxgxixg
x?xgxgxixé
xlxgxgxixé
xlxgxgxixg
xlxgxgxixg
x1$g$§$4$§

riasririad

a2

a6
ai0
a14
a8
a22
26
aso
a34
ass
42
a46
aso
54
as8
ae2
ae6
aro
a74

arg

= masriTs7s

= ryririaial

= rlroniaial

= ¥3roxiTs7l

= masririad

= masririas

= ryririaiad

= .23?.232332332335

3

= .231.232332332335

3 3,.5

= T1ToT3T 4T

3

3 5

3
= T|T2T504T5

2

2

= xlxgxgxixg

4.3 2

— x%x2x3x4x5

= xlxgxgxgxg

6

= xlxgxgxgxg

= xlxgxgxixg

2

3

3,2 4
= T|T2T5X4 Ty

4

3

= xlxgxngxg

= ryrirlegal

3, .5,.2,.2
T T2T3XL T

as

ar
aii
a1s
a9
a23
az27
asi
ass
asg
a43
Q47
as1
ass
as9
ae3
aer
ar
ars

arg

= riririaial

— xlexngx{a

= masriTs7l

2
= .231.233333334335

= mrsririad

= ryririaiad

2

admissible:

= .23?.23333333‘2335

3

= .231.233333332335

3,.3 5

= T1THT304T5

3 5 3

— x1x2x3x4x5

5,.3

3
= T1T2X3T /4T

2

3 4 3

= xlxgxgxixg

4 3,.2

= riajrariad

= xlxgxgxgxg

6

= ¥3woxSzyad

3

2

3

23,4
= T|T2T3X4 Ty

3

7 2,2
= T1T2X3T /4T
= xlxgxgxixg

= xlxgxngxg

3,5, .22
TIToT3TL T

d = zyx3xdaiad

We know that a, b and all their

a4 = $?$g$g$4$5

ag = xfx‘;’xgx4x5
a1 = xlxgxgxixg
a1 — xfx‘;’xgmlxg
a0 = x?xgxgmlxg
a24 = xlxgxgxixg

3 2.6
A28 = T1X2X3T 4Ty

azg = xlxgxgxgxg
aze — x?x%xgxixg
40 = xlxgxgxixg
44 = x1x§x§x4x2
asg = xlxgxgmxg

3 2.5, 2
a52 = T1X2T3T 4Ty

2,523

a56 = T1ToX3T 4Ty
3 243

a0 = T1T2X3L 4T

2.3 3 4
(64 = T1THT3TL T

7 2,2

a8 = T1ToX3T 4T
7 2 2

arg = x1x2x3x4x5
2 2.7

a76 = T1ToX3T 4Ty

3,.5,.2 2
ag) = T1ToX3T4Tx

By the Kameko homomorphism the monomials a; to asg are the only permu-
tation representatives of ¢ that are admissible. By Corollary 2.10 a permutation
representative of f is admissible if and only if a permutation representative of
r1z92227 is admissible in P%(4). Thus the monomials ag7 to azg are the only
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permutation representatives of f that are admissible. The monomials d, e, g
and their permutation representatives are of the form ux?, 1 < j <5, for some

u € P'(4). In the same vein as for f every permutation representative of the
monomial e is admissible if and only if the monomial u € P'°(4) is admissible.
Thus the above listed permutation representatives of e are the only ones that
are admissible. It is easy to see that all the permutation representatives of

d and g which are not in the list above are in inadmissible . For example,

r3z3xdrizs is inadmissible since

wixdaieies = atedrivial + eirdrsaizl mod ATP(5)

The monomials ¢ and b have 5 and 20 permutation representatives respec-
tively. Thus the number of monomials in a basis for QP1?(5) is 80 + 20 + 5 =
105.That is, dim(QP*(5)) = 105.

3.2 Dimension of QP.’(6)

We now show that dim(QP!?(6)) = 268.

If n > 12, then the monomials in the basis of P} (n —7) with wo(—=) =n—8
and that do not meet the hit criterion of Theorem 2.6 are

Qp—7 = T1... xn_gxi_8x2_7

b7 =T1... Tp_oTo_ g2l

Cp—7 = X1... xn_loxi_gxi_gxi_7

dp—7 = 21... xn—11$%_10$i_9$i_g$i_7

2 3 5
€n—7=T1... Tpn—-10Tp_gLy gL, 7

and their permutation representatives.

