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Abstract

The main result establishes that a weak solution of degenerate non-
linear linear elliptic equations can be approximated by a sequence of
solutions for non-degenerate nonlinear linear elliptic equations.

1 Introduction

Let L be a degenerate elliptic operator in divergence form

Lu = −
n∑

i,j=1

Dj(aij(x)Diu(x)), D =
∂

∂xj
, (1.1)

where the coefficients aij are measurable, real-valued functions whose coefficient
matrix A = (aij) is symmetric and satisfies the degenerate ellipticity condition

λ|ξ|2ω(x)≤
n∑

i,j=1

aij(x)ξiξj ≤Λ|ξ|2ω(x), (1.2)

for all ξ ∈R
n and almost everywhere x∈Ω, where Ω is a bounded open set

in R
n and we assume that Ω has a Lipschitz boundary ∂Ω with outward unit

normal �η(x) = (η1(x), ..., ηn(x)), ω is a weight function, λ and Λ are positive
constants.
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104 An Approximation Theorem

The main purpose of this paper (see Theorem 1.2) is to establish that a
weak solution u∈W 1,2

0 (Ω, ω) for the nonlinear degenerate problem

(P )

⎧⎪⎨
⎪⎩

Lu(x) + b(x)u(x) + div(Φ(u(x))) = g(x) −
n∑

j=1

Djfj(x) in Ω,

u(x) = 0 on ∂Ω,

can be approximated by a sequence of solutions of non-degenerate nonlinear
elliptic equations, where Φ : R→R

n and b : Ω→R.
By a weight, we shall mean a locally integrable function ω on R

n such
that ω(x) > 0 for a.e. x∈R

n. Every weight ω gives rise to a measure on the
measurable subsets of R

n through integration. This measure will be denoted
by μ. Thus, μ(E) =

∫
E
ω(x) dx for measurable sets E⊂R

n.
In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of

solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various kinds of singularities
in the coefficients, it is natural to look for solutions in weighted Sobolev spaces
(see [1], [2], [3],[4] and [7]). Type of a weight depends on the equation type.

A class of weights, which is particularly well understood, is the class of Ap-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[8]). These classes have found many useful applications in harmonic analysis
(see [9]). Another reason for studying Ap-weights is the fact that powers of the
distance to submanifolds of R

n often belong to Ap (see [7]). There are, in fact,
many interesting examples of weights (see [6] for p-admissible weights).

The following lemma can be proved in exactly the same way as Lemma
2.1 in [4] (see also, Lemma 3.1 and Lemma 4.13 in [1]). Our lemma provides a
general approximation theorem for Ap weights (1≤ p <∞) by means of weights
which are bounded away from 0 and infinity and whose Ap-constants depend
only on the Ap-constant of ω. Lemma 1.1 is the key point for Theorem 1.2,
and the crucial point consists of showing that a weak limit of a sequence of
solutions of approximate problems is in fact a solution of the original problem.

Lemma 1.1. Let α, β > 1 be given and let ω ∈Ap (1≤ p < ∞), with Ap-
constant C(ω, p) and let aij = aji be measurable, real-valued functions satisfying

λω(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤Λω(x) |ξ|2, (1.3)

for all ξ ∈R
n and a.e. x∈Ω. Then there exist weights ωαβ ≥ 0 a.e. and mea-

surable real-valued functions aαβ
ij such that the following conditions are met.

(i) c1(1/β)≤ωαβ ≤ c2 α in Ω, where c1 and c2 depend only on ω and Ω.
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(ii) There exist weights ω̃1 and ω̃2 such that ω̃1 ≤ωαβ ≤ ω̃2, where ω̃i ∈Ap

and C(ω̃i, p) depends only on C(ω, p) (i = 1, 2).
(iii) ωαβ ∈Ap, with constant C(ωαβ, p) depending only on C(ω, p) uniformly

on α and β.
(iv) There exists a closed set Fαβ such that ωαβ≡ω in Fαβ and ωαβ∼ ω̃1∼ ω̃2

in Fαβ with equivalence constants depending on α and β (i.e., there are positive
constants cαβ and Cαβ such that cαβ ω̃i ≤ωαβ ≤Cαβ ω̃i, i = 1, 2). Moreover,
Fαβ ⊂Fα′β′ if α≤α′, β≤β′, and the complement of

⋃
α,β ≥ 1

Fαβ has zero mea-

sure.
(v) ωαβ→ω a.e. in R

n as α, β→∞.

