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Abstract

In this paper, we study the existence theorems of solution for general-
ized quasivariational inequality problems. Some sufficient conditions on
the existence of solutions of Pareto quasi-equilibrium problems, Pareto
quasivariational inclusion problems and Pareto quasi-optimization prob-
lem with multivalued mappings are shown.

1 Introduction

Throuthout this paper, X, Z denote real Hausdorff locally convex topological
vector spaces; Y be a real topological vector space and let C ⊆ Y be a cone.
We put l(C) = C ∩ (−C). If l(C) = {0} , C is said to be pointed. Let Y ∗ be
the topological dual space of Y . We denote by 〈ξ, y〉 the duality pair between
ξ ∈ Y ∗ and y ∈ Y . The topological dual cone C ′ and strict topological dual
cone C ′+ of C are defined as

C ′ := {ξ ∈ Y ′ : 〈ξ, c〉 ≥ 0 for all c ∈ C},

C ′+ := {ξ ∈ Y ′ : 〈ξ, c〉 > 0 for all c ∈ C\l(C)}.
In this paper, we assume that C be a pointed cone with C ′+ �= ∅. Let

D ⊆ X, K ⊆ Z be nonempty subsets. Given multivalued mappings P1 : D →
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lower C-convex, upper and lower C-quasiconvex-like multivalued mappings, upper and lower
C- continuous multivalued mappings.
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2D, P2 : D → 2D, Q : D×D → 2K with nonempty values and F : K×D×D →
2Y with nonempty compact values. For any ξ ∈ C ′+, we consider the following
problems:

(Aξ) Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

max
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ max
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

(Bξ) Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

min
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ min
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

There problems are called generalized quasivariational inequality problem
in which the multivalued mappings P1, P2, Q are constraints, F is a utility
multivalued mapping and ξ ∈ C ′+ is parameterized. In the cases F is a real
function on K ×D×D and C = R+ then problems (Aξ), (Bξ) becomes to find
x̄ ∈ D such that x̄ ∈ P1(x̄) and

F (y, x̄, x̄) ≤ F (y, x, x̄) for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

This is scalar quasivariational inequality problem studied in [7]. We know
that scalar quasivariational inequality problem as generalizations of variational
inequalities and optimization problems, including also many other related op-
timization problems such as fixed point problems, complementarity problems,
Nash equilibria problems, minimax problems, etc. The purpose of this article
is to establish sufficient conditions for the existence of solutions to problems
(Aξ), (Bξ). Moreover, we obtain some sufficient conditions for the existence of
solutions of Pareto quasi-equilibrium problems, Pareto quasivariational inclu-
sion problems and Pareto quasi-optimization problem with multivalued map-
pings.

2 Preliminaries

Given a subset D ⊆ X, we consider a multivalued mapping F : D → 2Y .
The definition domain and the graph of F are denoted by

domF := {x ∈ D : F (x) �= ∅} ,

gph F := {(x, y) ∈ D × Y : y ∈ F (x)} ,

respectively. We recall that F is said to be a closed (respectively, open) mapping
if gphF is a closed (respectively, open) subset in the product space X × Y . A
multivalued mapping F : D → 2Y is said to be upper (lower) semicontinuous
in x̄ ∈ D if for each open set V containing F (x̄) (respectively, F (x̄) ∩ V �= ∅)
there exists an open set U of x̄ such that F (x) ⊆ V (respectively, F (x)∩V �= ∅)
for all x ∈ U.
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Definition 2.1. Let Y be a linear space and C a nontrivial convex cone in
Y . A nonempty convex subset B of C is called a base for C if each nonzero
element x ∈ C has a unique representation of the form x = λb with λ > 0 and
b ∈ B.

Proposition 2.2 (See [3]). Let Y be a Hausdorff locally convex space and C
is a nontrivial cone in Y . Then C has a base B with 0 �∈ cl B if and only if
C ′+ �= ∅.
Remark 2.3. If Y is locally convex Hausdorff space, C has a convex weakly*
compact base, then C ′+ �= ∅.

The following definitions will be used in the sequel.

