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Abstract

In this paper, we apply our new results on quasi-variational inequality
problems in [5] to generalized quasi-equilibrium problems.Some sufficient
conditions on the existence of solutions are shown. In particular, we
establish several results on the existence of solutions to fixed points of
lower semi-continuous mappings without conditions on the closedness of
values. These generalize some well-known fixed point theorems obtained
by previous authors as F. E. Browder and Ky Fan, X. Wu, L. J. Lin, and
Z. T. Yu etc.

1. Introduction

It is well-known that the theory of fixed points plays an important role in
applied mathematics. Many results in this theory become a tool to show the
existence for solutions and to construct algorithms for finding solutions of many
mathematical problems as optimization, variational, complementarity, equilib-
rium... problems. We can shortly describe the main development of fixed
point results of continuous mappings as follows. In 1912, L. Brouwer used
combinatorial method to show that a continuous mapping f from a simplex
K ⊂ Rn into itself has a fixed point, i. e, there exists a point x̄ ∈ K such
that f(x̄) = x̄. J. Schauder, 1930, extended this result to the case that K is a
nonempty convex compact subset in Rn. In 1941, S. Kakutani generalized to
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the case when f is a upper semi-continuous mapping with nonempty convex
and closed values from K to itself in Rn. In 1952, Ky Fan proved a fixed point
theorem of upper semi-continuous mappings with nonempty convex and closed
values from a nonempty convex and compact subset K into itself in Hausdorff
topological locally convex spaces. In 1968 F. E. Browder and Ky Fan obtained
a fixed point theorem of multivalued mapping which have lower open sections.
Recently, many authors studied fixed point theorems of lower semi-continuous
multivalued mappings with nonempty convex closed values, by using a contin-
uous selection theorem, see for example, N. C. Yannelis and N. D. Prabhakar
[17], Ben-El-Mechaiekh [1], X P. Ding, W. K. Kim and K. K. Tan [4], C. D.
Horvath [8], X. Wu [16], S. Park [10] and many others. In particular, Wu [16]
obtained the following result.

Theorem A ([16]). Let X be a nonempty subset of Hausdorff locally convex
topological vector space, let D be a nonempty compact mtrizable subset of X
and let T : X → 2D be a multivalued mapping with the following properties:
(i)T (x) is a nonempty convex closed set for each x ∈ X;
(ii)T is lower semi-continuous.
Then there exists a point x ∈ D such that x ∈ T (x).

Tan and Hoa [15] generalized the above theorem by the following result:

Theorem B ([15]). Let D be a nonempty convex and compact subset of Haus-
dorff locally convex topological vector space X and let F : D → 2D be a lower
semi-continuous multivalued mapping with nonempty values. Then there exists
a point x̄ ∈ D such that x̄ ∈ F (x̄).

In this paper, we first establish a theorem on the existence of quasi-equilibrium
points of multivalued mappings defined on subsets of Hausdorff locally convex
topological vector spaces as follows.

Let X, Y and Z be Hausdorff locally convex topological vector spaces over
reals, D ⊂ X,K ⊂ Z be nonempty subsets. Given multi-valued mappings
P : D ×K → 2D, Q : D×K → 2Z and F : D×K → 2X×Y , we are interested
in the problem, denoted by (QEP ), of finding (x̄, ȳ) ∈ D ×K such that

x̄ ∈ P (x̄, ȳ);
ȳ ∈ Q(x̄, ȳ);
0 ∈ F (x̄, ȳ).

This problem is called a quasi-equilibrium problem in which the multival-
ued mappings P and Q are constraint mappings and F is a utility multivalued
mapping that are often determined by equalities and inequalities , or by inclu-
sions and intersections of other multi-valued mappings, or by general relations
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in product spaces. The existence of solutions to this problem is studied in [5,6]
for the case the multivalued mapping P is continuous, the multivalued mapping
Q is u.s.c and the multivalued mapping F is u.s.c . All these mappings P,Q
and F need to have nonempty convex and closed values.

As far as we know equilibrium problems as generalizations of variational in-
equalities and optimization problems, including also optimization-related prob-
lems such as fixed point, complementarity problems, Nash equilibrium, mini-
max problems, etc. For the last decade there have been a number of gener-
alizations of these problems to different directions such as quasi-equilibrium
problems with constraint sets depending on parameters, quasi-variational and
quasi-equilibrium inclusion problems with multi-valued data (see, for exam-
ples, in [5, 6], [14]). Problem (QEP) described above is quite general. It
encompasses a large class of problems of applied mathematics including quasi-
optimization problems, quasi-variational inclusion, quasi-equilibrium problems,
quasi-variational relation problems etc. Typical instances of (QEP) are shown
in [5, 6] and [14]... involving upper semi-continuous utility multivalued map-
pings with nonempty convex closed values.

Theorem 3.1 below shows sufficient conditions for the existence of solu-
tions to this problem of separately lower and upper semi-continuous utility
multivalued mappings. Corollary 3.3 unites Ky Fan and Browder Ky Fan The-
orems together. In particular, we obtain the following theorems (Corollaries
3.5 and 3.10 below): Let D and K be nonempty convex and compact sub-
sets of Hausdorff locally convex topological vector spaces X,Z, respectively,
and F : D × K → 2D×K be a separately lower and upper semi-continuous
multivalued mapping with nonempty convex closed values ( a separately lower
semi-continuous mapping with nonempty convex values). Then F has a fixed
point in D×K.