(vi) λωαβ(x) |ξ|2 ≤
n∑

i,j=1

aαβ
ij (x) ξiξj ≤Λωαβ(x) |ξ|2, for every ξ ∈R and a.e.

x∈Ω.

Proof. See [1], Lemma 3.1 or Lemma 4.13. �
The following theorem will be proved in section 3.

Theorem 1.2. Let Ω be an open bounded set in R
n with a Lipschitz boundary

∂Ω. Suppose that
(H1) fj/ω∈Lp(Ω, ω), (j = 1, ..., n) with p > nr≥ 4;
(H2) g/ω∈Lq(Ω, ω), with 1/q = 1/p+ 1/nr;
(H3) ω∈Ar , with 1 < r < p ′ (where 1/p+ 1/p ′ = 1);
(H4) b(x)≥ 0 for a.e. x∈Ω and b/ω∈L∞(Ω);
(H5) Φ : R→R

n (Φ = (Φ1, ...,Φn)), with |Φ| ∈L∞(R), Φ(0) = 0 and the
functions Φj are continuous (j = 1, ..., n).
(H6) |Φ(u(x)) − Φ(v(x))| ≤C0 ω(x) |u(x) − v(x)| for all u, v∈W 1,2

0 (Ω, ω), a.e.
x∈Ω and C0 is a positive constant.
Then the problem (P ) has a unique solution and

‖u‖
W

1,2
0 (Ω,ω)

≤C

(
CΩ [μ(Ω)]1/2−1/q ‖g/ω‖Lq(Ω,ω) + [μ(Ω)]1/2−1/p

n∑
j=1

‖fj/ω‖Lp(Ω,ω)

)
,

(1.4)

where μ(Ω) =
∫
Ω
ω(x) dx and C =

(C2
Ω + 1)1/2

M
, M = λ − C0 CΩ > 0, CΩ the

constant as in Theorem 2.1. Moreover, u is the weak limit in W 1,2
0 (Ω, ω̃1) of a

sequence of solutions um ∈W 1,2
0 (Ω, ωm) of the problems

(Pm)

⎧⎨
⎩

Lmum(x) + bm(x)um(x) + div[Φ(um(x))] = gm(x) −
n∑

j=1

Djfjm(x) in Ω,

um(x) = 0 on ∂Ω,
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with Lmum = −
n∑

i,j=1

Dj(a
mm
ij (x)Dium(x)), gm = g(ωm/ω)1/q ′

, fjm = fj(ωm/ω)1/p ′

and bm = b ω/ωm (where ωmm, amm
ij and ω̃1 are as Lemma 1.1).

2 Definitions and basic results

Let ω be a locally integrable nonnegative function in R
n and assume that

0 < ω(x) <∞ almost everywhere. We say that ω belongs to the Muckenhoupt
class Ap, 1 < p < ∞, or that ω is an Ap-weight, if there is a constant C =
C(p, ω) such that

(
1
|B|

∫
B

ω(x)dx
)(

1
|B|

∫
B

ω1/(1−p)(x)dx
)p−1

≤C

for all balls B⊂R
n, where |.| denotes the n-dimensional Lebesgue measure

in R
n. If 1 < q≤ p, then Aq ⊂Ap (see [5],[6] or [10] for more information

about Ap-weights). The weight ω satisfies the doubling condition if there ex-
ists a positive constant C such that μ(B(x; 2 r))≤C μ(B(x; r)) for every ball
B = B(x; r)⊂R

n, where μ(B) =
∫
B
ω(x) dx. If ω∈Ap, then μ is doubling (see

Corollary 15.7 in [6]).
As an example of Ap-weight, the function ω(x) = |x|α, x∈R

n, is in Ap if
and only if −n < α < n(p− 1) (see Corollary 4.4, Chapter IX in [9]).

If ω∈Ap, then
( |E|
|B|

)p

≤C
μ(E)
μ(B)

whenever B is a ball in R
n and E is a

measurable subset of B (see 15.5 strong doubling property in [6]). Therefore,
μ(E) = 0 if and only if |E| = 0; so there is no need to specify the measure
when using the ubiquitous expression almost everywhere and almost every,
both abbreviated a.e..