If n > 13, then the monomial in the basis of P’} (n — 7) with weight order
(n —10,5) and that does not meet the hit criterion of Theorem 2.6 is

2 2 2 3 3
In—7 = T1--- Tn—-12Tp 11T 10Tn—9Tn—8Tn—7

and its permutation representatives. If n = 13, then the monomials in the
. 1 . .

basis for P1?(6) with weight order (3,3,1) are zywox2a2r2a], vizonizala,

T1zow3ririad and their permutation representatives.

We first determine the number of monomialsin P’} (n—7) with wo(—) = n—8
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that are admissible. If n = 12, it is known that QP*(5) is generated by
by = xlxgxngxg by = xlxgxgmxg by = xlxgxgxi% by = xlxgxgxzxg
bs = x1x2x§x4xg bg = x1x2x3x1x5 by = xlxgxgmxg bg = x1x§x3x1x5

7 2 7 2 7 2 7.2
bg = 129237475  bio = T T2T3x4T; b1 = T1T2x3T4T5 b2 = T1THT3TLTs

7 2 7.2 2.7 3,.6

bis = X1 T2x52425 bia = T1250324%5 b1y = 105050425  big = 12223725
b . 3 6 b . 3,..6 b . 6,.3 b . 6 3
17 = T1T2X3X4T 18 = T1X2X3X4T5 19 = T1T2X3T 4T 20 = T1X2X3T4T5

6,3 6 3 6. .3 3 6
ba1 = X1T2x3x3Ts  boo = T1X9T3xaTy  baz = T1T3x3T3x5 by = x125T3T425

bos = x:fxgxgmxg bog = x:fxgxgxg% bor = xlxgxgxg% bog = x:fxgxgm%
bog = xlxgxgm% bsg = xlxgx§x4x5 b31 = xlxgxgxixg b3os = xlxgxgxixg
b3z = xw%x%mx? b3s = xw%x%xi’% b3s = xlxgxgxi’xg bse = xlxgxgxi’xg
bsr = xlxgxgmxg b3g = xlxgxgxi% b3g = xlxgxgxixg bio = xlxgxgxixg
by = xw%x%mx? byo = xw%x%xi’% byz = xlxgxgxi’xg bys = xlxgxgxi’xg
bys = xlxgxgmxg bie = xlxgxgxi% by7 = x:fxgxgxixg big = x:fxgx%mxg
byg = x?xﬂ%xi’% bso = x?xgxgxi’xg bs1 = x?xgxgmxg bso = x?xgxgmxg
bs3z = x:fx‘;’xgmxg bss = x:fx‘;’xgxi% bss = x?x%x%m% bse = xlxgxgxixé
bs7 = xlxgxgxixé bss = xlxgxgmxé bsg = xw%x%xi% beo = xlxgxgxixg
bg1 = xlxgxgxﬁxg bga = xlxgxémxg bgz = xw%x%xi% bes = x:fxgxgxixé
bes = x:fxgxgmxé bes = x?@x%xﬁ% bgr = x:fxgxgxﬁxg bes = x:fxgx%mxg

3...4.3 3.3 4 3.3, .4 3.3 4
by = x| T2x3x4Ts bro = Tix5T3xaTy by = x|THx3T4x5  bro = X x5T3T4Ts

3,.4 3 3,4, .3 3,43 3,. 2.3 3

brs = x{x5x3242y  bra = {x9x3x T brs = x7Tox504%5  bre = xix0T3X,TE

3,.2.3,3 2.3.3 3 3,. 3,23 3,3.2,3

brr = TixhasTyxy  brs = 12525247y brg = xix2x3TLxE by = T1THTRTLTE

3,. .3.3,2 3,.3.3,.2 3,3, .23 3,3, 3,2

bs1 = xwoxsxyTs bsgo = wixhwRx Ty bgs = xjrhx3Txs b4 = xixST3XLTE
3,3.3,. 2

bgs = T1THT3T4T;