2. Preliminaries and Definitions

Throughout this paper, as mentioned in the introduction, X, Y and Z are real
Hausdorff topological vector spaces. Given a subset D ⊂ X, we consider a
multivalued mapping F : D → 2Y . Let F−1 : Y → 2X be defined by the
condition that x ∈ F−1(y) if and only if y ∈ F (x). We recall that

(a) The domain and the graph of F are denoted by

domF = {x ∈ D|F (x) �= ∅} ,
Gr(F ) = {(x, y) ∈ D × Y |y ∈ F (x)} ,

respectively;
(b) F is said to be a closed mapping if the graph Gr(F ) of F is a closed subset
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in the product space X × Y ;
(c) F is said to be a compact mapping if the closure F (D) of its range F (D)
is a compact set in Y ;
(d) F : D → 2Y is said to be upper semi-continuous (in short, u.s.c) at x̄ ∈ D
if for each open set V containing F (x̄), there exists an open set U of x̄ such
that for each x ∈ U, F (x) ⊂ V. F is said to be u.s.c on D if it is u.s.c at all
x ∈ D;
(e) F is said to be lower semi-continuous ( in short, l.s.c) at x̄ ∈ D if for any
open set V with F (x̄) ∩ V �= ∅, there exists an open set U containing x̄ such
that for each x ∈ U, F (x)∩ V �= ∅. F is said to be l.s.c on D if it is l.s.c at all
x ∈ D;
(f) F is said to be continuous on D if it is at the same time u.s.c and l.s.c on
D;
(g) F is said to have open lower sections if the inverse mapping F−1 is open
valued, i.e,, for all y ∈ Y, F−1(y) is open in X.
(h) Let F : K ×K ×D ×D → 2Y , N : K ×K ×D ×D → 2K be multivalued
mappings. We say that F is a KKM mapping, if for any finite set {x1, ..., xk} ⊂
D such that for any x ∈ co{x1, ..., xk}, there is an index j ∈ {1, ..., k} such that
0 ∈ F (y, v, x, xj), for all y, v ∈ K, v ∈ N(y, v, x, xj). Here, co(A) denotes the
convex hull of the set A.
(i) F is diagonally upper (T, C)-quasiconvex in the third variable on D if for
any finite xi ∈ D, ti ∈ [0, 1], i= 1, ..., n,

∑n
i=1ti = 1, xt =

∑n
i=1tixi, there exists

j=1,2,...,n such that

F (y, v, xt, xj) ⊂ F (y, v, xt, xt) +C, for all y ∈ T (xt, xj).

(j) F is diagonally lower (T, C)-quasiconvex in the third variable on D if for
any finite xi ∈ D, ti ∈ [0, 1], i= 1, ..., n,

∑n
i=1ti = 1, xt =

∑n
i=1tixi, there exists

j=1,2,...,n such that

F (y, v, xt, xt) ⊂ F (y, v, xt, xj) −C, for all y ∈ T (xt, xj).

(k) F : D×K → 2Y is said to be separately l.s.c and u.s.c at (x, y) ∈ D×K if
for any fixed y ∈ K(x ∈ D) the multivalued mapping F (., y) : D → 2Y (F (x, .) :
K → 2Y ) is l.s.c at x ( u.s.c at y).
(l) F is said to be separately l.s.c at (x, y) ∈ D×K if for any fixed y ∈ K(x ∈ D)
the multivalued mapping F (., y) : D → 2Y (F (x, .) : K → 2Y ) is l.s.c at x (at
y).
(m) F is said to be separately u.s.c at (x, y) ∈ D×K if for any fixed y ∈ K(x ∈
D) the multivalued mapping F (., y) : D → 2Y (F (x, .) : K → 2Y ) is u.s.c at x
(at y) .
(n) If F is separately l.s.c and u.s.c at (x, y) ∈ D×K if for any fixed y ∈ K(x ∈
D) the multivalued mapping F (., y) : D → 2Y (F (x, .) : K → 2Y ) is l.s.c (u.s.c)
at x (at y). If F is l.s.c (u.s.c, l.s.c and u.s.c) at any point of D × K, we say
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that it is separately l.s.c (u.s.c, l.s.c and u.s.c ) on D×K.
(o) F : D×K → 2Y is said to has separately open lower sections if for any fixed
y ∈ K(x ∈ D) the multivalued mapping F (., y) : D → 2Y (F (x, .) : K → 2Y )
has open lower sections.

The following propositions and theorems are need in this paper. The proofs
of these can be found in the literatures. But, for the sake of conveniences to
readers, we give some proofs of them.

Proposition 2.1. F : D → 2Y is l.s.c at x ∈ D, F (x) �= ∅, if and only if for any
net {xα} in D, xα → x, y ∈ F (x), there is a net {yα} with yα ∈ F (xα), yα → y.

Proof. Let F is l.s.c at x and xα → x and y ∈ F (x). For arbitrary neighbor-
hood V of the origin in Y , there exists α0 such that F (xα) ∩ (y + V ) �= ∅, for
all α ≥ α0. Therefore, we can choose yα ∈ F (xα) ∩ (y + V ). Thus, we have
yα − y ∈ V, for all α ≥ α0. This shows yα → y. Conversely, let x ∈ D and
N be an open subset such that F (x) ∩ N �= ∅. We assume that F is not l.s.c.
at x. Then, there is an open subset N in Y with F (x) ∩ N �= ∅ such that
for any neighborhood Uα of x there exists xα ∈ Uα such that F (xα) ∩ N = ∅.
This follows F (xα) ⊆ Y \N, a closed set. Without loss of generality, we may
maxpose that xα → x. If yα ∈ F (xα), yα → y, we deduce y ∈ Y \ N and so
y /∈ N. Thus, xα → x and for any y ∈ F (x), we can not find any yα ∈ F (xα)
with yα → y. And, we have the proof of the converse part. �

By X∗ we denote the dual space of X i.e.,

X∗ = {f : X → R|f is a linear and continuous function }.