Definition 2.1. Let ω be a weight, and let Ω⊂R
n be open. For 0 < p < ∞

we define Lp(Ω, ω) as the set of measurable functions f on Ω such that

‖f‖Lp(Ω,ω) =
( ∫

Ω

|f |pω dx
)1/p

<∞.

If ω∈Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω, ω)⊂L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [10]). It thus
makes sense to talk about weak derivatives of functions in Lp(Ω, ω).

Definition 2.2. Let Ω⊂R
n be open, k be a nonnegative integer and ω∈Ap

(1 < p < ∞). We define the weighted Sobolev space W k,p(Ω, ω) as the set
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of functions u∈Lp(Ω, ω) with weak derivatives Dαu∈Lp(Ω, ω) for 1≤ |α|≤ k.
The norm of u in W k,p(Ω, ω) is defined by

‖u‖Wk,p(Ω,ω) =
( ∫

Ω

|u|p ω dx+
∑

1≤|α|≤ k

∫
Ω

|Dαu|p ω dx
)1/p

. (2.1)

We also define W k,p
0 (Ω, ω) as the closure of C∞

0 (Ω) with respect to the norm
(2.1).

If ω∈Ap, then W k,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm
(2.1) (see Corollary 2.1.6 in [10]). The spaces W k,p(Ω, ω) and W k,p

0 (Ω, ω) are
Banach spaces.

It is evident that the weight function ω which satisfies 0 < c1 ≤ω(x)≤ c2 for
x∈Ω (c1 and c2 positive constants), gives nothing new (the space Wk,p

0 (Ω, ω)
is then identical with the classical Sobolev space Wk,p

0 (Ω)). Consequently, we
shall be interested above in all such weight functions ω which either vanish in
somewhere Ω ∪ ∂Ω or increase to infinity (or both).

The dual space of W 1,p
0 (Ω, ω) is the space

[W 1,p
0 (Ω, ω)]∗ = W−1,p ′

(Ω, ω)

= {T = f0 − divF : F = (f1, ..., fn),
fj

ω
∈Lp ′

(Ω, ω)}.

Definition 2.3. We say that an element u∈W 1,2
0 (Ω, ω) is weak solution of

problem (P) if
∫

Ω

〈A∇u,∇ϕ〉dx+
∫

Ω

b u ϕ dx−
∫

Ω

〈Φ(u),∇ϕ〉dx

=
∫

Ω

g ϕ dx+
n∑

j=1

∫
Ω

fj Djϕdx,

for every ϕ∈W 1,2
0 (Ω, ω), where 〈., .〉 denotes here the Euclidian scalar product

in R
n,

〈A∇u,∇ϕ〉 =
n∑

i,j=1

aijDiuDjϕ and 〈Φ(u),∇ϕ〉 =
n∑

j=1

Φj(u)Djϕ.

Theorem 2.1. (The weighted Sobolev inequality) Let Ω be an open bounded
set in R

n and ω∈Ap (1 < p < ∞). There exist positive constants CΩ and δ

such that for all u∈W 1,p
0 (Ω, ω) and all θ satisfying 1≤ θ≤n/(n− 1) + δ,

‖u‖Lθ p(Ω,ω) ≤CΩ‖∇u‖Lp(Ω,ω). (2.2)
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Proof. Its suffices to prove the inequality for functions u∈C∞
0 (Ω) (see Theo-

rem 1.3 in [3]). To extend the estimates (2.2) to arbitrary u∈W 1,p
0 (Ω, ω), we let

{um} be a sequence of C∞
0 (Ω) functions tending to u in W 1,p

0 (Ω, ω). Applying
the estimates (2.2) to differences um1 −um2 , we see that {um} will be a Cauchy
sequence in Lkp(Ω, ω). Consequently the limit function u will lie in the desired
spaces and satisfy (2.2). �

3 Proof of Theorem 1.2

Step 1. The existence and uniqueness of solution u∈W 1,2
0 (Ω, ω) for the prob-

lem (P) has been demonstrated in [2], Theorem 1.1. In particular, for ϕ = u in
Definition 2.3. we have

∫
Ω

〈A∇u,∇u〉dx+
∫

Ω

u2 b dx−
∫

Ω

〈Φ(u),∇u〉dx

=
∫

Ω

g u dx+
n∑

j=1

∫
Ω

fj Dju dx. (3.1)

(i) By (1.2) we have

n∑
i,j=1

∫
Ω

aij DiuDju dx =
∫

Ω

〈A∇u,∇u〉dx≥λ
∫

Ω

|∇u|2 ω dx.

