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Abstract

The main result establishes that a weak solution of degenerate non-
linear linear elliptic equations can be approximated by a sequence of
solutions for non-degenerate nonlinear linear elliptic equations.

1 Introduction
Let L be a degenerate elliptic operator in divergence form

0

Lu=— Z Dj(a;;(z) Dyu(z)), D= Er
j

1,j=1

(1.1)

where the coefficients a;; are measurable, real-valued functions whose coefficient
matrix A = (a;;) is symmetric and satisfies the degenerate ellipticity condition

n

MePole) < Y aij(@)ég; < Alefw(o), (1.2)

ij=1

for all £€R™ and almost everywhere z € 2, where 2 is a bounded open set
in R™ and we assume that € has a Lipschitz boundary 92 with outward unit
normal 77(z) = (n1(x), ..., Mn(x)), w is a weight function, A and A are positive
constants.
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104 An Approximation Theorem

The main purpose of this paper (see Theorem 1.2) is to establish that a
weak solution u € W, %(Q,w) for the nonlinear degenerate problem

P) Lu(z) + b(x) u(z) + div(®(u(z))) = g(x) — .ZDjfj (z) in 9,

u(z) =0 on 99,

can be approximated by a sequence of solutions of non-degenerate nonlinear
elliptic equations, where ® : R—R" and b : Q— R.

By a weight, we shall mean a locally integrable function w on R™ such
that w(x) > 0 for a.e. x € R™. Every weight w gives rise to a measure on the
measurable subsets of R™ through integration. This measure will be denoted
by p. Thus, u(E) = [, w(x) dx for measurable sets £/ C R™.

In general, the Sobolev spaces W*P(Q) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various kinds of singularities
in the coefficients, it is natural to look for solutions in weighted Sobolev spaces
(see [1], [2], [3],[4] and [7]). Type of a weight depends on the equation type.

A class of weights, which is particularly well understood, is the class of Ap-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[8]). These classes have found many useful applications in harmonic analysis
(see [9]). Another reason for studying A,-weights is the fact that powers of the
distance to submanifolds of R™ often belong to A, (see [7]). There are, in fact,
many interesting examples of weights (see [6] for p-admissible weights).

The following lemma can be proved in exactly the same way as Lemma
2.1 in [4] (see also, Lemma 3.1 and Lemma 4.13 in [1]). Our lemma provides a
general approximation theorem for A, weights (1 <p < 00) by means of weights
which are bounded away from 0 and infinity and whose Ap-constants depend
only on the A,-constant of w. Lemma 1.1 is the key point for Theorem 1.2,
and the crucial point consists of showing that a weak limit of a sequence of
solutions of approximate problems is in fact a solution of the original problem.

Lemma 1.1. Let o, > 1 be given and let we A, (1<p < o0), with Ap-
constant C'(w, p) and let a;; = aj; be measurable, real-valued functions satisfying

n

Aw@)E < D ai(@)6& < Aw(z) ¢, (1.3)

1,j=1

for all £€R" and a.e. x €. Then there exist weights waz >0 a.e. and mea-
surable real-valued functions a?jﬁ such that the following conditions are met.
(i) c1(1/8) wap <coa in Q, where c1 and co depend only on w and Q.
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(ii) There exist weights @1 and Wo such that &1 <wap <2, where &; € Ay
and C(&;,p) depends only on C(w,p) (i =1,2).

(111) wap € Ap, with constant C(wag, p) depending only on C(w, p) uniformly
on o and 3.

(iv) There exists a closed set Fo 3 such that wag=w in Fog and weg~ 01~ @2
in Fop with equivalence constants depending on o and 3 (i.e., there are positive
constants cap and Cop such that cap@; <wag <Cop@i, i = 1,2). Moreover,
FopCFyp ifa<da, <G, and the complement of U Fop has zero mea-

a,B21
sure.

(v) wag— w a.e. in R™ as a, f— o0.
n

(i) Awap(z) |€]? < Z a;"jﬂ(x) €& < Awap(x) |€]%, for every € €R and a.e.
ij=1
x e

Proof. See [1], Lemma 3.1 or Lemma 4.13. O
The following theorem will be proved in section 3.

