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Abstract

The main goal of this note is to establish the Le Cam type bounds
in general Poisson approximation for distributions of sums (and random
sums) of independent, non-negative integer-valued random variables with
respect to a probability distance based on a linear operator originated by
Rényi.

1 Introduction

The Poisson approximation states that the distribution of a sum of indepen-
dent Bernoulli random variables can be approximated by a Poisson distribution
with the equal expectation if success probabilities are small and the number of
random variables is large (see e.g. [1], [2], [3] and [13]). One of interesting re-
sults in Poisson approximation is a remarkable bound originated by Le Cam in
([11]). Le Cam’s bound allows to estimate the total variation distance between
the distribution of the sum of independent Bernoulli random variables and the
Poisson distribution of the same mean. Specifically, for n ≥ 1, let Xn,1, Xn,2, . . .
be a sequence of independent Bernoulli random variables with success proba-
bilities P (Xn,k = 1) = 1 − P (Xn,k = 0) = pn,k ∈ (0, 1), k ∈ {1, 2, · · · , n}.
For n ≥ 1, set Sn =

n∑
k=1

Xn,k and write λn = E(Sn) =
n∑

k=1

pn,k. Assume

that lim
n→∞λn = λ ∈ (0,∞). Let us denote by Zλ the Poisson random variable

with mean λ. Then, using the method of convolution operators, Le Cam ([11])
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140 On Le Cam type bounds in general Poisson approximation

obtained the following bound

∞∑
r=0

|P (Sn = r) − P (Zλ = r)| ≤ 2
n∑

k=1

p2
n,k. (1)

(see [11], [14] and [15] for more details). It is to be noticed that the Le Cam’s
bound in (1) usually expressed via a probability distance as follows:

dTV (Sn , Zλ) ≤
n∑

k=1

p2
n,k, (2)

where dTV (Sn , Zλ) := 1
2

∞∑
r=0

| P (Sn = r) − P (Zλ = r) | is the total variation

distance between Sn and Zλ (see e.g. [1], [2], [11], [9], [12], [15], [19] and [20]).
Kerstan in [9] improved the bound in (2) to

dTV (Sn, Zλ) ≤ 1.05× (
n∑

k=1

p2
k)
/

(
n∑

k=1

pk), (3)

where pk ≤ 1/4. Barbour and Hall in [2] further improved the bound in (2) to

dTV (Sn, Zλ) ≤ min{1, λ−1}
n∑

k=1

p2
k. (4)

And Chen (see [3]) showed the bound in following form

dTV (Sn , Zλ) ≤

⎛
⎜⎜⎝1 − e

−
n∑

k=1
pk

n∑
k=1

pk

⎞
⎟⎟⎠

n∑
k=1

p2
k. (5)

Furthermore, let N be a non-negative, integer-valued random variable, which
is independent of Xn,k. Then, the Le Cam type bound for random sum of
independent Bernoulli random variables is given by Yannaros in [21] as follows:

dTV (SN , Zλ) ≤ E

∣∣∣∣
N∑

k=1

pk − λ

∣∣∣∣+ E

⎛
⎜⎜⎜⎝1 − e

−
N∑

k=1
pk

N∑
k=1

pk

N∑
k=1

p2
k

⎞
⎟⎟⎟⎠ , (6)

where SN =
N∑

k=1

Xn,k and S0 = 0.

During the last several decades various powerful mathematical tools for es-
tablishing and for improving the Le Cam’s bound in forms of (1), (2), (3),
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(4), (5) and (6) have been demonstrated such as the coupling method, semi-
group method, Stein-Chen method with some special approaches as local ap-
proach, size-bias coupling approach, Kerstan’s method, Charlier-Parseval ap-
proach, operator-method approach, method of ω− functions, etc. Results of
this nature may be found in [1], [2], [3], [11], [9], [14], [19], [20], [22], [12], [15],
[4], and the references given there.