(ii) By (H4),
∫

Ω

u2 b dx≥0.

(iii) By (H5)and (H6) we have |Φ(u)|≤C0 |u|ω a.e.. Using Theorem 2.1 (with
p = 2 and θ = 1) we obtain

∣∣∣∣
∫

Ω

〈Φ(u),∇u〉dx
∣∣∣∣ ≤

∫
Ω

|〈Φ(u),∇u〉| dx

≤
∫

Ω

|Φ(u)| |∇u|dx

≤
∫

Ω

C0 |u| |∇u|ω dx

≤ C0

(∫
Ω

|u|2 ω dx
)1/2(∫

Ω

|∇u|2 ω dx
)1/2

≤ C0CΩ

∫
Ω

|∇u|2 ω dx.
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(iv) Using (H1) and (H2) (and since q > 2 and μ(Ω) <∞), we have
∣∣∣∣
∫

Ω

g u dx

∣∣∣∣ ≤
∫

Ω

|g|
ω

|u|ω dx

≤
( ∫

Ω

( |g|
ω

)2

ω dx

)1/2(∫
Ω

|u|2ω dx
)1/2

≤ CΩ‖g/ω‖L2(Ω,ω)‖∇u‖L2(Ω,ω)

≤ CΩ[μ(Ω)]1/2−1/q‖g/ω‖Lq(Ω,ω)‖∇u‖L2(Ω,ω),

and (since p > 4)
∣∣∣∣
∫

Ω

fj Dju dx

∣∣∣∣ ≤
∫

Ω

|fj |
ω

|Dj|ω dx
≤ ‖fj/ω‖L2(Ω,ω) ‖∇u‖L2(Ω,ω)

≤ [μ(Ω)]1/2−1/p‖fj/ω‖Lp(Ω,ω)‖∇u‖L2(Ω,ω).

Hence, in (3.1), we obtain

λ

∫
Ω

|∇u|2 ω dx− C0CΩ

∫
Ω

|∇u|2 ω dx

≤
(
CΩ[μ(Ω)]1/2−1/q‖g/ω‖Lq(Ω,ω)

+ [μ(Ω)]1/2−1/p
n∑

j=1

‖fj/ω‖L2(Ω,ω)

)
‖∇u‖L2(Ω,ω).

Therefore

‖∇u‖L2(Ω,ω) ≤ 1
M

(
CΩ[μ(Ω)]1/2−1/q‖g/ω‖Lq(Ω,ω)

+ [μ(Ω)]1/2−1/p
n∑

j=1

‖fj/ω‖Lp(Ω,ω)

)
,

where M = λ− C0CΩ > 0. Consequently, we obtain

‖u‖2

W
1,2
0 (Ω,ω)

=

∫
Ω
|u|2 ω dx +

∫
Ω
|∇u|2 ω dx

≤(C2
Ω + 1)

∫
Ω
|∇u|2 ω, dx

≤ (C2
Ω + 1)

M2

(
CΩ[μ(Ω)]1/2−1/q‖g/ω‖Lq(Ω,ω) + [μ(Ω)]1/2−1/p

n∑
j=1

‖fj/ω‖Lp(Ω,ω)

)2

.
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Therefore,

‖u‖W
1,2
0 (Ω,ω) ≤ (C2

Ω + 1)1/2

M

(
CΩ[μ(Ω)]1/2−1/q‖g/ω‖Lq(Ω,ω)

+ [μ(Ω)]1/2−1/p
n∑

j=1

‖fj/ω‖Lp(Ω,ω)

)

= C

(
CΩ[μ(Ω)]1/2−1/q‖g/ω‖Lq(Ω,ω)

+ [μ(Ω)]1/2−1/p
n∑

j=1

‖fj/ω‖Lp(Ω,ω)

)
. (3.2)

Step 2. First, if gm = g(ωm/ω)1/q ′
, fjm = fj(ωm/ω)1/p ′

and bm = b ωm/ω,
we note that

‖gm/ωm‖Lq(Ω,ωm) = ‖g/ω‖Lq(Ω,ω), ‖fjm/ωm‖Lp(Ω,ωm) = ‖fj/ω‖Lp(Ω,ω),

bm ≥ 0 and ‖bm/ωm‖L∞(Ω) = ‖b/ω‖L∞(Ω).