Theorem 1.2. Let Q be an open bounded set in R™ with a Lipschitz boundary
0f). Suppose that

(H1) fj/welP(Quw), (j=1,...,n) withp >nr>4;

(H2) g/we L1(Q,w), with1/qg=1/p+ 1/nr;

(H3) we A, , withl<r<p' (wherel/p+1/p'=1);

(H4) b(z) >0 for a.e. x€Q and b/w e L>=();

(H5) ® : R—R" (@ = (®q,...,P,)), with |®|€ L*(R), ®(0) = 0 and the
functions ®; are continuous (j =1,...,n).

(H6) |®(u(z)) — (v(x))| < Cow(x) [u(z) — v(x)| for all u,ve Wy (Q,w), a.e.
z €Q and Cy is a positive constant.

Then the problem (P) has a unique solution and

lully12q ) <€ (Csz (]2 g /wll Loy + Q)P ||fj/w||LP(Sl,w)>’

j=1

(1.4)
2 | 1)1/2
where (1(Q) = [, w(z)dz and C = %, M=X-CyCq >0, Cq the

constant as in Theorem 2.1. Moreover, u is the weak limit in Wol’Q(Q,LDl) of a
sequence of solutions ., € Wol’Q(Q, wWm) of the problems

(P L (@) @) (@) + v (2))] = g () = DD ym(z) in 9

j=1
um(z) =0 on 0,
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with Lmum = — Z D](aZLm(z)Dzum(r)), gm = g(wm/w)l/q’7 fjm — f]-(wm/w)l/;ﬂ/
=1

and by, = bw/wy, (where Wy, ™ and &1 are as Lemma 1.1).

ij

2 Definitions and basic results

Let w be a locally integrable nonnegative function in R™ and assume that
0 < w(x) < oo almost everywhere. We say that w belongs to the Muckenhoupt
class Ap, 1 < p < oo, or that w is an Ap-weight, if there is a constant C' =
C(p,w) such that

(ﬁ/jgw(x)dx> (%/Bwl/(l_p)(ﬂf)dazy_lgc

for all balls B CR", where |.| denotes the n-dimensional Lebesgue measure
in R". If 1 < ¢<p, then A, C A, (see [5],[6] or [10] for more information
about Ap,-weights). The weight w satisfies the doubling condition if there ex-
ists a positive constant C' such that pu(B(z;27)) <C u(B(x;r)) for every ball
B = B(z;7) CR", where u(B) = [ w(z)dz. If we Ay, then y is doubling (see
Corollary 15.7 in [6]).

As an example of Ap-weight, the function w(z) = |z|%, x€R™, is in 4, if
and only if —n < o < n(p — 1) (see Corollary 4.4, Chapter IX in [9]).

P

If weA,, then (%) SC% whenever B is a ball in R" and F is a
measurable subset of B (see 15.5 strong doubling property in [6]). Therefore,
w(E) = 0 if and only if |E| = 0; so there is no need to specify the measure
when using the ubiquitous expression almost everywhere and almost every,
both abbreviated a.e..

Definition 2.1. Let w be a weight, and let 2 CR™ be open. For 0 < p < o0
we define LP(§2,w) as the set of measurable functions f on € such that

1/p
11l 2o @) = (/Q |f|pwdx> < 0.

If we Ay, 1 < p < o0, then w™ /=1 is locally integrable and we have
LP(Q,w) C L. () for every open set Q (see Remark 1.2.4 in [10]). It thus
makes sense to talk about weak derivatives of functions in L?(Q, w).

Definition 2.2. Let 2 CR"™ be open, k£ be a nonnegative integer and w € A4,
(1 < p < o0). We define the weighted Sobolev space W*P(Q,w) as the set
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of functions u € LP(Q, w) with weak derivatives D*u € LP(Q,w) for 1 <|a| <k.
The norm of u in W*P(Q, w) is defined by

1/p
lullwes @) = (/Q|u|pwdx—|— Z /Q|D°‘u|pwdx> : (2.1)

1<]al<k

We also define W(f P(Q,w) as the closure of C§°(2) with respect to the norm
(2.1).

If w € Ay, then WHP(Q, w) is the closure of C°°() with respect to the norm
(2.1) (see Corollary 2.1.6 in [10]). The spaces W**(Q, w) and W(f’p(Q,w) are
Banach spaces.