Definition 2.4. Let F : D → 2Y be a multivalued mapping. We say that F is
a upper (lower) C-continuous in x̄ ∈ dom F if for any neighborhood V of the
origin in Y there is a neighborhood U of x̄ such that:

F (x) ⊆ F (x̄) + V + C

(F (x̄) ⊆ F (x) + V − C, respectively)

holds for all x ∈ U ∩ domF .
If F is upper C-continuous, lower C-continuous in any point of domF , we

say that it is upper C-continuous, lower C-continuous on D.

Definition 2.5. Let F : D×D → 2Y be a multivalued mapping. We say that:
(i) F is diagonally upper (lower) C-convex in the first variable if for any

finite set {x1, ..., xn} ⊆ D, x =
n∑

j=1

αjxj , αj ≥ 0(j = 1, 2, ..., n),
n∑

j=1

αj = 1, one

have
n∑

j=1

αjF (xj, x) ⊆ F (x, x) + C,

( respectively, F (x, x) ⊆
n∑

j=1

αjF (xj, x) − C).

(ii) F is diagonally upper (lower) C-quasiconvex-like in the first variable if

for any finite set {x1, ..., xn} ⊆ D, x =
n∑

j=1
αjxj, αj ≥ 0(j = 1, 2, ..., n),

n∑
j=1

αj =

1, there exists an index i ∈ {1, ..., n} such that

F (xi, x) ⊆ F (x, x) + C,

( respectively, F (x, x) ⊆ F (xi, x) − C).
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Definition 2.6. Let F : K × D × D → 2Y , Q : D × D → 2K be multivalued
mappings. We say that:

(i) F is diagonally upper (lower) (Q, C)-convex in the second variable if for

any finite set {x1, ..., xn} ⊆ D, x =
n∑

j=1

αjxj , αj ≥ 0(j = 1, 2, ..., n),
n∑

j=1

αj = 1,

there is an index i ∈ {1, 2, ..., n} such that

n∑
j=1

αjF (y, xj, x) ⊆ F (y, x, x) + C for all y ∈ Q(xi, x),

( respectively, F (y, x, x) ⊆
n∑

j=1

αjF (y, xj, x) − C for all y ∈ Q(xi, x)).

(ii) F is diagonally upper (lower) (Q, C)-quasiconvex-like in the second

variable if for any finite set {x1, ..., xn} ⊆ D, x =
n∑

j=1
αjxj, αj ≥ 0(j =

1, 2, ..., n),
n∑

j=1

αj = 1, there exists i ∈ {1, ..., n} such that

F (y, xi, x) ⊆ F (y, x, x) + C for all y ∈ Q(xi, x),

( respectively, F (y, x, x) ⊆ F (y, xi, x) − C for all y ∈ Q(xi, x)).

To prove the main results, we need the following theorems.

Theorem 2.7. (Fan- Browder, see [1]) Let D be a nonempty convex compact
subset of a topological vector space, F : D → 2D be a multivalued map. Suppose
that

(i) F (x) is a nonempty convex subset of D for each x ∈ D;
(ii) F−1(x) is open in D for each x ∈ D.

Then there exists x̄ ∈ D such that x̄ ∈ F (x̄).

Theorem 2.8. (See [2]) Let X be a topological vector space and A and B are
nonempty, and V is an open subsets of X. Assume that G : A → 2B is a lower
semicontinuous set-valued map. Then the set-valued map Φ(x) = (G(x)+V )∩B
is open in A × B.

Theorem 2.9. (See [11]) Let X, Y be topological spaces and F, G : X → 2Y be
multivalued maps satisfy the following:

(i) F is open.
(ii) G is lower semicontinuous.

Then the map F ∩ G is lower semicontinuous.
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3 Existence of solutions for generalized quasi-

variational inequality problems

In this section we wish to establish an existence criterion for solutions of
generalized quasivariational inequality problems. Let M : K × D → 2D be a
multivalued mapping. First of all, we prove the following proposition.