For all n > 12, let Q"P’ (n — 7) denote the set of all admissible monomials
in P” (n — 7) with wo(—) = n — 8. Note that Q*P1*(5) = QP*(5). Then we
claim that:

n—o6
QP (n-6) = | J hH(QPL(n 7)), (2)

j=1

The only permutation representatives of a,_7 that may not be obtained
from QP!*(5) by inductively applying Formula (2) are those of the form
o2l a7 as well as the monomial z]3x3... 2,7 all of which are clearly
inadmissible. Hence the number of permutation representatives of a,,_7 that

are admissible is (n — 7)(n — 9).
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The only permutations representatives of b,_7 that may not be obtained
from QP!?(5) by inductively applying Formula (2) are those of the form
ol . apms" as well as the monomial z325x3... 2,7 all of which are clearly
inadmissible. Hence the number of permutation representatives of b, _7 that
are admissible is (n — 7)(n — 9).

The only permutations representatives of ¢,_7 that may not be obtained
from QP.*(5) by inductively applying Formula (2) are those of the form
il T asal® . x s as well as those of the form v zozizy... 2 "7
all of which are clearly inadmissible. Hence the number of permutatlon repre-
sentatives of ¢,,_7 that are admissible is 2(";7).

The only permutations representatives of d,,_7 that may not be obtained
from QP!?(5) by inductively applying Formula (2) are those of the form

My — M, Mgy — .
ixh? xS adedalt L xS pdasaday . x, " as well as the monomial

r3r3w3xiTs... £,—7 all of which are clearly inadmissible. Hence the number of

permutation representatives of d,_7 that are admissible is (n — 11)("37).

The only permutations representatives of e,_7 that may not be obtained
from QP'*(5) by inductively applying Formula (2) are those with a factor of

the form x%%ﬁ,z < j <k, or of the form zfz223,t < r < s, or those of the
form z3z3"*... 2”77 or of the form z$z3x%*... 2, "7, all of which are clearly

inadmissible. Hence the number of permutation representatives of e, _7 that
are admissible is ("37) +3("5%) + ("3°)-

Thus for all n > 12 the number of admissible monomials in P’} (n —7) with
wo(—) =n — 8 is equal to

-7 -7
2(n—7)(n—9)—|—2(n3 >—|—(n—11)(n3 >
n n—7 43 n—38 n n—9
3 3 2 )
If n = 13 this formula yields 184 admissible monomials with wo(—) = 5.

If n = 13, then g,—7 = zix3zdziadzd. By Theorem 2.7, the following
permutation representative of riz3r3r3rizd are admissible in P1?(6)

fi=ataSesadatey  fo=afwerialaled  fy = wjwexiaiaiad
fo=afwoniaiaiay  fs = atweadaladad  fo = mixdaatedad
7= 331332333332335336 Js = xlxgxgxixgxﬁ Jo= xlxgxgxi%xg
fio= xlxgxgxi%xﬁ fi1= xlexngxgxﬁ fi2 = x1x2x§x4x§x2
fiz = xw%x%xix%x% fia= xlxgxgxixgxg fis = x1x2x3x4xgxg

We see that if z # f;,Vt,1 <t < 15, then z is of the form zxl... 7",

n— My — .
33z ... "7 or of the form x%x%x%xfs x, 7", all of which are clearly
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inadmissible. For example

Thus there are 15 permutation representatives of xix
missible.

resentative of 1291
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2

3,3 2,2_ .33 222 43 2,2
TITHTZT4TETG = TITHTITLTZTG + TITHTITLTZLG

4 2.2
+ x§x2x3x4x5x6

mod ATP(6).

2.2.2 .3 3
2L3TyT5Lg

which are ad-

We now determine the admissible permutation representatives of the mono-
mials of weight order (3,3, 1). By Theorem 2.7, the following permutation rep-

C1

C4

Cr
C10
C13
C16
C19
C22
C25
C28
€31
C34

€37

= ryzoxiaiaiad

riroriz,aivg

= ryxdrsaiaivg

3 2,2, 4
T{T2L3TLT5T g
2,4

— x1x2x3x2x5x6

3 4
rirozsriTing
4,2

— x1x2x3x2x5x6

rirorir,wind

= sy 73T r T TE

= rlroaiairswd

T3 TS T]
2

Tirhrsriried

Tiroriairsl

2,.2..3..4
3TITETG are

C2

Cs

&3]
C11
C14
C17
C20
C23
C26
C29
C32
C35

€38

= masriTsTiTg

= Tar3TITITG

= rywoxiaiaind

4

= ryxdrsaiadeg

Tirhrsririeg

4

TiTyTs T ]
2

Tirsrierind

= sy r3T3ririTs

= ryririairswd

T123TsTAT ]