It is evident that the weight function w which satisfies 0 < ¢; <w(x) <co for
2 €Q (c1 and ¢y positive constants), gives nothing new (the space ng P(Q,w)
is then identical with the classical Sobolev space ng P(Q)). Consequently, we
shall be interested above in all such weight functions w which either vanish in
somewhere 2 U 02 or increase to infinity (or both).

The dual space of W, P(Q,w) is the space

W P(Qw)]* = WP (Q,w)
={T=fo—divF:F = (f1,..., fn)s %ELP,(Q,UJ)}.
Definition 2.3. We say that an element u e W, *(Q,w) is weak solution of

problem (P) if

/(AVU,V<p>dx+/bu<pdx—/ (®(u), Vo) dz
Q Q Q
=/9<Pd33+2/ijj<ﬂdx,

Q ole

for every ¢ € W, *(2,w), where (.,.) denotes here the Euclidian scalar product
in R™,
n

(AVu, V) = Z a;jDiuD;jp and (®(u), Vo) = Ziﬁj(u)ngo.

ij=1 j=1

Theorem 2.1. (The weighted Sobolev inequality) Let Q be an open bounded
set in R™ and weA, (1 < p < oo). There exist positive constants Cq and &
such that for all u e WyP(Q,w) and all 0 satisfying 1 <0<n/(n— 1)+,

HU’HLOP(Q,W) SCQHVU’HLP(Q7W)' (2.2)
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Proof. Its suffices to prove the inequality for functions u € C’O"( ) (see Theo-
rem 1.3 in [3]). To extend the estimates (2.2) to arbitrary u € W0 P(Q,w), we let
{um} be a sequence of C§°(Q) functions tending to u in W, *(€2,w). Applying
the estimates (2.2) to differences ty,, —Um,, we see that {u,,} will be a Cauchy
sequence in L*P (€2, w). Consequently the limit function u will lie in the desired
spaces and satisfy (2.2). O

3 Proof of Theorem 1.2

Step 1. The existence and uniqueness of solution u € WO1 ’Q(Q, w) for the prob-
lem (P) has been demonstrated in [2], Theorem 1.1. In particular, for ¢ = u in
Definition 2.3. we have

2hda — d
/Q<.AVu, Vu}dx—k/ﬂu bdzx /Q<<I>(u),Vu> x
z/ﬂgudx—ka_l/ﬂijjudx. (3.1)

(i) By (1.2) we have

Z/auDuDudx—/

1,7=1 Q

(AVu, Vu dx>)\/ \Vul® wdz.

(ii) By (H4), / u?bdx >0.
Q

(iii) By (H5)and (H6) we have |®(u)| < Cp |u|w a.e.. Using Theorem 2.1 (with
p=2 and § = 1) we obtain

’/ ), Vu) dx §/| ), Vu)| dx

< /|<I>(u)||Vu|dx

Q
< /Cg|u||Vu|wdx

Q

1/2 1/2
< C’O(/ |u|2wdx> (/ |Vu|2wdx>
Q Q

<

Co Cq / \Vul® wdz.
Q
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(iv) Using (H1) and (H2) (and since ¢ > 2 and () < o), we have

’/gudw < /M|u|wdx
Q QW
9] 2 1/2 1/2
(/ (i> wdx) (/ |u|2wdx>
Q\W Q

<

< Callg/wllz2 0,01Vl L2 .w)

< Caluw@]*Vg/wll pao,m VUl 12,0y

and (since p > 4)
/ijjudx < /M|Dj|wdx
Q o w

< 1/l o V0l 20
< [HEO2Y2IF5 /0l Lo, | Vel L2 (0,

Hence, in (3.1), we obtain
)\/ \Vul® wdz — Cy Cq / \Vul® w dzx
Q Q
< (Colu@I 2 g/

Q) S ||fj/w||L2<Q7w>) IVull 0

j=1
Therefore

1

Volliae < g7 Cale@] > lgful o

Y ol )
j=1

where M = X\ — Cy Cq > 0. Consequently, we obtain
2 _ 2 2
”u”Wé’Q(ﬂ,w) = /Q |U| wdzr + /n |v'u,| wdx
<(C3 + 1)/ |Vul|? w, da
Q