Proposition 3.1. Suppose that D is a nonempty convex compact subset and
K is a nonempty subset and the multivalued mappings P1, P2, Q and M satisfy
the following conditions:

(i) the set W := {x ∈ D : x ∈ P1(x)} is nonempty closed;
(ii) P2 has nonempty values, P−1

2 (x) is open and co(P2(x)) ⊆ P1(x) for all
x ∈ D;

(iii) for each t ∈ D, the set

Bt := {x ∈ D : t ∈ M(y, x) for all y ∈ Q(t, x)}

is closed in D;
(iv) for any finite subset {t1, t2, ..., tn} in D and x ∈ co{t1, t2, ..., tn}, there

exists an index j ∈ {1, 2, ..., n} such that tj ∈ M(y, x) for all y ∈ Q(tj , x).
Then there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

x ∈ M(y, x̄) for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

Proof. We define the multivalued mapping G : D → 2D by

G(x) = {t ∈ D : t �∈ M(y, x) for some y ∈ Q(t, x)}.

By (iii) we have G−1(t) = D\Bt is open in D, for all t ∈ D. We show that
there exists x̄ ∈ W such that G(x̄)∩ P2(x̄) = ∅. On the contrary, suppose that
G(x) ∩ P2(x) �= ∅ for all x ∈ W . Now, we define the multivalued mapping
H : D → 2D by

H(x) =
{

co G(x) ∩ co P2(x), if x ∈ W,
co P2(x), otherwise.

Then H(x) are nonempty convex for all x ∈ D and

H−1(x′) = [(co G)−1(x′)∩ (co P2)−1(x′)]∪ [(co P2)−1(x′)∩D\W ] is open in D.

By Fan- Browder fixed point theorem, there exists x∗ ∈ D such that x∗ ∈
H(x∗). Hence x∗ ∈ P1(x∗) and x∗ ∈ co G(x∗). This implies, there exists
{t1, t2, ..., tn} ⊆ G(x∗) such that x∗ ∈ co{t1, t2, ..., tn}. By definition of G, for
each i ∈ {1, 2, ..., n}, ti �∈ M(y, x∗) for some y ∈ Q(ti, x∗). This contradicts
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with (iv). Hence there exists x̄ ∈ W such that G(x̄) ∩ P2(x̄) = ∅. This implies
x̄ ∈ P1(x̄) and

x ∈ M(y, x̄) for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

The proof is complete. �
Now we are able to establish sufficient conditions for existence of solutions

to (Aξ).

Theorem 3.2. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and F with nonempty compact values. Assume that there
exists ξ ∈ C ′+ such that the following conditions are fulfilled:

(i) the set W := {x ∈ D : x ∈ P1(x)} is nonempty closed;
(ii) P2 has nonempty values, P−1

2 (x) is open and co(P2(x)) ⊆ P1(x) for all
x ∈ D;

(iii) for each t ∈ D, the set

Γt
ξ := {x ∈ D : max

z∈F (y,x,x)
〈ξ, z〉 ≤ max

z∈F (y,t,x)
〈ξ, z〉 for all y ∈ Q(t, x)}

is closed in D;
(iv) for any finite subset {t1, t2, ..., tn} in D and x ∈ co{t1, t2, ..., tn}, there

exists an index j ∈ {1, 2, ..., n} such that

max
z∈F (y,x,x)

〈ξ, z〉 ≤ max
z∈F (y,tj ,x)

〈ξ, z〉 for all y ∈ Q(tj, x).

Then (Aξ) has a solution.

Proof. We define the multivalued mapping M : K × D → 2D by

M(y, x) = {t ∈ D : max
z∈F (y,x,x)

〈ξ, z〉 ≤ max
z∈F (y,t,x)

〈ξ, z〉}.

For any fixed t ∈ D, the set

Bt = {x ∈ D : t ∈ M(y, x) for all y ∈ Q(t, x)}
= {x ∈ D : max

z∈F (y,x,x)
〈ξ, z〉 ≤ max

z∈F (y,t,x)
〈ξ, z〉 for all y ∈ Q(t, x)}

= Γt
ξ

is closed set in D. Now, let {t1, t2, ..., tn} ⊆ D and x ∈ co{t1, t2, ..., tn}. By
(iv) we have there exists an index j ∈ {1, 2, ..., n} such that

max
z∈F (y,x,x)

〈ξ, z〉 ≤ max
z∈F (y,tj ,x)

〈ξ, z〉 for all y ∈ Q(tj, x).
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This implies tj ∈ M(y, x) for all y ∈ Q(tj , x). Therefore, all the conditions of
Proposition 3.1 are satisfied. Applying Proposition 3.1, there exists x̄ ∈ D such
that x̄ ∈ P1(x̄) and

x ∈ M(y, x̄) for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

This implies x̄ ∈ P1(x̄) and

max
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ max
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

The proof is complete. �

Example 3.3. Consider problem (Aξ) where X = Y = Z = R, C = R− :=
(−∞, 0], D = [0, 1], K = (−1, 2], P1(x) = P2(x) = Q(x, t) = [0, 1] for all x, t ∈
[0, 1] and the multivalued mapping F : K × D × D → 2R by

F (y, x, t) =
{

[0, x], if x ≤ t,
[x, 1], otherwise.