= rriariraied

riroxsairicd

airhrswaricl

admissible in Pf (6)

C3 = 33133%33333433%33%

Cg — xlxgxgxixéxg

Cg = xlxgxgxixgxé
C12 = xlxgxgxixéxg
C15 = xlxgxgxixéxg
C18 — xlxgxgxﬁxgxg
C21 = .231.23%33%33433?33%
Coq4 = xlxgxgxixgxg
Co7 — x1x§x§x3x5x3
C30 — .231.23333%33433%33%
C33 — x1x3x§x2x5x3
C36 — x?x2x§x4x§x2
C39 x?x%x3x2x5x2

We see that if x # ¢, Vt, 1 < t < 39, then z is of one of the following forms:

(i

)
ii)
iii)
iv)
)
i)
ii)

2,.m2
T1To

Tiwy”?.

3

T1ToTATy

3,.4,.2,.m4
TITFT3Ty

rixdels.

xlxéx’gns

riz3xdal.

g,
gl
~xg°,
g,
g,
g,

me
- Lg

(viil) a3zdzsziaies

)
(ix)
(x) @
(xi)
(xii)

)

)

(xiii

(xiv

Tirrinialtag'e,

3 2
331332333334335 26,

4
x1x2x3x4x5x6,

3 4
x1x2x3x4x5x6,
3.2
x1x2x3x4x5 xﬁ 5

3,422
T xiriririvs,
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(xv) zizdadziaziae, (xvii) z123xixdzie,
(xvi) madzgzial™age, (xviil) @fzozizizrius,

all of which are clearly inadmissible. For example

wirorieirsay = vivonieyaial + p3voxsairiay mod ATP(6).
We claim that the following permutation representative of zizozszizizd
are admissible in P1%(6)

C40 — .231.23233%333335332 C41 = .231.233333333335332 Cy2 = .231.23333333233533%
C43 — .231.23233%33233533% Cq4 = .231.23233%33433233% Cq5 — .231.23233%33433%332
C46 — xlxgxgxixgxg Cq7 = .231.23333333433%33% C48 — x1x3x3x2x5x3
Cq9 — .231.23333333433%332 C50 — .231.23333333433233% Cs1 — .231.23233233433%33%
C52 — x1x2x2x2x5x3 C53 — xlxgxgxixgxg Cs4 — .231.23233333233%33%
Cs5 — xlxgxgxixgxg Cs56 — .231.23233%33233%336 Cy7 = xlxgxgxixgxg
Cs58 — xlxgxgxixgxg Cs59 — xlxgxgxixgxg Cep — .231.23%33333233%336

We see that if x # ¢, Vt,40 < ¢ < 60, then x is of one of the following forms:

(i) zizy..ag, (iii) ziz3xda)™ .. .af'e, (v) zia3ala)™. ag,
(i) aSzh2..xg", (iv) zizSaial .. af',

all of which are which are clearly inadmissible. For example
2 2 _ 2 2 2 2 2 2
x1x3x3x4x5x6 = x1x3x3x4x5x6 + x1x3x3x4x5x6 + x1x3x3x4x5x6
+ xlxgxgxi%xg + xlxgxgmxgxg mod ATP(6)

That the monomials ¢;, 40 < ¢t < 54, are admissible follows from Theorem 2.7.

We claim that the following permutation representative of zizoziziziad

are admissible in Pf(ﬁ)

2.2 5 2 2.5.2 2 2 2.5 2

Ce1 = T1X2T3T4T5Tg C2 = T1X2T3T4T5Tg C63 = T1ToT3T4T5Tg

2.5 2,2 2,.5,.2 2 2 5,.2,.2

Ceq — x1x2x3x4x5x6 Ces — x1x2x3x4x5x6 Ce — x1x2x3x4x5x6
2,225 2 2,25 2,52 2

Ce7 = T1X2X3L 4T 5Tg C68 = T1LoX3L 4T 5Tg C69 = T1LoT3L 4 T5T6

We see that if x # ¢, Vt, 61 < ¢ < 69, then x is of one of the following forms:
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(i) zfzh2. . .28, (iii) zagzia)™.. x5, (v) mizomda).. .agc,

(i) x3zy™...x2g", (iv) z1z3zy"...28°,

all of which are clearly inadmissible. For example

2.2, 2 5 _ 2. 2.2 2,225 2 2.6
x1x2x3x4x5x2 = x1x2x3x4x5x2 + T1X2T3X 4 T5T6 + T1X5T3X4T5T¢

+ 13225747528 + T1720375 028 mod ATP(6)

That the monomials ¢;, 61 < ¢t < 66, are admissible follows from Theorem 2.7.