LG+

109

n 2
_T(cn[u(m]lﬂ—l/q||g/w||Lqm,w) + (@) 2 3 ||f]-/w||m,w)) :

j=1



110 An Approximation Theorem

Therefore,

(02+1)1/2 B
lullwpee < 25— ( Calu(@)"*~llg/wllo(q,)

S G0 Ry SITE P
j=1
= (Calu@1 > g/l
E @S il ) (3.2)
j=1
Step 2. First, if g = g(wm /W)Y, fim = fi(wm/w)/?" and by, = bwp, /w,
we note that
||9m/wm||Lq(Q,wm) = ||9/w||Lq(Q,w)a ||fjm/wm||LP(Q7wm) = ||fj/w||LP(Q7w)’
bm >0 and ||bm/wm||Leo(Q) = ||b/w||Loo(Q)'

By Lemma 1.1, w,, <&3. Then p,,(Q) = / W dz < / wodx = f12(Q).
Q Q

If w,, € Wy *(Q, wpn) is a unique solution of problem (P,,), we have (by (3.2))
limbgmeny <O (Calim@I* g fomlarn

(@] 223 ||fjm/wm||mwm>)
j=1
< (Calpa @9/l 120
4 [ﬂQ(Q)]l/Q—l/pzn: ||fj/w||Lp(Q,w)> =Ch.
j=1
Using Lemma 1.1, 01 <w,,, we obtain

||um||wgv2(g7;,1) = Hum||W3'2(Q7wm) <Ci. (3.3)

Consequently, {u.,} is a bounded sequence in WO1 ’Q(Q, @1). Therefore, there is
a subsequence, again denoted by {un,}, and @ € WO1 ’Q(Q, @1) such that

Um— T in L*(Q, &y), (3.4)
V,— Vi in L?(9,d1), (3.5)
U — T a.e. in (3.6)
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where the symbol “—” denotes weak convergence (see Theorem 1.31 in [6]).

Step 3. We have that @ € Wy"*(,w). In fact, for Fy fixed, we have by (3.4)
and (3.5), for all € W, *(Q, 1),

/umwd)ldw%/&@d)ldw,
Q Q

/DiumDmd)lde/DmDmd)l dz.
Q Q

If ¢ € W, 2 (Q,w), then ¢ = 1 xr, € Wy *(€2, 1) (since w~@; in Fy, i.e., there
is a constant ¢ > 0 such that @1 <cw in Fy, and xg denotes the characteristic
function of a measurable set EC R™) and

/<p211)1dx= wQLDldec wadxgc/wadx<oo,
Q F Q

Fy

i) Dy dr = ) @1 do< )2 wdz < i) 2w d .
/Q(Dgo) w1 dx /Fk(Dw)wl x<c/Fk(Dw)w x<c/(Dw)w T < 00

Q

Consequently,
/ UnYXF, W1 dT — / Y X, w1 dx,
Q Q
/ DiumDi’lﬁ XFy LZ)l dr — / Dl"[l, Dl’lﬁ XFy LZ)l dx,
Q Q

for all ¢ € WO1 2(Q,w), that is, the sequence {u,, xr, } is weakly convergent in
Wy *(2,w).
Therefore, we have

HV&H;(FMW) z/ Vil w da < 1imsup/ (V| wdz,
F‘]c Flc

m—00

and for m >k we have w = w,, in Fy. Hence, by (3.3), we obtain

m—00

||V&||22(Fk7w) < 1imsup/F V| w da
k

= limsup/ |Vum|2wmdx
Fy

m—00

IN

lim sup/ |Vum|2wm dr< 012.
Q

m—00

By the Monotone Convergence Theorem we obtain ||Vl 2 ,) < C1. There-

fore, we have @ € Wy > (2, w).
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Step 4. We need to show that @ is a solution of problem (P), i.e.,

/(AV&,V@dw—F/b&gpdw—/ (®(1), Vo) dz
Q Q Q
=/9<Pd33+2/ijj<ﬂdx,

Q Vi)

for all ¢ € Wy**(,w). Using that w,, € Wy *(€, wp) is a solution of problem
(Py), we have

/ (AT, V) da + / by i b s — / (® (1), V) dar
Q Q Q

:/ngwdx+j§j:l/ﬂfijj¢d$a

for all 1 € Wy *(Q, wy,), where A™ = (aii™). Moreover, over Fy, (for m > k) we
have the following properties:

() w = wm; (i) gm = g; (iil) fijm = f3; (iv) bm = b3 (v) aff™(x) = ai;(2).