We easily check that C ′+ = (−∞, 0). Moreover, for each ξ ∈ C ′+ and x, t ∈
[0, 1], we have

max
z∈F (y,x,x)

〈ξ, z〉 = max
z∈[0,x]

〈ξ, z〉 = 0,

max
z∈F (y,x,t)

〈ξ, z〉 =
{

0, if x ≤ t,
ξx, if x > t.

Then

Γt
ξ := {x ∈ D : max

z∈F (y,x,x)
〈ξ, z〉 ≤ max

z∈F (y,t,x)
〈ξ, z〉 for all y ∈ Q(t, x)}

= [0, t] is closed in D.

On the other hand, for any finite subset {t1, t2, ..., tn} in D and x =
n∑

i=1
αiti, αi ≥

0
(i = 1, 2, ..., n),

n∑
i=1

αi = 1, there exists an index j ∈ {1, 2, ..., n} such that

x ≤ tj .
This implies

max
z∈F (y,x,x)

〈ξ, z〉 = max
z∈F (y,tj ,x)

〈ξ, z〉 = 0 for all y ∈ Q(tj, x).

Then the assumptions in Theorem 3.2 are satisfied and x̄ = 1 is a unique
solution of (Aξ).
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Theorem 3.4. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and F with nonempty compact vulues. Assume that there
exists ξ ∈ C ′+ such that the satisfy conditions (i), (iii), (iv) of Theorem 3.2
and

(ii’) P2 is lower semicontinuous with nonempty values and co(P2(x)) ⊆
P1(x) for all x ∈ D.
Then (Aξ) has a solution.

Proof. Let U be a basis of convex neighborhood of the origin in the space X.
For every U ∈ U we define the multivalued mappings P1U , P2U : D → 2D by

P1U(x) = (P1(x) + cl U) ∩D, P2U(x) = (P2(x) + U) ∩ D,

where ”cl” denotes the operation of taking the closure. It is easy to prove that
P−1

2U (x) is open in D and co(P2U(x)) ⊆ P1U(x) for every x ∈ D. Therefore, all
the conditions of Theorem 3.2 for P1U , P2U, Q and F are satisfied, there exists
x̄U ∈ D such that x̄U ∈ P1U(x̄U ) and

max
z∈F (y,x̄U ,x̄U )

〈ξ, z〉 ≤ max
z∈F (y,x,x̄U )

〈ξ, z〉 for all x ∈ P2U(x̄U) and y ∈ Q(x, x̄U).

This implies
N(x̄U ) ∩ P2U(x̄U ) = ∅,

where N(x) = {x′ ∈ D : max
z∈F (y,x,x)

〈ξ, z〉 > max
z∈F (y,x′,x)

〈ξ, z〉 for some y ∈
Q(x′, x)}. Let AU := {x ∈ P1U(x) : N(x) ∩ P2U(x) = ∅}. Then AU �= ∅.
On the other hand, for each x′ ∈ D, N−1(x′) = D\Γx′

ξ is open in D by (iii) of
Theorem 3.2. Therefore, N is lower semicontinuous, so N ∩ P2U . Since P1U is
closed, AU is closed. Moreover, AU is decreasing as U decreases, and therefore
the family of nonempty compact sets {AU}U∈U has a common point, say x̄.
This implies x̄ ∈ P1U(x̄) for all U ∈ U and N(x̄) ∩ P2(x̄) = ∅. We claim that
x̄ ∈ P1(x̄). Indeed, assume that x̄ �∈ P1(x̄). Then there exists U∗ ∈ U such
that x̄ �∈ P1(x̄) + U∗. Since U∗ ∈ U , there exists U ∈ U such that cl U ⊆ U∗.
Therefore, x̄ �∈ P1U(x̄). This contradicts. Hence x̄ is a solution of (Aξ). The
proof is complete. �

Example 3.5. Consider problem (Aξ) where X = Y = Z = R, C = R− :=
(−∞, 0], D = [0, 1], K = (−1, 2], P1(x) = Q(x, t) = [0, 1], P2(x) = [0, x] for all
x, t ∈ [0, 1] and the multivalued mapping F : K × D × D → 2R by

F (y, x, t) =
{

[0, x], if x ≤ t,
[x, 1], otherwise.