Now, we prove that the set {¢; : 1 < t < 69} is linearly independent.
Suppose there is a linear relation

Z ’thtEO

1<t<69

with 1, € Fo, 1 < ¢ < 69. It is sufficient to prove that we must have 3, = 0
for 55 < ¢t < 60 and 67 <t < 69. By direct computation from the relations
P, (S) =0,1<i<5,1<j <6, one gets v55 = Y56 = Y57 = V58 = V59 =
Y60 = Y67 = Y68 = Y69 = 0.

This shows that dim(QP%?(6)) = 1844 15+ 69 = 268.

3.3 Dimension of QP*(7)

We now show that

dim(QP™ (n — 6)) > n — 6+ ((n— 7)(n — 8) — 2) +(” 6>+(

o3 et
)05 >+z§”;>

|
33
\]
\/
+
—
3
OO
S—
/‘\
[N}
©
N— w
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with equality when n = 13. In [4] it is shown that if n > 11 the monomials in
P’ (n — 6) that do not meet the hit criterion of Theorem 2.6 are :

3 3 3
Ap—6 = T1... Tpn—-9L,,_gTy_ 7Ty _g
7
bp—¢ =T1... Tn_7T,_4
_ 3 5
Cn—6 = T1..- Tn-8Ty_7T,_g
2 2 3 3
dpn—6 = T1... Tno10T;,_oT, _gTh_7T0 ¢
2 3 4
En—6 = L1X2... Tn—-9T,,_gTy_7T ), _¢
2 6
fn—6 = T1T2... Tp_8T;, 7%, _¢

2 2 5
In—6 = T1X2... Tpn—-9Ly_gLy_ 7T, g
and their permutation representatives, while

2 2 2 2 3
hp—6 = T1T2... Tn-11T5_10T5—9T—8Tn—7Tn—6

2 2 2 4
kn—6 = T1%2... Tn—10%),_9%1_8Tn_7Tn_g

and their permutation representatives have to be added to the list when n > 13
and

2 2 2 2 2 2
ln—6 = T1T2... Tn_12T5_11T5_10T5—9T1—8T1n—7Tn—6

and its permutation representatives has to be added to the list when n > 14.
In [4] it is shown that the number of permutation representatives of a,_g, bn—s,
Cn—6, An—6, €n—6, fn—6, gn—e that are admissible is

n=6+((n-T)n—8)—2)+ (”;6>+(”;6>
coolr3 )it

() 057 ) (5 ) e

When n = 13 this formula yields 357 admissible monomials in P1*(7).

We now compute the number of permutation representatives of h,_g and

kn_¢ that are admissible when n = 13. By Theorem 2.7 the following permu-

tation representatives of z1zoziziriziad are admissible:
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_ .3 2.2 2 2 .3...2.2 2 2 _ 3,22 2 2
di = x\Tox3xir506T7;  do = X1X5T3T 5T d3 = T1T2TRT TETLT

dy = viwoxiaiaieda?  ds = mreriviaiaie?  dg = miwoxiviviadad

dr = myvaziaiaiaied  ds = pivoxivsaialat  dy = madrivariaiad
3 2 3 2 3,22
dip = masrirariaia?  diy = virdvsaieivie?  dig = madrsriviaie?

3,.2 2, 2.2 2 3 3, 2.2 22
di3 = masesririege?  diy = virivsaieivied  dis = viveririvsaie?