Recently, using the linear operator method introduced by Rényi in [13], the
Le Cam type bound in form of (2) for independent Bernoulli random variables
are obtained by Hung and Thao ([6]). Specially, for f ∈ K

‖ ASn(f) − AZλn
(f) ‖≤ 2 ‖ f ‖

n∑
k=1

p2
n,k, (7)

where K denoted the class of all real-valued bounded functions on set of all non-
negative integers Z+ := {0, 1, 2, . . .}. The norm of function f ∈ K is defined by
‖f‖= sup

x∈Z+

|f (x)| . The operator AX in (7) associated a random variable X is

defined by

(AXf)(x) :=
∞∑

r=0

f(x + r)P (X = r), ∀f ∈ K, ∀x ∈ Z+. (8)

(See [13] for more details). Additionally, let {Nn, n ≥ 1} be a sequence of
non-negative, integer-valued random variables, independent of all Xn,k, k ∈
{1, 2, · · · , n}; n ≥ 1. Define a random sum as a sum of random number of
Xn,1, Xn,2, · · · and it is denoted by SNn := Xn,1 + . . . + Xn,Nn . Such sums
appear in a natural way with point processes, extreme value theory, and in
various applied problems (see e. g. [5], [10] and [21]). Let us write λNn :=
E(SNn). Then, Le Cam’s bound for distribution of random sum SNn in Poisson
approximation for independent Bernoulli random variables will be established
as follows:

‖ ASNn
(f) − AZλNn

(f) ‖≤ 2 ‖ f ‖ E

(
Nn∑
k=1

p2
Nn,k

)
, (9)

for f ∈ K, (see [6] for more details).
It makes sense to consider a more general framework in which a probability-

distance approach will be applicable for providing the Le Cam type bounds in
general Poisson approximation. For n ≥ 1, let Xn,1, Xn,2, · · · be a sequence of
independent, non-negative and integer-valued random variables. Put

P (Xn,k = r) = pn,k(r), r = 0, 1, 2, · · · ; k = 1, 2, · · · , kn; n = 1, 2, · · ·
and

Rn,k =
∞∑

r=2

pn,k(r),
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where kn, n = 1, 2, · · · be a sequence of positive integers, kn → +∞, as n →
+∞. Set Sn := Xn,1 + · · ·+Xn,kn and write λn :=

kn∑
k=1

pn,k(1). Let Zλn denote

the Poisson distributed random variable with expectation λn. Then, the Le
Cam type bound in general Poisson approximation will be stated as follows:

|P (Sn = r) − P (Zλn = r)| ≤ 2
kn∑

k=1

(
p2

n,k (1) + Rn,k

)
. (10)

Moreover, in addition let Nn, n ≥ 1 be a sequence of non-negative, integer-
valued random variables independent of all Xn,k; k = 1, 2, · · · , kn; n ≥ 1. Then.
the Le Cam type bound in general Poisson approximation for random sum is
given by

∣∣P (SNn = r) − P
(
ZλNn

= r
)∣∣ ≤ 2E

⎛
⎝kNn∑

k=1

(
p2

Nn,k (1) + RNn,k

)⎞⎠ . (11)

It is worth pointing out that the bounds in form of (10) and (11) are direct
consequences of Theorem 3.1 and Theorem 3.2 in Section 3, (see Corollary 3.2
and Corollary 3.7).

In this paper, based on Rényi operator defined in (8), we wish to apply a
probability-distance approach to general Poisson approximation for providing
the Le Cam type bounds (10) and (11). Using this approach, two results con-
cerning the Le Cam type bounds in general Poisson approximation for sums
and random sums of independent, non-negative, integer-valued random vari-
ables are established (see Theorem 3.1 and Theorem 3.2). The present paper
is a continuation of Hung and Thao in [6], Hung and Giang in [7] and [8].
The received results are also extensions of results of Le Cam in [11], Steele in
[15], Teerapabolarn and Wongkasem in [16], Teerapabolarn in [17], [18], and
Neammanee in [12].

It is to be noticed that the presented approach in this article can be viewed
as a simplified version of Le Cam’s operator–technique dating back to 1960’s
(see [11] for more details) and this technique has been used by Upadhye and
Vellaisamy to provide some bounds in Poisson approximation via the total
variation distance (see [19], [20], for more details).

The rest of this paper is organized as follows. We begin with the definitions
of a probability distance based on Rényi operator in (8) with some main prop-
erties in Section 2. The Section 3 is devoted to two theorems with corollaries
concerning the Le Cam type bounds for distributions of sums and random sums
in general Poisson approximation.
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2 Preliminaries

We now need a probability distance based on Rényi’s operator ([13]) in form
(8).