By Lemma 1.1, ωm ≤ ω̃2. Then μm(Ω) =
∫

Ω

ωm dx≤
∫

Ω

ω̃2 dx = μ̃2(Ω).

If um ∈W 1,2
0 (Ω, ωm) is a unique solution of problem (Pm), we have (by (3.2))

‖um‖W1,2
0 (Ω,ωm) ≤C

(
CΩ [μm(Ω)]1/2−1/q‖gm/ωm‖Lq(Ω,ωm)

+ [μm(Ω)]1/2−1/p
n∑

j=1

‖fjm/ωm‖Lp(Ω,ωm)

)

≤C

(
CΩ [μ̃2(Ω)]1/2−1/q‖g/ω‖Lq(Ω,ω)

+ [μ̃2(Ω)]1/2−1/p
n∑

j=1

‖fj/ω‖Lp(Ω,ω)

)
= C1.

Using Lemma 1.1, ω̃1 ≤ωm, we obtain

‖um‖W1,2
0 (Ω,ω̃1)

≤‖um‖W1,2
0 (Ω,ωm) ≤C1. (3.3)

Consequently, {um} is a bounded sequence in W 1,2
0 (Ω, ω̃1). Therefore, there is

a subsequence, again denoted by {um}, and ũ∈W 1,2
0 (Ω, ω̃1) such that

um⇀ũ in L2(Ω, ω̃1), (3.4)
∇um⇀∇ũ in L2(Ω, ω̃1), (3.5)
um→ ũ a.e. in Ω, (3.6)



A.C.Cavalheiro 111

where the symbol “⇀” denotes weak convergence (see Theorem 1.31 in [6]).

Step 3. We have that ũ∈W 1,2
0 (Ω, ω). In fact, for Fk fixed, we have by (3.4)

and (3.5), for all ϕ∈W 1,2
0 (Ω, ω̃1),∫
Ω

umϕ ω̃1 dx→
∫

Ω

ũ ϕ ω̃1 dx,∫
Ω

DiumDiϕ ω̃1 dx→
∫

Ω

DiũDiϕ ω̃1 dx.

If ψ ∈W 1,2
0 (Ω, ω), then ϕ = ψ χFk ∈W 1,2

0 (Ω, ω̃1) (since ω∼ ω̃1 in Fk, i.e., there
is a constant c > 0 such that ω̃1 ≤ c ω in Fk, and χE denotes the characteristic
function of a measurable set E⊂R

n) and
∫

Ω

ϕ2 ω̃1 dx =
∫

Fk

ψ2 ω̃1 dx≤ c

∫
Fk

ψ2ω dx≤ c

∫
Ω

ψ2 ω dx <∞,

∫
Ω

(Diϕ)2 ω̃1 dx =
∫

Fk

(Diψ)2ω̃1 dx≤ c

∫
Fk

(Diψ)2ω dx≤ c
∫

Ω

(Diψ)2ω dx <∞.

Consequently,
∫

Ω

umψχFk ω̃1 dx→
∫

Ω

ũ ψ χFk ω̃1 dx,∫
Ω

DiumDiψ χFk ω̃1 dx→
∫

Ω

DiũDiψ χFk ω̃1 dx,

for all ψ∈W 1,2
0 (Ω, ω), that is, the sequence {umχFk} is weakly convergent in

W 1,2
0 (Ω, ω).

Therefore, we have

‖∇ũ‖2
L2(Fk ,ω) =

∫
Fk

|∇ũ|2ω dx≤ lim sup
m→∞

∫
Fk

|∇um|2 ω dx,

and for m≥ k we have ω = ωm in Fk. Hence, by (3.3), we obtain

‖∇ũ‖2
L2(Fk ,ω) ≤ lim sup

m→∞

∫
Fk

|∇um|2 ω dx

= lim sup
m→∞

∫
Fk

|∇um|2 ωm dx

≤ lim sup
m→∞

∫
Ω

|∇um|2ωm dx≤C2
1 .