It is clear that P2 does not have open inverse values. Hence Theorem 3.2 does
not work. But P2 is lower semicontinuous and the hypotheses of Theorem 3.4
are satisfied. We easily check that x̄ = 1 is a unique solution of (Aξ).
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Remark 3.6. For each ξ ∈ C ′+, the assumption (iii) in Theorem 3.2 is satisfied
provided that:

(a) for each t ∈ D, Q(t, .) is lower semicontinuous with nonempty compact
values;

(b) for any t ∈ D, F (., t, .) is upper (−C)- continuous and the multival-
ued mapping G : K × D → 2Y defined by G(y, x) = F (y, x, x) is lower C-
continuous.

Proof. For ε > 0 be arbitrary, since the continuity of ξ, there exists a neigh-
borhood V of the origin in Y such that ξ(V ) ⊆ (− ε

2 , ε
2 ). Let {xα} be a net

from Γt
ξ converging to x0. Then, we have

max
z∈F (y,xα,xα)

〈ξ, z〉 ≤ max
z∈F (y,t,xα)

〈ξ, z〉 for all y ∈ Q(t, xα).

For each y ∈ Q(t, x0), by the lower semicontinuity of Q(t, .), there exists yα ∈
Q(t, xα) converging to y. We have

max
z∈F (yα ,xα,xα)

〈ξ, z〉 ≤ max
z∈F (yα ,t,xα)

〈ξ, z〉 for all α.

On the other hand, since F (., t, .) : K × D → 2Y is upper (−C)- continuous
and the multivalued mapping G : K ×D → 2Y defined by G(y, x) = F (y, x, x)
is lower C- continuous, there exists an index α0 such that

F (yα, t, xα) ⊆ F (y, t, x0) − C + V,

F (y, x0, x0) ⊆ F (yα, xα, xα) − C + V for all α ≥ α0.

It follows that

max
z∈F (yα ,t,xα)

〈ξ, z〉 < max
z∈F (y,t,x0)

〈ξ, z〉 +
ε

2
,

max
z∈F (y,x0,x0)

〈ξ, z〉 < max
z∈F (yα ,xα,xα)

〈ξ, z〉 +
ε

2
for all α ≥ α0.

Hence
max

z∈F (y,x0,x0)
〈ξ, z〉 < max

z∈F (y,t,x0)
〈ξ, z〉 + ε.

Therefore,

max
z∈F (y,x0,x0)

〈ξ, z〉 ≤ max
z∈F (y,t,x0)

〈ξ, z〉 for all y ∈ Q(t, x0).

This shows x0 ∈ Γt
ξ. Consequently, Γt

ξ is closed. �
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Remark 3.7. For ξ ∈ C ′+, the condition (iv) of Theorem 3.2 is satisfied if
one of the following conditions is satisfied:

1. for each x ∈ D, the set

Ωx
ξ := {t ∈ D : max

z∈F (y,x,x)
〈ξ, z〉 > max

z∈F (y,t,x)
〈ξ, z〉 for some y ∈ Q(t, x)}

is convex.
2. for each y ∈ K, F (y, ., .) : D× D → 2Y is diagonally lower C- convex in

the first variable.
3. F is diagonally lower (Q, C)- quasiconvex-like in the second variable.

Proof. Let {t1, t2, ..., tn} ⊆ D and x ∈ co{t1, t2, ..., tn}.
1. Assume that for each j ∈ {1, 2, ..., n} we have

max
z∈F (y,x,x)

〈ξ, z〉 > max
z∈F (y,tj ,x)

〈ξ, z〉 for some y ∈ Q(tj , x).