Definition 2.1. A probability distance d(X, Y ; f) of two random variables X
and Y with respect to function f ∈ K is defined by

d(X, Y ; f) := sup
x∈Z+

|Ef(X + x) − Ef(Y + x)| . (12)

Based on the properties of Rényi’s operator (see [13] for more details), the
properties of probability distance d(X, Y; f) are summarized as follows.

1. It is easy to see that d(X, Y ; f) is a probability metric, i.e. for the random
variables X, Y and Z the following properties are possessed

(a) For every f ∈ K, the distance d(X, Y ; f) = 0 if P (X = Y ) = 1.

(b) d(X, Y ; f) = d(Y, X; f) for every f ∈ K.

(c) d(X, Y ; f) ≤ d(X, Z; f) + d(Z, Y ; f) for every f ∈ K.

2. If d(X, Y ; f) = 0 for every f ∈ K, then FX ≡ FY .

3. Let {Xn, n ≥ 1} be a sequence of random variables and let X be a random
variable. The condition

lim
n→+∞ d(Xn, X; f) = 0, for all f ∈ K,

implies that Xn
D−→ X as n → ∞, where D−→ denotes convergence in

distribution.

4. Suppose that X1, . . .Xn; Y1, . . . Yn are independent random variables (in
each group). Then, for every f ∈ K,

d

( n∑
j=1

Xj ,

n∑
j=1

Yj; f
)

≤
n∑

j=1

d(Xj , Yj; f).

Moreover, if the random variables are identically (in each group), then
we have

d

( n∑
j=1

Xj,

n∑
j=1

Yj; f
)

≤ nd(X1, Y1; f).

5. Suppose that X1, . . .Xn; Y1, . . . Yn are independent random variables (in
each group). Additionally, let {Nn, n ≥ 1} be a sequence of positive
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integer-valued random variables that independent of X1, . . . , Xn and
Y1, . . . , Yn. Then, for every f ∈ K,

d

( Nn∑
j=1

Xj ,

Nn∑
j=1

Yj ; f
)

≤
∞∑

k=1

P (Nn = k)
k∑

j=1

d(Xj , Yj; f).

6. Suppose that X1, . . .Xn; Y1, . . . Yn are independent, identically distributed
random variables (in each group). Let {Nn, n ≥ 1} be a sequence of posi-
tive integer-valued random variables that independent of X1, . . . , Xn and
Y1, . . . , Yn. Moreover, suppose that E(Nn) < +∞, n ≥ 1. Then, for every
f ∈ K,

d

( Nn∑
j=1

Xj ,

Nn∑
j=1

Yj ; f
)

≤ E(Nn) × d(X1, Y1; f).

7. Let dTV (X, Y ) be a total variation distance of random variables X and
Y. Then, for A ⊂ Z+, and for case of χA is an indicator function of set
A, one has

d(X, Y, χA) ≤ dTV (X, Y ).

However, it is true that

sup
A⊂Z+

d(X, Y, χA) = dTV (X, Y ).

3 Main results

The next theorem will be fundamental in this paper and it is a generalization
of known results related to Le Cam’s bound ([11]) in Poisson approximation.

Theorem 3.1. (Le Cam type bound in general Poisson approximation) For
n ≥ 1, let Xn,1, Xn,2, · · · be a sequence of independent, non-negative integer-
valued random variables such that

P (Xn,k = r) = pn,k(r); r = 0, 1, 2, · · · ; k = 1, 2, · · · , kn; n = 1, 2, · · ·
where k1, k2, · · · be a sequence of positive integers and kn → ∞ as n → ∞.

Set Sn := Xn,1 + · · · + Xn,kn and write λn :=
kn∑

k=1

pn,k(1). Let Zλn denote the

Poisson distributed random variable with expectation λn. Then, for every f ∈ K

d(Sn, Zλn , f) ≤ 2 ‖ f ‖
kn∑

k=1

(
p2

n,k(1) + Rn,k

)
,

where

Rnk =
∞∑

r=2

pn,k(r).
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Proof. We shall begin with showing that

Zλn

D=
kn∑

k=1

Zpn,k(1),

where the Zpn,k(1) are independent, Poisson distributed random variables with

expectations pn,k(1), k = 1, 2, · · · , kn. Here and from now on, the notation D=
means that the equal in distribution. The theorem will be proved if for every
f ∈ K,

d(Xn,k, Zpn,k(1), f) ≤ 2 ‖ f ‖ (p2
n,k(1) + Rn,k).