By the Monotone Convergence Theorem we obtain ‖∇ũ‖L2(Ω,ω) ≤C1. There-
fore, we have ũ∈W 1,2

0 (Ω, ω).
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Step 4. We need to show that ũ is a solution of problem (P), i.e.,

∫
Ω

〈A∇ũ,∇ϕ〉dx+
∫

Ω

b ũ ϕ dx−
∫

Ω

〈Φ(ũ),∇ϕ〉dx

=
∫

Ω

g ϕ dx+
n∑

j=1

∫
Ω

fj Djϕdx,

for all ϕ∈W 1,2
0 (Ω, ω). Using that um ∈W 1,2

0 (Ω, ωm) is a solution of problem
(Pm), we have

∫
Ω

〈Am∇um,∇ψ〉 dx+
∫

Ω

bm um ψ dx−
∫

Ω

〈Φ(um),∇ψ〉 dx

=
∫

Ω

gm ψ dx+
n∑

j=1

∫
Ω

fjmDjψ dx,

for all ψ ∈W 1,2
0 (Ω, ωm), where Am = (amm

ij ). Moreover, over Fk (for m≥ k) we
have the following properties:

(i) ω = ωm; (ii) gm = g; (iii) fjm = fj ; (iv) bm = b; (v) amm
ij (x) = aij(x).

For ϕ∈W 1,2
0 (Ω, ω) and k > 0(fixed), we define G1, G2 : W 1,2

0 (Ω, ω̃1)→R by

G1(u) =
∫

Ω

〈A∇u,∇ϕ〉χFk dx+
∫

Ω

b u ϕχFk dx,

G2(u) =
∫

Ω

〈Φ(u),∇ϕ〉χFk dx,

where χE denotes the characteristic function of a set E⊂R
n.

(a) We have that G1 is linear and continuous functional. In fact, since the matrix
A = (aij) is symmetric, we have |〈A∇u,∇ϕ〉|≤ 〈A∇u,∇u〉1/2〈A∇ϕ,∇ϕ〉1/2,
where 〈., .〉 denotes here the Euclidian scalar product in R

n. We also have ω∼ω̃1
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in Fk (ω≤ c ω̃1). By (1.2) and (H4) we obtain

|G1(u)| ≤
∫

Fk

|〈A∇u,∇ϕ〉| dx+
∫

Fk

b |u| |ϕ|dx

≤
∫

Fk

〈A∇u,∇u〉1/2 〈A∇ϕ,∇ϕ〉1/2
dx+

∫
Fk

b

ω
|u| |ϕ|ω dx

≤
(∫

Fk

〈A∇u,∇u〉dx
)1/2(∫

Fk

〈A∇ϕ,∇ϕ〉1/2
dx

)1/2

+ ‖b/ω‖L∞(Ω)

(∫
Fk

|u|2ω dx
)1/2( ∫

Fk

|ϕ|2 ω
)1/2

≤ Λ
(∫

Fk

|∇u|2 ω dx
)1/2( ∫

Ω

|∇ϕ|2 ω dx
)1/2

+ ‖b/ω‖L∞(Ω)

(∫
Fk

|u|2 ω dx
)1/2( ∫

Ω

|ϕ|2ω dx
)1/2

≤ Λ
(∫

Fk

c |∇u|2ω̃1 dx

)1/2(∫
Ω

|∇ϕ|2 ω dx
)1/2

+ ‖b/ω‖L∞(Ω)

(∫
Fk

c |u|2ω̃1 dx

)1/2( ∫
Ω

|ϕ|2ω dx
)1/2

≤ (Λ c1/2 + ‖b/ω‖L∞(Ω) c
1/2)‖ϕ‖W1,2

0 (Ω,ω) ‖u‖W1,2
0 (Ω,ω̃1)

.

(b) We have that G2 is continuous functional. In fact, if u1, u2 ∈W 1,2
0 (Ω, ω̃1),

we obtain (by (H6))

|G2(u2) −G2(u1)| ≤
∫

Fk

|〈Φ(u2) − Φ(u1),∇ϕ〉|dx

≤
∫

Fk

|Φ(u2) − Φ(u1)| |∇ϕ|dx

≤
∫

Fk

C0 |u2 − u1| |∇ϕ|ω dx

≤ C0

(∫
Fk

c |u2 − u1|2ω̃1 dx

)1/2(∫
Ω

|∇ϕ|2 ω dx
)1/2

≤ C0 c
1/2 ‖ϕ‖W1,2

0 (Ω,ω) ‖u2 − u1‖W1,2
0 (Ω,ω̃1)

.