The pairing < ., . > between elements of p ∈ X∗ and x ∈ X is defined by
< p, x >= p(x). We have

Proposition 2.2. If F : D → 2Y is a l.s.c ( u.s.c) multivalued mapping with
nonempty values on D and p ∈ X∗, then the function cp : D → R, defined by
cp(x) = inf

v∈F (x)
< p, v > (cp(x) = sup

v∈F (x)

< p, v >) is upper semi-continuous on

D.

Proof. Let x ∈ D, {xα} be a net in D and xα → x. Given ε > 0, we take a
neighborhood V of the origin in X such that | < p, v > | < ε, for all v ∈ V. For
y ∈ F (x), we have F (x)∩ (y + V ) �= ∅. The lower semi-continuity of F implies
that there exists α0 such that F (xα)∩ (y+ V ) �= ∅ with α > α0. Therefore, we
can take yα ∈ F (xα)∩(y+V ), yα = y+v, with v ∈ V, or y = yα−v ∈ F (xα)+V.
This follows

< p, y >=< p, yα − v >≥ inf
w∈F (xα)+V

< p, w >≥
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inf
w∈F (xα)

< p, w > + inf
w∈V

< p, w >≥ inf
w∈F (xα)

< p, w > −ε = cp(xα) − ε.

Taking lim
α

both the sides, we conclude

< p, y >≥ lim
α
cp(xα) − ε.

This gives
cp(x) ≥ lim

α
cp(xα).

Thus, the function cp(.) is upper semi-continuous and the proof for the rest
assertion is analogous. �

Proposition 2.3. Let F : D → 2Y be a multivalued mapping with nonempty
values on D. Then, if F has open lower sections, then F is l.s.c on D.
Proof. Let x ∈ D and N be an open subset in Y with F (x)∩N �= ∅. We take
y ∈ F (x) ∩ N. Then, x ∈ F−1(y). Since this set is open, then there exists a
neighborhood U of x such that x ∈ U ⊂ F−1(y). This follows x′ ∈ F−1(y) for
all x′ ∈ U, and hence y ∈ F (x′) ∩ N. Therefore, F (x′) ∩N �= ∅, for all x′ ∈ U.
Thus, F is l.s.c. on D. The proof of the proposition is completed. �

It is easy to give examples proving that a l.s.c continuous mapping may not
have open lower sections.

Proposition 2.4. Let Fi : D → 2Y , i = 1, 2, be a l.s.c multivalued mapping
with nonempty values on D. Then, the multivalued mapping F : D → 2Y

defined by
F (x) = (F1 + F2)(x) = F1(x) + F2(x), x ∈ D,

is also l.s.c on D.
Proof. The proof is trivial by using Proposition 2.2. �

Proposition 2.5. Let Fi : D → 2Y , i = 1, 2, be multivalued mappings with
nonempty values on D. Assume that F1 is l.s.c and F2 has open lower sections.
Then, the multivalued mapping F : D → 2Y defined by

F (x) = F1(x) ∩ F2(x), x ∈ D,

is l.s.c on D.
Proof. Let x ∈ D and N be an open subset in Y such that F1(x)∩F2(x)∩N �=
∅. We take y in this set. Since N is open, we can choose an open neighborhood
V of the origin in Y such that y + V ⊂ N. For y ∈ F2(x) and F2 has open
lower sections, one can find a neighborhood U1 of x such that x ∈ U ⊂ F−1

2 (y).
Hence, y ∈ F2(x′), for any x′ ∈ U1. Further, since y ∈ F1(x) ∩ (y + V ) and F1

is l.s.c at x, then there is a neighborhood U2 such that F1(x′) ∩ (y + V ) �= ∅,
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for all x′ ∈ U2 and so y ∈ F1(x′) ∩ N, for all x′ ∈ U2. Setting U = U1 ∩ U2,
we conclude that y ∈ F1(x′) ∩ F2(x′) ∩ N �= ∅, for all x′ ∈ U. This show that
F = F1 ∩ F2 is l.s.c at x. Thus, the proof of the proposition is completed. �

Proposition 2.6. Let F : D → 2Y be a multivalued mapping with nonempty
values on D. If F has open lower sections, then the multivalued mapping
coF : D → 2Y , defined by (coF )(x) = coF (x), with co(A) denoting the convex
hull of A, also has open lower sections.
Proof. Let y ∈ Y and x ∈ D with y ∈ (coF )(x). We can write y =

∑n
i=1 αiyi

with αi ≥ 0,
∑n

i=1 αi = 1, yi ∈ F (x). This follows x ∈ F−1(yi). Since F has
open lower sections, there exists Ui such that x ∈ Ui ⊆ F (yi). for i = 1, ..., n
Taking U = ∩n

i=1Ui, we can see yi ∈ F (x′) for all x′ ∈ U and i = 1, ..., n.
Therefore, y =

∑n
i=1 αiyi ∈ coF (x′) for all x′ ∈ U and so x ∈ U ⊆ (coF )−1(y).

This shows that coF has open lower sections. The proof of the proposition is
completed. �

Proposition 2.7. Let F : D → 2Y be a l.s.c multivalued mapping with
nonempty values on D. Then so is the multivalued mapping coF : D → 2Y ,
defined by (coF )(x) = coF (x).
Proof. Indeed, let x, xα ∈ D, xα → x and y ∈ (coF )(x), y =

∑m
i=1 αiy

i

with αi ≥ 0,
∑m

i=1 αi = 1 and yi ∈ F (x). Since F is l.s.c, there exist yi
α ∈

F (xα), yi
α → yi. Taking yα =

∑m
i=1 αiy

i
α, we can see yα ∈ (coF )(xα) and

yα → y.
The proof of the proposition is completed. �
The following theorem is very important in the proof of the main result

in this paper. Theorem 2.8. ([11]). Let {Vα}α∈Λ be a an open cover of

locally compact Hausdorff space X, D ⊂ X be a compact set. Then, there exist
continuous functions ψi : D → R, (i = 0, 1, ..., s) such that
(i) 0 ≤ ψi(x) ≤ 1;

(ii)
s∑

i=1

ψi(x) = 1, for all x ∈ D;

(iii)For any i ∈ {0, 1, ..., s}, there exists α ∈ Λsuch that suppψi ⊂ Vα, where
suppψ = {x ∈ D|ψ(x) �= 0}.