Let us first compute for every f ∈ K, x ∈ Z+,

Ef(Xn,k + x) =
∞∑

r=0

f(x + r)pn,k(r)

= f(x)pn,k(0) + f(x + 1)pn,k(1) +
∞∑

r=2

f(x + r)pn,k(r),

(13)

and

Ef(Zpnk(1) + x) =
∞∑

r=0

f(x + r)
e−pn,k(1)

r!
pr

n,k(1)

= f(x)e−pn,k(1) + f(x + 1)pn,k(1)e−pn,k(1) +
∞∑

r=2

f(x + r)
e−pn,k(1)

r!
pr

n,k(1).

(14)

Combining (13) with (14), we obtain, for every f ∈ K,

Ef(Xn,k + x) − Ef(Zpn,k(1)) = f(x)
(
pn,k(0) − e−pn,k(1)

)

+ f(x + 1)
(
pn,k(1) − pn,k(1)e−pn,k(1)

)
+

∞∑
r=2

f(x + r)pn,k(1)

−
∞∑

r=2

f(x + r)
e−pn,k(1)

r!
pr

n,k(1).

Using the probability distance defined in (12), for every f ∈ K, we obtain

d(Xn,k, Zpn,k(1), f) ≤‖ f ‖
(
e−pn,k(1) − pn,k(0) + pn,k(1)(1 − e−pn,k(1))

)
+ ‖ f ‖ Rn,k+ ‖ f ‖

(
1 − e−pn,k(1) − pn,k(1)e−pn,k(1)

)
.

(15)
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Since
pn,k(1)

(
1 − e−pn,k(1)

)
≤ p2

n,k(1),

and
1 − pn,k(0) = pn,k(1) + Rn,k.

From (15) it may be concluded that

d(Xn,k, Zpn,k(1), f) ≤ 2 ‖ f ‖ (p2
n,k(1) + Rn,k

)
.

Consequently,

d(Sn, Zλn , f) ≤ 2 ‖ f ‖
kn∑

k=1

(
p2

n,k(1) + Rn,k

)
.

This finishes the proof. �

Corollary 3.1. (General Poisson Limit Theorem) Under the assumptions
of Theorem 3.1, for r = 0, 1, 2, · · · , the Le Cam type bound is stated as in (10)

|P (Sn = r) − P (Zλn = r)| ≤ 2
kn∑

k=1

(
p2

n,k (1) + Rn,k

)
.

As an immediate consequence of Theorem 3.1, the general Poisson limit
theorem (see [13] for more details) can be restated as following corollary.

Corollary 3.2. Under hypotheses of Theorem 3.1 and assume that the follow-
ing conditions are satisfied

1. lim
n→∞

kn∑
k=1

pn,k (1) = λ, (0 < λ < +∞),

2. lim
n→+∞ max

1≤k≤kn

(1 − pn,k(0)) = 0

3. lim
n→∞

kn∑
k=1

Rn,k = 0.

Then, Sn
D→ Zλ as n → ∞.

Throughout the forthcoming, let {Nn, n ≥ 1} be a sequence of non-negative
integer-valued random variables independent of Xn,k; k = 1, 2, · · · , kn; n =
1, 2, · · · . Then, in the same way as in proof of Theorems 3.1, the Le Cam type
bounds in general Poisson limit theorems for distributions of random sums will
be established via probability distance defined in (12) as follows:
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Theorem 3.2. (Le Cam type in General Poisson approximation for random
sum) For n ≥ 1, let Xn,1, Xn,2, · · · be a sequence of independent, non-negative
integer-valued random variables such that

P (Xn,k = r) = pn,k(r); r = 0, 1, 2, · · · ; k = 1, 2, · · · , kn; n = 1, 2, · · ·

Let {Nn, n ≥ 1} be a sequence of non-negative integer-valued random variables

independent of all Xn,k; k = 1, 2, · · · , kn; n = 1, 2, · · · . Set SNn :=
kNn∑
k=1

Xn,k,

and write λNn =
kNn∑
k=1

pn,k(1) with S0 = 0 and λ0 = 0. Then, for all function

f ∈ K,

d(SNn , ZλNn
, f) ≤ 2 ‖ f ‖ E

⎛
⎝kNn∑

k=1

(p2
Nn,k(1) + RNn,k)

⎞
⎠ ,

where ZλNn
are Poisson distributed random variables with expectations λNn ,

and RNn,k(r) =
∞∑

r=2
pNn,k(r).