If ϕ∈W 1,2
0 (Ω, ω), then ψ = ϕχFk ∈W 1,2

0 (Ω, ω̃1) (for m≥ k). Using (a), (b)
and properties (i), (ii), (iii), (iv), (v) and that um ∈W 1,2

0 (Ω, ωm) is solution of
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problem (Pm) we obtain

∫
Fk

〈A∇ũ,∇ϕ〉 dx+
∫

Fk

b ũϕ dx−
∫

Fk

〈Φ(ũ),∇ϕ〉dx
= lim

m→∞[G1(um) +G2(um) ]

= lim
m→∞

(∫
Fk

〈Am∇um,∇ϕ〉 dx+
∫

Fk

bm um ϕdx

−
∫

Fk

〈Φ(um),∇ϕ〉dx
)

= lim
m→∞

(∫
Ω

〈Am∇um,∇ϕ〉dx+
∫

Ω

bm um ϕdx

−
∫

Ω

〈Φ(um),∇ϕ〉dx

−
∫

Ω∩Fc
k

〈Am∇um,∇ϕ〉 dx−
∫

Ω∩Fc
k

bm um ϕdx

+
∫

Ω∩Fc
k

〈Φ(um),∇ϕ〉dx
)

= lim
m→∞

(∫
Ω

gm ϕdx+
n∑

j=1

∫
Ω

fjmDjϕdx

−
∫

Ω∩Fc
k

〈Am∇um,∇ϕ〉dx−
∫

Ω∩Fc
k

bm um ϕdx

+
∫

Ω∩Fc
k

〈Φ(um),∇ϕ〉dx
)
, (3.7)

where Ec denotes the complement of a set E⊂R
n.

(I) Suppose ϕ∈W 1,2
0 (Ω, ω). By a density argument (see Corollary 2.1.6 in [10])

we can suppose ϕ∈C∞
0 (Ω). We have (by ωm→w a.e.)

gm ϕ = g(ωm/ω)1/q ′→ g ϕ a.e.

and

|gmϕ| = |g|(ωm/ω)1/q ′ |ϕ|
=

|g|
ω1/q ′ ω

1/q ′
m ϕ

≤ Cϕ
|g|
ω1/q ′ ω̃

1/q ′
2 ∈L1(Ω),
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since
|g|
ω1/q ′ ∈Lq(Ω) and ω̃1/q ′

2 ∈Lq ′
(Ω). By the Lebesgue Dominated Conver-

gence Theorem and ω̃2 ∈A2 (ω̃2 ∈Ar and r < 2) we obtain (as m→ ∞)

∫
Ω

gm ϕdx→
∫

Ω

g ϕ dx. (3.8)

Analogously, we have

∫
Ω

fjmDjϕdx→
∫

Ω

fj Djϕdx. (3.9)

(II) Since the matrix Am = (amm
ij ) is symmetric, we have

|〈Am∇um,∇ϕ〉| ≤ 〈Am∇um,∇um〉1/2〈Am∇ϕ,∇ϕ〉1/2. Then, by (1.2) and (3.3),
we obtain

∣∣∣∣
∫

Ω∩Fc
k

〈Am∇um,∇ϕ〉dx
∣∣∣∣≤

∫
Ω∩Fc

k

|〈Am∇um,∇ϕ〉| dx

≤Λ
( ∫

Ω∩FC
k

|∇um|2ωm dx

)1/2( ∫
Ω∩Fc

k

|∇ϕ|2ωm dx

)1/2

≤Λ‖um‖W1,2
0 (Ω,ωm)

(∫
Ω∩Fc

k

|∇ϕ|2 wm dx

)1/2

≤ΛC1Cϕ

(∫
Ω∩Fc

k

wm dx

)1/2

. (3.10)

(III) By (H4) and (3.3) we obtain

∣∣∣∣
∫

Ω∩Fc
k

bm um ϕdx

∣∣∣∣≤
∫

Ω∩Fc
k

bm
ωm

|um| |ϕ|ωm dx

≤‖bm/ωm‖L∞(Ω)

(∫
Ω∩Fc

k

|um|2 ωm dx

)1/2(∫
Ω∩Fc

k

|ϕ|2 ωm dx

)1/2

≤‖b/ω‖L∞(Ω)‖um‖W1,2
0 (Ω,ωm)

( ∫
Ω∩Fc

k

|ϕ|2 ωm dx

)1/2

≤C1Cϕ ‖b/ω‖L∞(Ω)