For ¢ €W, (9, w) and k > 0(fixed), we define Gy, Ga : Wy *(Q,&1)— R by

Gl(u)=/ﬂ<«4Vu, Vo) XF, dw+/ﬂbu¢m dz,

Galu) = / (®(u), Vo) X, do,

where xg denotes the characteristic function of a set £ C R™.

(a) We have that G is linear and continuous functional. In fact, since the matrix
A = (a;;) is symmetric, we have |[(AVu, V)| < (AVu, Vu)2 AV, V)2,
where (.,.) denotes here the Euclidian scalar product in R™. We also have w~@;
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in Fy, (w<ecw). By (1.2) and (H4) we obtain

|G1(u)] < |(AVu, V)l dr + [ blul|p|dx
F‘]c Flc
< /<Aw,w>1/2<Aw,w>1/2dx+/ g|u||<p|wdx
F‘]c Flc
1/2 1/2
< (/ <.AVu,Vu>dx> (/ <AV<p,V<p>1/2daz>
F‘]c Flc

1/2 1/2
2 2
el ([ lods) ([ o)
F‘]c Flc
1/2 1/2
A(/ |Vu|2wdx> (/ |V<p|2wdx>
Fy Q
1/2 1/2
2 2
+ ||b/w|Lx(Q)(/ lul wdx) (/ ol wdx)
Fy Q
1/2 1/2
A(/ ¢|VulPar dx) (/ |V<p|2wdx>
Fy Q
1/2 1/2
b el ([ etifards) ([ loto)

< (A c? 4 ||b/wHLeo(Q) Cl/Q)H‘PHW(}v?(QM) ||U'||WS'2(Q7{:;1)'

IN

IN

(b) We have that Gg is continuous functional. In fact, if uq, us € Wol’Q(Q, 1),
we obtain (by (H6))

|Ga(u2) — Ga(u1)| < /F|<‘I’(u2)—‘1’(u1)av<ﬂ>|d$

< [ [o(us) - @w)] Vel da

Fy,
< Co luz — u1||Vp|wdz

Fy,

1/2 1/2
< Gy (/ c|uQ—u1|2LD1dx> (/|V<p|2wdx>
Fy Q

<

Co cl/2 ||§0||WS'2(Q7W) ||’u,2 — ’(1,1||W3,2(Q7{:)1).

If pe W, 2(Q,w), then ¢ = pxr €W 3(Q,&1) (for m>k). Using (a), (b)
and properties (i), (ii), (iii), (iv), (v) and that w,, € Wy *(, w,) is solution of
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problem (P,,) we obtain

/(AV&,V@dx—F bfupdx—/ (®(1), Vo) dz
Fy Fy, F

m

= lim (/ (AN U, Vo) dx + b, U, dz
Fy,

m—00 Fk

- [ @) Vo)

Fy

lim (/ <AmVum,V<p>dx+/bmum<pdx
Q Q

m—00

— / (P(um), Vo) dx
Q

— / (A™Vup, V) dr — / bon U @ dx
QnFe

QNFe
—|—/ (®(um), Vi) dx)
QNFe
= lim (/gmwdx+2/fijj<pdx

- / (A" VU, V) dr — / bon U @ dx
QnFe

QNFe
[ @) Vel de), (37)
QNFe
where E° denotes the complement of a set £ CR".

(I) Suppose ¢ € Wy*(Q,w). By a density argument (see Corollary 2.1.6 in [10])
we can suppose ¢ € C5°(9Q). We have (by w,,— w a.e.)

gm @ = glwm /W) — g ac.

and

191 (@ /@) ||

9] '
e @

lgl  -1/q 1
— @wl/q/wQ EL (Q)a

|gm @]
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since 9 € LI(Q)) and LZ);/ 7 ¢ L9'(Q). By the Lebesgue Dominated Conver-

gence L’i’lﬁgc,)rem and @y € Ay (W9 € A, and 1 < 2) we obtain (as m — o)
/gmgodx—>/g<p dzx. (3.8)
Q Q
Analogously, we have
/ijm Djpdr— /ij Djpde. (3.9)