Proof. The proof is immediate from Theorem 3.1

d
(
SNn , ZλNn

; f
) ≤ ∑

kn∈Z+

P (kNn = kn)
kn∑

k=1

d
(
Xn,k, Zpn,k(1); f

)

≤ 2 ‖f‖
∑

kn∈Z+

P (kNn = kn)
kn∑

k=1

(p2
n,k (1) + Rn,k)

≤ 2 ‖f‖E

⎛
⎝kNn∑

k=1

(p2
Nn,k (1) + RNn,k)

⎞
⎠ .

The proof is complete. �

Corollary 3.3. As an immediate consequence of Theorem 3.2, for r = 0, 1, · · · ,
the Le Cam type bound for random sum in general Poisson approximation is
given by

∣∣P (SNn = r) − P
(
ZλNn

= r
)∣∣ ≤ 2E

⎛
⎝kNn∑

k=1

(
p2

Nn,k (1) + RNn,k

)⎞⎠ .

It is worth pointing that by an argument analogous to that used for the
proof of above Theorems 3.1 and 3.2, we can establish some Le Cam type
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bounds in Poisson approximation for sums and random sums of independent
Bernoulli random variables like results in [6] via probability distance defined in
(12). However, we can also consider the results in [6] as the direct consequence
of general Poisson approximation theorems 3.1 and 3.2.

Corollary 3.4. (see [6], Theorem 3.1) For n ≥ 1, let Xn,1, Xn,2, . . . ; n =
1, 2, . . . be a independent, Bernoulli distributed random variables with success
probabilities

P (Xn,k = 1) = 1 − P (Xn,k = 0) = pn,k ∈ (0, 1); k = 1, 2, · · · , kn; n = 1, 2, · · · .

Write Sn =
kn∑

k=1

Xn,k. Let us denote by Zλn the Poisson distributed random

variable with mean λn := E(Sn) =
kn∑

k=1

pn,k. Then, for all functions f ∈ K,

d (Sn, Zλn , f) ≤ 2 ‖f‖
kn∑

k=1

p2
n,k.

Corollary 3.5. Under the above assumptions of Corollary 3.4, for all r =
0, 1, 2, · · · , we have

|P (Sn = r) − P (Zλn = r)| ≤ 2
kn∑

k=1

p2
n,k.

Corollary 3.6. Under above assumptions of Theorem 3.2 on Xn,k, k = 1, 2, · · · ,
kn; n = 1, 2, · · · and let Nn, n = 1, 2, · · · be a sequence of non-negative integer-
valued random variables. Assume that Nn, n = 1, 2, . . . are independent of all
Xn,k; k = 1, 2, · · · , kn; n = 1, 2, · · · . Then, for all functions f ∈ K,

d(SNn , ZλNn
, f) ≤ 2 ‖ f ‖ E

⎛
⎝kNn∑

k=1

p2
Nn,k

⎞
⎠ .

Corollary 3.7. Under the above assumptions of Corollary 3.6, for all k =
0, 1, · · · , kn, the Le Cam type bound in general Poisson approximation for ran-
dom sum in form of (11) will be stated as follows:

∣∣P (SNn = r) − P
(
ZλNn

= r
)∣∣ ≤ 2E

⎛
⎝kNn∑

k=1

p2
Nn,k

⎞
⎠ .
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Concluding remark

We concluded this paper with the following comments. The probability dis-
tance approach in this paper has been presented the simple and efficient tech-
nique for establishing the Le Cam type bounds in Poisson approximation for
sums and random sums of independent discrete random variables. This ap-
proach will certainly be more effective in establishing the Le Cam bounds in
multivariate Poisson approximation.
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