The system of functions {ψi}, i = 0, 1, ..., s, is said to be a partition of unity
corresponding to the open cover {Vα}.

3. Main results

In this section we shall apply Theorem 2.8 above on partition of unity and
our result in [5] to obtain sufficient conditions for solutions of (QEP). Before
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proving the main results in this section, we recall the following notions. Let D
be a subset in X and x ∈ D. The set

TD(x) = {α(y− x), y ∈ D, α ≥ 0} = {cone(D− x)},
is called the tangent cone to the setD at x, where coneM = {αz, z ∈M,α ≥ 0}.

We now prove the following theorem on the existence for solutions of the
above quasi-equilibrium problems concerning separately l.s.c. and u.s.c multi-
valued mappings.

Theorem 3.1.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) P : D × K → 2D is a continuous multivalued mapping with nonempty
closed convex values;

(iii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iv) F : D×K → 2X×Z is a separately l.s.c and u.s.c multivalued mapping;

(v) For any (x, y) ∈ P (x, y)×Q(x, y), F (x, y) is nonempty convex closed and
F (x, y) ⊂ TP(x,y)×Q(x,y)(x, y).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) 0 ∈ F (x̄, ȳ).

Proof. We set

B = {(x, y) ∈ D ×K|x ∈ P (x, y), y ∈ Q(x, y)}.
Since the multivalued mapping H : D ×K → 2D×K , defined by

H(x, y) = P (x, y) ×Q(x, y), (x, y) ∈ D ×K,

is upper semi-continuous with nonempty convex and compact values, by using
Ky Fan fixed point Theorem, we conclude that H has a fixed point in D×K.
Therefore, B is a nonempty set. The upper semi-continuity and the closedness
of values of H imply that B is a closed and then compact set.

Assume that for any (x, y) ∈ B, 0 /∈ F (x, y). Since F (x, y) is a nonempty
closed convex, by Hahn -Banach Theorem, there exists p ∈ (X×Z)∗ such that

sup
u∈F (x,y)

p(u) < 0.
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Further, for any fixed y ∈ K, x ∈ D, we define functions cp1(., y) : D →
R, cq

2(x, .) : K → R by

cp
1(x′, y) = inf

u∈F (x′,y)
p(u);

cp
2(x, y′) = sup

w∈F (x,y′)
p(u).

We have

cp
1(x, y) = inf

u∈F (x,y)
p(u) ≤ cp

2(x, y) = sup
w∈F (x,y)

p(u) < 0.

By Proposition 2.2, the functions c1p(., y) and c2p(x, .) are u.s.c on D×K, there-
fore, the sets

Up(x) = {x′ ∈ D|cp1(x′, y) < 0},
Up(y) = {y′ ∈ K|cp2(x, y′) < 0}

are open and (x, y) ∈ Up = Up(x) × Up(y), and so Up is a nonempty open
neighborhood of (x, y).
Thus, for any (x, y) ∈ B there is p ∈ (X × Z)∗ such that

Up(x, y) = {(x′, y′) ∈ D ×K|c1p(x′, y) < 0, c2p(x, y
′) < 0}

is nonempty and open and hence {Up}p∈(X×Z)∗ is an open cover of B. Since

B is compact, there exist finite p1, ..., ps ∈ X∗ such that B ⊆
s⋃

j=1

Upj . Further,

since B is closed in D × K,Up0 = D × K \ B is open in D × K and hence
{Up0 , Up1 , ..., Ups} is an open finite cover of the compact set D×K. By Theorem
2.7, there exist continuous functions ψi : D×K → R, (i = 0, 1, ..., s) such that
(i) 0 ≤ ψi(x, y) ≤ 1;

(ii)
s∑

i=1
ψi(x, y) = 1, for all (x, y) ∈ D ×K;

(iii) For any i ∈ {0, 1, ..., s}, there existsj(i) ∈ {0, ..., s} such that suppψi ⊂
Upj(i) . It is clear that suppψ0 ⊂ Up0 ⊂ D ×K \B.
Further, we define the function φ : (D×K) × (D ×K) → R by

φ((x, y), (t, z)) =
s∑

i=0

ψi(x, y).pj(i)(t− x, z − y), (x, y), (t, z) ∈ D ×K.