3 2 2 3 2.2 3 22
dig = Troaririesrars  dip = 21030 s et dig = T1T5TITATSTaTE

2,2 3.2 2 2 2.3 2,2 2.2 3
dig = masrirariaia?  dyy = viwivivarieie?  dey = madriviwiaied

3. .2.22 2 3 2,322 2
dos = T3wow303 020672 dog = T1T5T3TTETeTE  doy = T1TFTHTITETETE

2,232 2 2,223 2
dos = 1252050350607 dog = 12505325 T5xeTy  day

T3 rsriTs TS

2,22 23
dog = T1T525T,T5T5TH

We see that if x # d;,Vt,1 < t < 28, then z is of the form z3z5"... z"";°
or h3(z1xjairiaine), 1 < j <7, or xfx%x’gns z'"6 ¢ all of which are clearly
inadm1ss1ble.

For all n > 13 the number of monomials in QP’ (n — 6) that may be
obtained from the monomials d;, 1 < ¢ < 28, by inductively applying Formula
(2)is (n—6) ((";") — 1).

We claim that the following permutation representative of r1xoz3zz2r2z}
are admissible in Pf(?)

dog = mixazszarieies  dso = zixarsrarieer?  ds) = rixaasiTsTATE
d3o = xlxgxgxi%xéxg d3z = xlxgxgxixéxgxg d3s = x1x2x§x4x§x2x$
dss = T1moxirariege?  dsg = viwoninizsaliet  dyr = viwexiaivswind
d3g = xlxgxgxixéxgxg d3zg = xw%x%mx;,x%x? dyo = xw%x%mx%xw?
ds1 = xlxgxgxi%xgx? dyo = xlxgxgxixgxgxg dyz = xlxgxgxzxgxgx;l
dqg = x1x2x3x4x5xéx$ dys = xlxgxgxﬁxgxgxg dag = xw%x;;xﬁ%x%x?
dy7 = x1x2x3x4x§x6x7 dyg = xw%%mxéx%x? dyg = xlxgxgmxéxgx?
dso = xlxgxgxzxgxgx;l ds1 = x1x§x3x2x3x3x7 dso = x1x§x3x2x§x2x7

2. 4.2 2 2. 4. .2 2 2,22 4
ds3 = 1250304 T506T7  dsa = T1X5T3T4T5X5T7  dss = T1L2T3L4TET6Ly

2,22 4 2.2 4.2 2.4.2 2
dse = T1T223TLTETgT7  ds7 = T1T2TZTLT5TT7  dsg = T1T2TZ5L4T5TGL7

We see that if x # dy, Vt, 29 < t < 58, then x is of one of the following forms:
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(i) z3xh2..2l'7, (iv) ziz3zjed...al'7, (viil) @qz3xle..al',
(i) xizy?..27, (v) mimomiay .. .2l
(iii) zyadzdz) .. 27", (vi) z1mozszizy®. .2l

all of which are clearly inadmissible. For example
_ 2.2 2 4 2,2 4,2 2. .22 4
T1TIXIXITETTT = T1TITITATITATT + T TITITAT5TGTE + T1TITITITIT T
2. .2, 4.2 2 2,4, 2 2,2 2 4
+ X1T5T3X 4 T5TgT7 + T1T5T3T4TET5T7 + T1T2X3T4T5TgT7
2,2 4 2 2.2 4 2
+ T1X2X3T 45T L7 + T1X2T3T4T5T L7
+ rymoxsairirgr?  mod ATP(7)
That the monomials d;, 29 <t < 49, are admissible follows from Theorem 2.7.

Now, we prove that the set {d; : 29 < ¢ < 58} is linearly independent in
QPf(?). Suppose that there is a linear relation

S= Z ’)/tthO

20<t<58

with v € Fo, 36 <t < 65. It is sufficient to prove that we must have v, = 0 for
50 <t < 58. By direct computation from the relations p(; ;)(S) =0,1 <i <3
,1 < j <6, one gets y50 = Y51 = Y52 = V53 = V54 = V55 = V56 = V57 = Y58 = 0.
For alln > 13 the number of monomials in QP’} (n—6) that may be obtained
from the monomials d;, 29 < ¢t < 58, by inductively applying Formula (2) is
(n—8)("5”). This establishes Inequality 7 of Lemma 3.1.
Thus dim(QP1*(7)) = 357 + 58 = 415.