(I) Since the matrix A™ = (a{}™) is symmetric, we have
A thy, V)| < (A Vi, Vg )2 (A™V 0, Vo) /2. Then, by (1.2) and (3.3),
we obtain

’ / (AN Uy, V) dx
QnFe

1/2 1/2
SA(/ |Vum|2wm dx) (/ |V<p|2wm dx)
Qnrg QNFE

1/2
2
SA|um|WS'2(Q7W'm,)(/ IVel™ w, dx)
QnFge

1/2
<AC; C@(/ W, dx) . (3.10)
QNFe

< / (A", Vo) | dae
QnFe

(IIT) By (H4) and (3.3) we obtain

b
s/ Ot i i
Qnrg W

m

/ b U, p dx
QNFe

1/2 1/2
2 2
s|bm/wm|mm( s wmdx) ( [ wmdx)
QnFe QnFe

1/2
< Nb/wll Lo oy llum w2 (0,0 (/Q B |<p|2wmdx>
e

k

1/2
<C1 Cy lIbfwll (/Q _n dx) . (3.11)
-

k
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(IV) Since w € Ay (A, C A2) and by (H3) , (H5),(H6) we have

] [ @ vad] < [ ) el
QnFe QnFe

< (@l [ Velds
QnFe
= ||(I>||Lm(R)/ \Vo|w!/2w™1/2 dx
QnFe
1/2 1 1/2
2
< el ([ wefwds) ([ Lar)
QNFy Qnrg W
1 1/2
nrg

By Theorem 2.9, Chapter IV of [5](or Lemma 15.8 of [6]), there exist constants
§ > 0 and C > 0 such that, if Q C Qg (Qo is a fixed cube), then

c §
wm (N FY) <@2(Q N FY) SC’LDQ(QO)(:S’;D |

which is independent of m. Using Lemma 1.1, we know that |F¢|— 0 when
k— oo. Then, we obtain in (3.10), (3.11) and (3.12)

lim (A" U, V) dx = 0, (3.13)

k=00 Janrg

lim b Ump dx = 0, (3.14)

k=00 JanFg

lim (P(um), Vi) dx = 0. (3.15)

k=00 Janrg

Therefore, by (3.7), (3.13),(3.14) and (3.15) we conclude that (when k — 00)

> [ ay@Di)Dse@) e + [ bw)als) o) d - by [ @) Dy(e) de

i,j=1
= [ s@e@) 2ot | 5i@Dye() iz,
for all ¢ € W, *(2, w), that is, @ is a solution of problem (P).

Therefore, u = @ (by the uniqueness) and u is the weak limit in W "*(€2, ©1)
of a sequence of solutions u,, € WO1 ’Q(Q, W) of the problems (Py,).
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Example. Let us have Q = {(z,y,2) €R3 : 22 + 4? + 22 < 1}. Consider the
weight w(z,y,2) = (22 + 9% + z2)_16A3/5 (r =3/5),p =05, q = 45/34,
0 < a1 < as < asg and the functions

®:R—-R3 &(t) = (sin(t),1 — cos(t),sin(t)),
g(xa Y, Z) = arctan(l/(xQ + y2 + 22)) , b(x, v, Z) _ e_(m2+y2+22),

cos(1/(x? + 32 + 22)) oy 2) = sin(1/(2? + 2 + 22))
@2+ g2+ 2218 )2 Y, 2) = (@2 + o2 + 22)1/3

fl(xaya Z) =
fa(z,y,2) =0.

3

Let us consider the partial differential operator

0 0 0 0
Lu(z,y, 2) = "9z (a1($2 +y° + z2)_1a—z> - 8_y (a2(x2 +y7+ z2)‘18—Z>

0 2 2 2\—10u
8z(a3(x +y +2) 55 )

By Theorem 1.2, the problem
Lu(x,y, 2) + b(x,y, 2) u(z, y, 2) + div(®(u(z, y, 2)))
(P) :g(xayaz)_ZDjfj(xayaz) in Qa
j=1

u(z,y,z) =0 on 09,

has a unique solution u € WO1 ’Q(Q, w) and u can be approximated by a sequence
of solutions of nonlinear non-degenerate elliptic equations.
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