Then, φ is a continuous function on (D × K) × (D × K). Moreover, for
any fixed (x, y) ∈ D × K, φ((x, y), .) : D × K → R is a linear function and
φ((x, y), (x, y)) = 0 for all (x, y) ∈ D ×K. Therefore, D,K, P,Q and φ satisfy
all conditions of Corollary 3.4 in [5]. It implies that there is (x̄, ȳ) ∈ D × K
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such that (x̄, ȳ) ∈ P (x̄, ȳ) × Q(x̄, ȳ) and φ((x̄, ȳ), (t, z)) ≥ 0, for all (t, z) ∈
P (x̄, ȳ) ×Q(x̄, ȳ). This gives

s∑
i=0

ψi(x̄, ȳ).pj(i)(t − x̄, z − ȳ) ≥ 0 for all (t, z) ∈ P (x̄, ȳ) ×Q(x̄.ȳ). (3.1)

Setting p∗ =
s∑

i=0

ψi(x̄, ȳ).pj(i), we get from (3.1) p∗(t − x̄, z − ȳ) >≥ 0, for all

(t, z) ∈ P (x̄, ȳ) ×Q(x̄.ȳ), and hence p∗(u) ≥ 0, for all u ∈ TP(x̄,ȳ)×Q(x̄,ȳ)(x̄, ȳ).
By Assumption (v), F (x̄, ȳ) ⊂ TP(x̄,ȳ)×Q(x̄,ȳ)(x̄, ȳ), we conclude that

inf
u∈F (x̄,ȳ)

p∗(u) ≥ 0. (3.2)

Further, put I(x̄, ȳ) = {i ∈ {0, 1, ..., s}|ψi(x̄, ȳ) > 0}. Since ψi(x̄, ȳ) ≥ 0 and
s∑

i=1

ψi(x, y) = 1, we deduce I(x̄, ȳ) �= ∅. So, for any i ∈ I(x̄, ȳ), (x̄, ȳ) ∈ suppψi ⊂
Upj(i) and (x̄, ȳ) ∈ B, we get

c1pj(i)
(x̄, ȳ) = inf

u∈F (x̄,ȳ)
pj(i)(u) < 0;

c2pj(i)
(x̄, ȳ) = sup

u∈F (x̄,ȳ)

pj(i)(u) < 0. (3.3)

For any u ∈ F (x̄, ȳ), we have

p∗(u) =
s∑

i=0

ψi(x̄, ȳ).pj(i)(u)

≤
s∑

i=0

ψi(x̄, ȳ) max
i=1,...,s

pj(i)(u) ≤ max
i=1,...,s

pj(i)(u).

Hence,
inf

u∈F (x̄,ȳ)
p∗(u) ≤ inf

u∈F (x̄,ȳ)
max

i=1,...,s
pj(i)(u). (3.4)

Setting C = c̄o{pj(1), ..., pj(s)}, E = F (x̄, ȳ), f(p, u) = p(u), and using the
weak∗ topology on (X × Z)∗, we can easily verify that all conditions of Sion’s
minimax Theorem in [13] are satisfied. Therefore, we obtain

inf
u∈F (x̄,ȳ)

max
i=1,...,s

pj(i)(u) = max
i=1,...,s

inf
u∈F (x̄,ȳ)

pj(i)(u)

≤ max
i=1,...,s

{ sup
u∈F (x̄,ȳ)

pj(i)(u)} < 0. (3.5)

A combination of (3.4) and (3.5) implies

inf
u∈F (x̄,ȳ)

p∗(u) < 0.
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Thus, we have a contradiction to (3.2).
This completes our proof of the theorem. �

In Particular, we obtain the fixed point result.

Corollary 3.2.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) P : D × K → 2D is a continuous multivalued mapping with nonempty
closed convex values;

(iii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iv) G : D ×K → 2X×Z is a separately l.s.c and u.s.c multivalued mapping ;

(v) For any (x, y) ∈ P (x, y)×Q(x, y), G(x, y) is nonempty convex closed and
G(x, y) − (x, y) ⊂ TP(x,y)×Q(x,y)(x, y).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) (x̄, ȳ) ∈ G(x̄, ȳ).

Proof. We define the multivalued mapping F : D ×K → 2X×Z by

F (x, y) = G(x, y) − (x, y) (x, y) ∈ D×K.

Remarking that by Propositon 2.4 F is a l.s.c. multivalued mapping with
F (x, y) �= ∅ for any (x, y) ∈ P (x, y) × Q(x, y). Further, the proof of this
corollary follows immediately from Theorem 3.1. �

Corollary 3.3.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) P : D × K → 2D is a continuous multivalued mapping with nonempty
closed convex values;

(iii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iv) G : D ×K → 2X×Z is a separately l.s.c and u.s.c multivalued mapping;

(v) For any (x, y) ∈ P (x, y)×Q(x, y), (x, y) /∈ G(x, y), and G(x, y)− (x, y) ⊂
TP(x,y)×Q(x,y)(x, y).
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Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) G(x̄, ȳ) = ∅.
Proof. We assume that G(x, y) �= ∅, for all (x, y) ∈ P (x, y) × Q(x, y). We
define the multivalued mapping F : D ×K → 2X×Z by

F (x, y) = G(x, y) − (x, y), (x, y) ∈ D ×K.

Then F (x, y) �= ∅ for all (x, y) ∈ P (x, y)×Q(x, y) and F (x, y) ⊂ TP(x,y)×Q(x,y)(x, y).
Using Proposition 2.4, we conclude that F is a separately l.s.c and u.s.c mul-
tivalued mapping and F (x, y) �= ∅ for all (x, y) ∈ P (x, y) × Q(x, y). Further,
the proof of this corollary follows immediately from Corollary 3.2 to obtain
(x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) (x̄, ȳ) ∈ G(x̄, ȳ).

Thus, we have a contradiction and the proof of the corollary is complete.�

Corollary 3.4.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iii) F : D × K → 2X×Z is a separately l.s.c and u.s.c multivalued mapping
with F (x, y) �= ∅ convex values and F (x, y)−(x, y) ⊆ TD×Q(x,y)(x, y), for
any (x, y) ∈ D ×K, y ∈ Q(x, y).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) ȳ ∈ Q(x̄, ȳ);
2) (x̄, ȳ) ∈ F (x̄, ȳ).