(∫
Ω∩Fc

k

ωm dx

)1/2

. (3.11)
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(IV) Since ω ∈A2 (Ar ⊂A2) and by (H3) , (H5),(H6) we have
∣∣∣∣
∫

Ω∩Fc
k

〈Φ(um),∇ϕ〉 dx
∣∣∣∣ ≤

∫
Ω∩Fc

k

|Φ(um)| |∇ϕ|dx

≤ ‖Φ‖L∞(R)

∫
Ω∩Fc

k

|∇ϕ|dx

= ‖Φ‖L∞(R)

∫
Ω∩Fc

k

|∇ϕ|ω1/2ω−1/2 dx

≤ ‖Φ‖L∞(R)

(∫
Ω∩Fc

k

|∇ϕ|2 ω dx
)1/2( ∫

Ω∩Fc
k

1
ω
dx

)1/2

≤ Cϕ‖Φ‖L∞(Ω)

( ∫
Ω∩Fc

k

1
ω
dx

)1/2

. (3.12)

By Theorem 2.9, Chapter IV of [5](or Lemma 15.8 of [6]), there exist constants
δ > 0 and C > 0 such that, if Ω̄⊂Q0 (Q0 is a fixed cube), then

ωm(Ω∩F c
k)≤ ω̃2(Ω ∩ F c

k)≤C ω̃2(Q0)
( |F c

k |
|Q0|

)δ

,

which is independent of m. Using Lemma 1.1, we know that |F c
k |→ 0 when

k→∞. Then, we obtain in (3.10), (3.11) and (3.12)

lim
k→∞

∫
Ω∩Fc

k

〈Am∇um,∇ϕ〉dx = 0, (3.13)

lim
k→∞

∫
Ω∩Fc

k

bm umϕdx = 0, (3.14)

lim
k→∞

∫
Ω∩Fc

k

〈Φ(um),∇ϕ〉dx = 0. (3.15)

Therefore, by (3.7), (3.13),(3.14) and (3.15) we conclude that (when k → ∞)
n∑

i,j=1

∫
Ω

aij(x)Diũ(x)Djϕ(x)dx +

∫
Ω

b(x) ũ(x)ϕ(x)dx −
n∑

j=1

∫
Ω

Φj (ũ(x))Djϕ(x)dx

=

∫
Ω

g(x)ϕ(x)dx +
n∑

j=1

∫
Ω

fj(x)Djϕ(x)dx,

for all ϕ∈W 1,2
0 (Ω, ω), that is, ũ is a solution of problem (P).

Therefore, u = ũ (by the uniqueness) and u is the weak limit in W 1,2
0 (Ω, ω̃1)

of a sequence of solutions um ∈W 1,2
0 (Ω, ωm) of the problems (Pm).
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Example. Let us have Ω = {(x, y, z)∈R
3 : x2 + y2 + z2 < 1}. Consider the

weight ω(x, y, z) = (x2 + y2 + z2)−1 ∈A3/5 (r = 3/5), p = 5, q = 45/34,
0 < a1 < a2 < a3 and the functions

Φ : R→R
3, Φ(t) = (sin(t), 1 − cos(t), sin(t)),

g(x, y, z) = arctan(1/(x2 + y2 + z2)) , b(x, y, z) = e−(x2+y2+z2),

f1(x, y, z) =
cos(1/(x2 + y2 + z2))

(x2 + y2 + z2)1/3
, f2(x, y, z) =

sin(1/(x2 + y2 + z2))
(x2 + y2 + z2)1/3

,

f3(x, y, z) = 0.

Let us consider the partial differential operator

Lu(x, y, z) = − ∂

∂x

(
a1(x2 + y2 + z2)−1 ∂u

∂x

)
− ∂

∂y

(
a2(x2 + y2 + z2)−1∂u

∂y

)

− ∂

∂z

(
a3(x2 + y2 + z2)−1∂u

∂z

)
.

By Theorem 1.2, the problem

(P )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lu(x, y, z) + b(x, y, z)u(x, y, z) + div(Φ(u(x, y, z)))

= g(x, y, z) −
n∑

j=1

Djfj(x, y, z) in Ω,

u(x, y, z) = 0 on ∂Ω,

has a unique solution u∈W 1,2
0 (Ω, ω) and u can be approximated by a sequence

of solutions of nonlinear non-degenerate elliptic equations.
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