This implies tj ∈ Ωx
ξ for j = 1, 2, ..., n. By Ωx

ξ is convex set, x ∈ Ωx
ξ . This

contradicts. Hence there exists an index j ∈ {1, 2, ..., n} such that

max
z∈F (y,x,x)

〈ξ, z〉 ≤ max
z∈F (y,tj ,x)

〈ξ, z〉 for all y ∈ Q(tj, x).

2. Since F (y, ., .) is diagonally lower C- convex in the first variable, then

F (y, x, x) ⊆
n∑

i=1

αiF (y, ti, x)− C for all y ∈ K,

where x =
n∑

i=1
αiti, αi ≥ 0(i = 1, 2, ..., n),

n∑
i=1

αi = 1. This implies

max
z∈F (y,x,x)

〈ξ, z〉 ≤ max
z∈

n∑
i=1

αiF (y,ti,x)

〈ξ, z〉

≤
n∑

i=1

αi max
z∈F (y,ti,x)

〈ξ, z〉

≤ max
1≤i≤n

max
z∈F (y,ti,x)

〈ξ, z〉,

Thus, there exists an index j ∈ {1, 2, ..., n} such that

max
z∈F (y,x,x)

〈ξ, z〉 ≤ max
z∈F (y,tj ,x)

〈ξ, z〉 for all y ∈ Q(tj, x).

3. If F is diagonally lower (Q, C)- quasiconvex-like in the second variable,
there exists an index j ∈ {1, 2, ..., n},

F (y, x, x) ⊆ F (y, tj, x) − C for all y ∈ Q(tj , x).
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This yields

max
z∈F (y,x,x)

〈ξ, z〉 ≤ max
z∈F (y,tj ,x)

〈ξ, z〉 for all y ∈ Q(tj, x).

� Since Theorem 3.4, Remark 3.6 and Remark 3.7, we have following

corollarys :

Corollary 3.8. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and F with nonempty compact values. Assume that there
exists ξ ∈ C ′+ such that the following conditions are fulfilled:

(i) the set W := {x ∈ D : x ∈ P1(x)} is nonempty closed;
(ii) P2 is lower semicontinuous with nonempty values and co(P2(x)) ⊆ P1(x)

for all x ∈ D;
(iii) for each t ∈ D, the set

Γt
ξ := {x ∈ D : max

z∈F (y,x,x)
〈ξ, z〉 ≤ max

z∈F (y,t,x)
〈ξ, z〉 for all y ∈ Q(t, x)}

is closed in D;
(iv) for each x ∈ D, the set

Ωx
ξ := {t ∈ D : max

z∈F (y,x,x)
〈ξ, z〉 > max

z∈F (y,t,x)
〈ξ, z〉 for some y ∈ Q(t, x)}

is convex.
Then (Aξ) has a solution.

Corollary 3.9. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and the multivalued mappings P1, P2, Q and F satisfy the
following conditions:

(i) P1 is closed;
(ii) P2 has nonempty values, P−1

2 (x) is open and co(P2(x)) ⊆ P1(x) for all
x ∈ D;

(iii) for each x ∈ D, Q(x, .) is lower semicontinuous with nonempty compact
values;

(iv) F has nonempty compact values, for any x′ ∈ D, F (., x′, .) is upper
(−C)- continuous and the multivalued mapping G : K × D → 2Y defined by
G(y, x) = F (y, x, x) is lower C- continuous;

(v) for each y ∈ K, F (y, ., .) : D × D → 2Y is diagonally lower C- convex
in the first variable (or, F is diagonally lower (Q, C)- quasiconvex-like in the
second variable).
Then (Aξ) has a solution, for all ξ ∈ C ′+.

Remark 3.10. If Y = R, C = R+ and F : K × D × D → R is a single map,
then Corollary 3.9 reduces to Corollary 2.4 in [7].
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Analogically, we obtain the following theorems.

Theorem 3.11. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and F with nonempty compact values. Assume that there
exists ξ ∈ C ′+ such that the following conditions are fulfilled:

(i) the set W := {x ∈ D : x ∈ P1(x)} is nonempty closed;
(ii) P2 has nonempty values, P−1

2 (x) is open and co(P2(x)) ⊆ P1(x) for all
x ∈ D;

(iii) for each t ∈ D, the set

γt
ξ := {x ∈ D : min

z∈F (y,x,x)
〈ξ, z〉 ≤ min

z∈F (y,t,x)
〈ξ, z〉 for all y ∈ Q(t, x)}

is closed in D;
(iv) for any finite subset {t1, t2, ..., tn} in D and x ∈ co{t1, t2, ..., tn}, there

exists an index j ∈ {1, 2, ..., n} such that

min
z∈F (y,x,x)

〈ξ, z〉 ≤ min
z∈F (y,tj ,x)

〈ξ, z〉 for all y ∈ Q(tj, x).