Proof. Observing that F (x, y)−(x, y) ⊂ D×Q(x, y)−(x, y) ⊂ TD×Q(x,y)(x, y),
then the proof of this corollary follows immediately from Theorem 3.1 with
taking P (x, y) = D, for all (x, y) ∈ D ×K. �

We have a fixed point result of separately l.s.c and u.s.c multivalued map-
pings with nonempty convex closed values. This is a generalization of Ky Fan’s
Theorem.

Corollary 3.5.We assume that the following conditions hold:
(i)D,K are nonempty convex compact subsets of X and Z, respectively;
(ii)F : D×K → 2D×K is a separately l.s.c and u.s.c multivalued mapping with
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nonempty convex closed values.
Then there exists (x̄, ȳ) ∈ D ×K such that (x̄, ȳ) ∈ F (x̄, ȳ).

Proof. Observing that F (x, y) − (x, y) ⊂ D ×K − (x, y) ⊂ TD×K(x, y), then
the proof of this corollary follows immediately from Theorem 3.1 with taking
P (x, y) = D,Q(x, y) = K, for all (x, y) ∈ D ×K. �

By the same arguments as in the proof of Theorem 3.1, we prove the ex-
istence for solutions of quasi-equilibrium problems concerning separately l.s.c.
multivalued mappings. The assumption that the multivalued mapping F has
closed values on the set B can be dropped.

Theorem 3.6.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) P : D × K → 2D is a continuous multivalued mapping with nonempty
closed convex values;

(iii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iv) F : D×K → 2X×Z is a separately l.s.c multivalued mapping;

(v) For any (x, y) ∈ P (x, y)×Q(x, y), F (x, y) is nonempty convex and F (x, y) ⊂
TP(x,y)×Q(x,y)(x, y).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) 0 ∈ F (x̄, ȳ).

Proof. Let

B = {(x, y) ∈ D ×K|x ∈ P (x, y), y ∈ Q(x, y)}
be as in the proof of Theorem 3.1. Assume that for any (x, y) ∈ B, 0 /∈ F (x, y).
Since F (x, y) is a nonempty, we can take u = (v, w) ∈ F (x, y), u �= 0. By Hahn
-Banach Theorem, there exists p ∈ (X × Z)∗ such that p(u) < 0. This follows

inf
u∈F (x,y)

p(u) < 0.

For any fixed y ∈ K, x ∈ D, we define functions cp1(., y) : D → R, cp
2(x, .) :

K → R by
cp

1(x′, y) = inf
u∈F (x′,y)

p(u);

cp
2(x, y′) = inf

u∈F (x,y′)
p(u).
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By Proposition 2.2, the functions c1p(., y) and c2p(x, .) are u.s.c on D and on K,
respectively. Therefore, the sets

Up(x) = {x′ ∈ D|cp1(x′, y) < 0},
Up(y) = {y′ ∈ K|cp2(x, y′) < 0}

are open and (x, y) ∈ Up = Up(x) × Up(y), and so Up is a nonempty open
neighborhood of (x, y) in D ×K.
Further, the proof proceeds exactly as the one of Theorem 3.1. �

The proofs of the following corollaries are realized by the same arguments
of Corollaries 3.2-3.5.

Corollary 3.7.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) P : D × K → 2D is a continuous multivalued mapping with nonempty
closed convex values;

(iii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iv) G : D ×K → 2X×Z is a separately l.s.c multivalued mapping ;

(v) For any (x, y) ∈ P (x, y)×Q(x, y), G(x, y) is nonempty convex and G(x, y)−
(x, y) ⊂ TP(x,y)×Q(x,y)(x, y).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) (x̄, ȳ) ∈ G(x̄, ȳ).

Corollary 3.8.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) P : D × K → 2D is a continuous multivalued mapping with nonempty
closed convex values;

(iii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iv) G : D×K → 2X×Z is a separately l.s.c multivalued mapping with convex
values;

(v) For any (x, y) ∈ P (x, y)×Q(x, y), (x, y) /∈ G(x, y), and G(x, y)− (x, y) ⊂
TP(x,y)×Q(x,y)(x, y).
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Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) G(x̄, ȳ) = ∅.
Corollary 3.9.We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;

(ii) Q : D × K → 2K is a u.s.c multivalued mapping with nonempty closed
convex values;

(iii) F : D × K → 2X×Z is a separately l.s.c multivalued mapping with
F (x, y) �= ∅ convex values and F (x, y) − (x, y) ⊆ TD×Q(x,y)(x, y), for
any (x, y) ∈ D ×K, y ∈ Q(x, y).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) ȳ ∈ Q(x̄, ȳ);
2) (x̄, ȳ) ∈ F (x̄, ȳ).

In particular, we have a fixed point result of separately lower semi-continuous
multivalued mappings with nonempty values. This is a generalization of Brow-
der - Ky Fan’s Theorems.

Corollary 3.10.We assume that the following conditions hold:
(i)D,K are nonempty convex compact subsets of X × Z;
(ii)F : D×K → 2D×K is a separately l.s.c multivalued mapping with nonempty
convex values.
Then there exists (x̄, ȳ) ∈ D ×K such that (x̄, ȳ) ∈ F (x̄, ȳ).