3.4 Dimension of QP*(8)

We now show that

dim(QP’}r(n—5))=”_6+(n;5)!,+( _5>
() e (')
(727 () )57 )

In [4] it is shown that if n > 9, then the monomials in P’} (n — 5) that do not
meet the hit criterion of Theorem 2.6 are:

3
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p_g = T1... xn_8$%_7xi—6xi—5
bn_5 = T122... xn—7xi—6x?’t—5
Cnes = T1T2... Tp_7T0_aTo_s
dp—5 = T122... xn—ﬁ£?1—5

and their permutation representatives, while

- 2 2 2 3

Epn—5 = TL1T2... xn_gxn_gxn_7xn_6xn_5
2 2 4

fn—s = X1T2... Tpn_sT; 7T _Tp_5

and their permutation representatives have to be added to the list when n > 10
and

2 2 2 2 2 2
In—5 = L1L2... Tn—-11Lp_10Ln—-9Ln—-8Ln—7Ln—6Ln—>5

and its permutation representatives has to be added to the list when n > 13.

In [4] it is shown that the number of permutation representatives of a,_s,
bn—5, Cn—s, dn—5, €n—s, fn—s that are admissible is

ot g ()

(50 en( ) (S0)
(1) (%))

When n = 13 this formula yields 420 admissible monomials in P13(8).

We now compute the number of permutation representatives of g,_5 that
are admissible when n = 13. We claim that the following permutation repre-
sentative of z1zo732372220222 are admissible in P1?(8)

2
€1 = .231.23233333433%33%33?33% €y = x1x§x3x2x5x3x$x§ €3 = xlxgxgxixgxgxgxg

€4 = TITITITITETET7TE €5 = T1TFTIT4TSTETETE €6 = T1T3T3T4TETTETE

2
€7 = 33133233%33433%33%33733% €8 33133%33%33233533633%%% €9 33133%33%33233533233733%
2 2.2.2 2 2.2 2,22 2,22 2.2
€10 = T1X2X3T4T5X g X7 Ly €11 = L1L2X3L4X5LgL7Tg €12 = T1X2X 3Ly L5 LeL7Tg

2.2 2 2 2 2,22 2 2 2 2.2 2 2
€13 = T1X2X3T4T5XgX7Tg €14 = T1X2X3TYyT5Tgl7Tg €15 = T1XoX3T 4 T5T g7

2.2 2.2 2 2.2 2 2.2 2.2.2 2 2
€16 = T1TaX3T4T5Xg L7 T8 €17 T1TyX 3Ty T5TgL7Tg €18 T1X2X 3L YT 5L gL 78
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We see that if z # e;,Vt,1 < t < 18, then x is of the form z%z"2... 23" or
of the form zyx3ziziziage... x5, all of which are clearly inadmissible. For

example

xw%x%xix%xgx?xg = $1$§$§$Z$5$g$$$8 + $1$§$§$2$5$6$$$§
+ $1$§$§$4$§$g$$$8 + $1$§$§$4$§$6$$$§
+ $1$§$3$2$§$g$$$8 + xlxgxgxixgxgxgxg
+ $1$§$3$4$§$g$$$§ + $1$2$§$Z$§$g$$$8
+ $1$2$§$i$§$6$$$§ + $1$2$§$i$5$g$$$§

+ mywoxsririvizizl mod ATP(8)

That the monomials e;, 1 <t < 14, are admissible follows from Theorem 2.7.
Now we prove that the set {e; : 1 < ¢ < 18} is linearly independent in
QPf(S). Suppose that there is a linear relation

S = Z ’ytetEO

1<t<18

with v € Fo, 1 <t < 18. It is sufficient to prove that we must have v = 0 for
15 <t < 18. By direct computation from the relations p(; jy(S) =0, 1 <4 <2
,1 <j < 5, one gets Y15 = Y16 = Y17 = Y18 = 0.

For all n > 13 the number of monomials in QP’ (n — 5) that may be
obtained from the monomials e;, 1 <t < 18, by inductively applying Formula
(2) is (";°) — 3. It is easy to show that any other monomial not obtained from
the monomials e;,1 < ¢ < 18, in this way is inadmissible. This establishes
Formula 6 of Lemma 3.1.

Thus dim(QP1*(8) = 420 + 18 = 438.

3.5 Dimension of QP*(n), 9 <n <13

That
1ifn =13
11ifn =12
dim(QPP(n)) = { 55ifn =11
164 if n. = 10
322ifn =9

follows from the cases of Lemma 3.1 that are proved in [4].
This completes the proof of Lemma 3.1 hence that of Theorem 1.2.
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