Then (Bξ) has a solution.

Proof. We define the multivalued mapping M : K × D → 2D by

M(y, x) = {t ∈ D : min
z∈F (y,x,x)

〈ξ, z〉 ≤ min
z∈F (y,t,x)

〈ξ, z〉},

Following the same arguments as in the of Theorem 3.2 we show that there
exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

x ∈ M(y, x̄) for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

This implies x̄ ∈ P1(x̄) and

min
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ min
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

The proof is complete. �

Theorem 3.12. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and F with nonempty compact vulues. Assume that there
exists ξ ∈ C ′+ such that the satisfy conditions (i), (iii), (iv) of Theorem 3.11
and

(ii’) P2 is lower semicontinuous with nonempty values and co(P2(x)) ⊆
P1(x) for all x ∈ D.
Then (Bξ) has a solution.

Proof. The proof is similar to the one of Theorem 3.4. �
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Remark 3.13. 1. For each ξ ∈ C ′+, the assumption (iii) in Theorem 3.11 is
satisfied provided that:

(a) for each x ∈ D, Q(x, .) is lower semicontinuous with nonempty compact
values;

(b) for any x′ ∈ D, F (., x′, .) is lower (−C)- continuous and the multival-
ued mapping G : K × D → 2Y defined by G(y, x) = F (y, x, x) is upper C-
continuous;

2. for ξ ∈ C ′+, if F is upper (Q, C)- quasiconvex-like in the second variable,
then condition (iv) in Theorem 3.11 is satisfied.

Proof. The proof is similar to the one of Remark 3.6 and Remark 3.7. �

Corollary 3.14. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and F with nonempty compact values. Assume that there
exists ξ ∈ C ′+ such that the following conditions are fulfilled:

(i) the set W := {x ∈ D : x ∈ P1(x)} is nonempty closed;
(ii) P2 has nonempty values, P−1

2 (x) is open and co(P2(x)) ⊆ P1(x) for all
x ∈ D;

(iii) for each t ∈ D, the set

γt
ξ := {x ∈ D : min

z∈F (y,x,x)
〈ξ, z〉 ≤ min

z∈F (y,t,x)
〈ξ, z〉 for all y ∈ Q(t, x)}

is closed in D;
(iv) for each x ∈ D, the set

ωx
ξ := {t ∈ D : min

z∈F (y,x,x)
〈ξ, z〉 > min

z∈F (y,t,x)
〈ξ, z〉 for some y ∈ Q(t, x)}

is convex.
Then (Bξ) has a solution.

Corollary 3.15. Suppose that D is a nonempty convex compact subset, K is
a nonempty subset and the multivalued mappings P1, P2, Q and F satisfy the
following conditions:

(i) P1 is upper semicontinuous with nonempty convex closed values;
(ii) P2 has nonempty values, P−1

2 (x) is open and co(P2(x)) ⊆ P1(x) for all
x ∈ D;

(iii) for each x ∈ D, Q(x, .) is lower semicontinuous with nonempty compact
values;

(iv) F has nonempty compact values, for any x′ ∈ D, F (., x′, .) is lower
(−C)- continuous and the multivalued mapping G : K × D → 2Y defined by
G(y, x) = F (y, x, x) is upper C- continuous;

(v) F is diagonally upper (Q, C)- quasiconvex-like in the second variable.
Then (Bξ) has a solution, for all ξ ∈ C ′+.
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4 Pareto quasi-equilibrium problems

In this section, we apply the obtained results in Section 3 to Pareto quasi-
equilibrium problems with multivalued mappings. Let D, K, P1, P2, Q and F be
as Introduction. We consider the following Pareto quasi-equilibrium problems:

(UPQEP) Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

F (y, x, x̄) �⊆ −C\{0} for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

(LPQEP) Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

F (y, x, x̄) ∩ (−C\{0}) = ∅ for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

Corollary 4.1. If x̄ is a solution of (Aξ) and F (y, x̄, x̄)∩C �= ∅ for all y ∈ K,
then x̄ is a solution of (UPQEP).