4. Some applications

In this section we introduce some applications of the above results to con-
sider the existence of solutions to mixed generalized quasi-equilibrium problems
concerning l.s.c and u.s.c continuous multivalued mappings. We assume that
X,Z, Y, Yi, i = 1, 2, are real Hausdorff topological vector spaces, D ⊂ X,K ⊂ Z
are nonempty subsets. Given multivalued mappings S : D × K → 2D, T :
D×K → 2K and F : K ×K ×K ×D → 2Y , we are interested in the problem
of finding (x̄, ȳ) ∈ D×K such that
i) x̄ ∈ S(x̄, ȳ);
ii) ȳ ∈ T (x̄, ȳ);
iii) 0 ∈ F (ȳ, ȳ, v, x̄), for all v ∈ T (x̄, ȳ).
This problem is called a generalized quasi-equilibrium problem of type I, de-
noted by (GEP )I.
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Given multivalued mappings P, P0 : D × K → 2D, Q : D ×K → 2K, Q0 :
K × D × D → 2K , and F : K × K ×D × D → 2Y , we are interested in the
problem of finding (x̄, ȳ) ∈ D ×K such that

x̄ ∈ P (x̄, ȳ);

ȳ ∈ Q(x̄, ȳ);

and
0 ∈ F (ȳ, v, x̄, t), for all t ∈ P0(x̄, ȳ) and v ∈ Q0(ȳ, x̄, t).

This problem is called a generalized quasi-equilibrium problem of type II, de-
noted by (GEP )II.

Further, given multivalued mappings S : D × K → 2D, T : D × K →
2K , P0 : D × K → 2D, Q0 : K × D × D → 2K and F1 : K × K × K × D →
2Y1, F2 : K × K × D × D → 2Y2, we are interested in the problem of finding
(x̄, ȳ) ∈ D ×K such that
i) x̄ ∈ S(x̄, ȳ);
ii) ȳ ∈ T (x̄, ȳ);
iii) 0 ∈ F1(ȳ, ȳ, v, x̄), for all v ∈ T (x̄, ȳ);
iv) 0 ∈ F2(ȳ, v, x̄, t), for all t ∈ P0(x̄, ȳ), v ∈ Q0(ȳ, x̄, t).
This problem is called a mixed generalized quasi-equilibrium problem, denoted
by (MGQEP ), in which the multivalued mappings S, T, P0, Q0 are called con-
straint mappings and F1, F2 are called utility multivalued mappings.

We apply the obtained results in Section 3 to get the existence to solutions
for (MGQEP ) as follows.

Theorem 4.1.The following conditions are sufficient for (MGQEP ) to have
a solution:

i) D and K are nonempty convex compact subsets;

ii) S : D × K → 2D is separately l.s.c multivalued mapping with nonempty
convex values;

iii) T : D×K → 2K is continuous multivalued mapping with nonempty closed
values;

iv) P0 : D × K → 2D is a separately multivalued mapping with nonempty
values and coP0(x, y) ⊆ S(x, y) for any (x, y) ∈ D ×K;

v) The set A = {(y, w, v, x) ∈ K ×K ×K ×D|0 ∈ F1(y, w, v, x)} is closed ;

vi) For any fixed (y, x) ∈ K×D, the set B = {w ∈ T (x, y)|0 ∈ F1(y, w, v, x) for all v ∈
T (x, y)} is nonempty convex.
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vii) For any fixed (t, y)) ∈ D×K, the set

A1 = {x ∈ D| 0 /∈ F2(y, v, x, t), for some v ∈ Q0(y, x, t)},
is open in D, and for any fixed (t, x) ∈ D ×D, the set

A2 = {y ∈ K| 0 /∈ F2(y, v, x, t), for some v ∈ Q0(y, x, t)},
is open in K;

viii) For any fixed y, v ∈ K, the multivalued mapping F2(y, v, ., .) : D×D → 2Y

is a Q0 −KKM mapping.

Proof. We define the multivalued mapping Q : D ×K → 2K by

Q(x, y) = {w ∈ T (x, y)|0 ∈ F1(y, v, w, x), for all v ∈ T (x, y)}.
Conditions v) implies that Q(x, y) �= ∅ and closed for any (x, y) ∈ D ×
K. Now, let (xα, yα) be a net converging to (x, y) and wα be a net with
wα ∈ Q(xα, yα), wα → w. We have to show w ∈ Q(x, y). Indeed, we can
see 0 ∈ F1(yα, wα, vα, xα), for all vα ∈ T (xα, yα). Let v ∈ T (x, y) be arbi-
trary. Since T is l.s.c, there is vα ∈ T (xα, yα), vα → v. Therefore, we get
0 ∈ F1(yα, wα, vα, xα). For (yα, wα, vα, xα) → (y, w, v, x) and the set A is
closed, we deduce (y, w, v, x) ∈ A. Hence, 0 ∈ F1(y, w, v, x), for all v ∈ T (x, y).
This shows that the multivalued mapping Q is closed, and then Q is u.s.c on
D × K. Set C = {(x, y) ∈ D × K| x ∈ S(x, y), y ∈ Q(x, y)}, Corollary 3.10
follows that C �= ∅. We define the multivalued mapping M : D ×K → 2K by

M(x, y) = {t ∈ D| 0 /∈ F2(y, v, x, t)for all v ∈ Q0(y, x, t)}, (x, y) ∈ D ×K.

If (x̄, ȳ) ∈ C,M(x̄, ȳ) ∩ P0(x̄, ȳ) = ∅, we have the proof of the theorem.
We assume that for any (x, y) ∈ C,M(x, y) ∩ P0(x, y) �= ∅. For any fixed

y ∈ K, the set

M(., y)−1(t) = A1 = {x ∈ D| 0 /∈ F2(y, v, x, t), for some v ∈ Q0(y, x, t)},
is open in D and for any fixed x ∈ D, the set

M(x, .)−1(t) = A2 = {y ∈ K| 0 /∈ F2(y, v, x, t), for some v ∈ Q0(y, x, t)},
is open in K.
So, the multivalued mapping M has separately lower open sections and then it
is separately l.s.c on D ×K.
For P0 has open lower sections, M is separately l.s.c, we apply Propositions 2.5
and 2.7 to conclude that co(M ∩ P0) : D ×K → 2D defined by

co(M ∩ P0)(x, y) = co(M(x, y) ∩ P0(x, y))
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is a separately l.s.c multivalued mapping with nonempty convex values.
Further, we defined the multivalued mapping H : D ×K → 2D×K by

H(x, y) =

{
co(M(x, y) ∩ P0(x, y)) × {y}, if x ∈ C,

coP0(x, y) × {y}, else .

If is clear that H is also separately l.s.c on D × K. We apply Corollary 3.10
with F = H to conclude that there exists (x̄, ȳ) ∈ D × K such that (x̄, ȳ) ∈
H(x̄, ȳ). If x̄ ∈ C, we have x̄ ∈ co(M(x̄, ȳ) ∩ P0(x̄, ȳ)). In particular, x̄ ∈
coM(x̄, ȳ), we then deduce that there exists x1, ..., xn ∈ M(x̄, ȳ) such that

x =
n∑

i=1

αixi,
n∑

i=1

αi = 1. By the definition of M , we can see

0 /∈ F2(ȳ, v, x̄, xi) for some v ∈ Q0(ȳ, x̄, xi)and for all i = 1, ..., n. (4.1)

In the second hand, since the multivalued mapping F2(ȳ, v, ., .) is Q0 −KKM ,
there exists j ∈ {1, ..., n} such that

0 ∈ F2(ȳ, v, x̄, xj) for all v ∈ Q0(ȳ, x̄, xj). (4.2)

A combination of (4.1) and (4.2) gives a contradiction and then we have the
proof of the theorem is complete. �

Corollary 4.2.We assume that the following conditions hold:

i) D and K are nonempty convex compact subsets;

ii) S : D × K → 2D, T : D × K → 2K are separately l.s.c multivalued
mappings with nonempty convex values;

(iii) φ : K ×K ×D ×D → R is a real function such that:
a) For any fixed t, x ∈ D, y ∈ K, the function φ(y, ., ., t) : K × D →
R, φ(., ., x, t) : K ×K → R are upper semi-continuous separately;
b) For any finite set {x1, ..., xk} ⊂ D such that for any x ∈ co{x1, ..., xk},
there is an index j ∈ {1, ..., k} such that φ(y, v, x, xj) ≥ 0, for all y, v ∈ K.

Then there exists (x̄, ȳ) ∈ D ×K such that (x̄, ȳ) ∈ S(x̄, ȳ) × T (x̄, ȳ) and

φ(ȳ, v, x̄, t) ≥ 0, for all (t, v) ∈ S(x̄, ȳ) × T (x̄, ȳ).

Proof. We take P0 = S,Q0 : K×D×D → 2K defined by Q0(y, x, t) = T (x, y)
and F : K ×K ×D×D → 2R defined by F (y, v, x, t) = φ(y, v, x, t) −R+.
We verify that for any fixed (t, y) ∈ D ×K, the set

A1 = {x ∈ D| 0 /∈ F (y, v, x, t), for some v ∈ Q0(y, x, t)}
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= {x ∈ D| φ(y, v, x, t) < 0, for some v ∈ T (x, y)}
is open in D. Indeed,

D\A1 = {x ∈ D| φ(y, v, x, t) ≥ 0, for all v ∈ T (x, y)}.

If {xα} is a net in D\A1, xα → x we have to show x ∈ D\A1. Take arbitrary
v ∈ T (x, y). Since T (., y) : D → 2K is l.s.c., there is vα ∈ T (xα, y), vα → v. For
xα ∈ D\A1, it follows φ(y, vα, xα, t) ≥ 0.The upper semicontinuity of φ(y, ., ., t)
implies that φ(y, v, x, t) ≥ 0. Thus, this shows that x ∈ D \A1 and so, D \A1

is closed and then A1 is open. Analogously, for any fixed (t, x) ∈ D ×D, the
set

A2 = {y ∈ K| 0 /∈ F (y, v, x, t), for some v ∈ Q0(y, x, t)}
= {y ∈ K| φ(y, v, x, t) < 0, for some v ∈ T (x, y)}

is open in K. To complete the proof of the corollary, it remains to apply
Theorem 4.1 with P0 = S,Q0 : K×D×D → 2K defined byQ0(y, x, t) = T (x, y)
and F. �

Corollary 4.3.We assume that the following conditions hold:

i) D and K are nonempty convex compact subsets;

ii) S : D × K → 2D, T : D × K → 2K are separately l.s.c multivalued
mappings with nonempty convex values;

(iii) φ : K ×K ×D ×D → R is a real function such that:
a) For any fixed t, x ∈ D, y ∈ K, the function φ(y, ., ., t) : K × D →
R, φ(., ., x, t) : K ×K → R are upper semi-continuous;
b) For any finite y, v ∈ K, φ(y, v, x, x) = 0, for all x ∈ D and φ(y, v, x, .) :
D → R is a quasiconvex function.

Then there exists (x̄, ȳ) ∈ D ×K such that (x̄, ȳ) ∈ S(x̄, ȳ) × T (x̄, ȳ) and

φ(ȳ, v, x̄, t) ≥ 0, for all (t, v) ∈ S(x̄, ȳ) × T (x̄, ȳ).

Proof. We take P0 = S,Q0 : K × D × D → 2K defined by Q0(y, x, t) =
T (x, y) and F : K ×K ×D ×D → 2R defined by F (y, v, x, t) = φ(y, v, x, t) −
R+. Assumption b) in (iii) implies that for any finite set {x1, ..., xk} ⊂ D
such that for any x ∈ co{x1, ..., xk}, there is an index j ∈ {1, ..., k} such that
φ(y, v, x, xj) ≥ 0, for all y, v ∈ K. To complete the proof of the corollary, it
remains to apply Corollary 4.2. �
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