Proof. Assume that x̄ is a solution of (Aξ), that is x̄ ∈ P1(x̄) and

max
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ max
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

Since F (y, x̄, x̄) ∩ C �= ∅,
max

z∈F (y,x̄,x̄)
〈ξ, z〉 ≥ 0.

This implies

max
z∈F (y,x,x̄)

〈ξ, z〉 ≥ 0 for all x ∈ P2(x̄) and y ∈ Q(x, x̄). (4.1)

We show that

F (y, x, x̄) �⊆ −C\{0} for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

Assume that there exists x∗ ∈ P2(x̄) and y∗ ∈ Q(x∗, x̄) such that

F (y∗, x∗, x̄) ⊆ −C\{0}.

Thus,
max

z∈F (y∗,x∗,x̄)
〈ξ, z〉 < 0.

This contradicts (4.1).
Hence x̄ is solution of (UPQEP). The proof of the corollary is complete. �

Corollary 4.2. If x̄ is a solution of (Bξ) and F (y, x̄, x̄) ⊆ C for all y ∈ K,
then x̄ is a solution of (LPQEP).
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Proof. Assume that x̄ is a solution of (Bξ), that is x̄ ∈ P1(x̄) and

min
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ min
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

By F (y, x̄, x̄) ⊆ C we have

min
z∈F (y,x̄,x̄)

〈ξ, z〉 ≥ 0.

This implies that

min
z∈F (y,x,x̄)

〈ξ, z〉 ≥ 0 for all x ∈ P2(x̄) and y ∈ Q(x, x̄). (4.2)

We now claim that

F (y, x, x̄) ∩ (−C\{0}) = ∅ for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

On the contrary, suppose that there exists x∗ ∈ P2(x̄) and y∗ ∈ Q(x∗, x̄) such
that

F (y∗, x∗, x̄) ∩ (−C\{0}) �= ∅.
There is ā such that ā ∈ F (y∗, x∗, x̄) ∩ (−C\{0}). Then, we have

min
z∈F (y∗,x∗,x̄)

〈ξ, z〉 ≤ 〈ξ, ā〉 < 0.

This contradicts (4.2).
Hence x̄ is a solution of (LPQEP). The proof of the corollary is complete. �

Example 4.3. Consider problem (UPQEP ) where X = Z = R, Y = R
2, C =

(−∞, 0]× (−∞, 0], D = [0, 1], K = (−1, 2], P1(x) = P2(x) = Q(x, t) = [0, 1] for
all x, t ∈ [0, 1] and the multivalued mapping F : K × D × D → 2R

2
by

F (y, x, t) = [0, t]× [0, xy].

We easily check that the assumptions in Theorem 3.2 are satisfied. Moreover,
for each ξ ∈ C ′+ = (−∞, 0)× (−∞, 0) and x̄ ∈ [0, 1], we have

max
z∈F (y,x̄,x̄)

〈ξ, z〉 = max
z∈F (y,x,x̄)

〈ξ, z〉 = 0.

Then x̄ = 1 is a unique solution of (Aξ). On the other hand, we have F (y, x̄, x̄)∩
C �= ∅ for all y ∈ K and x̄ = 1 is a solution of (UPQEP ).
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5 Pareto quasivariational inclusion problems

In recent years, there are many papers on quasivariational inclusion prob-
lems (see [4], [5], [6], [7], [8], [9], [10], ...). However, most of these articles deal
with ideal quasivariational inclusion problems and there are only few articles
for the study of Pareto quasivariational inclusion problems. In this section,
we prove the existence of solutions to the following Pareto quasivariational
inclusion problems:

(UPQVIP) Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

F (y, x, x̄) �⊆ F (y, x̄, x̄) − C\{0} for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

(LPQVIP) Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

F (y, x̄, x̄) �⊆ F (y, x, x̄) + C\{0} for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

Corollary 5.1. If x̄ is a solution of (Aξ) then x̄ is solution of (UPQVIP).

Proof. Assume that x̄ is a solution of (Aξ), that is x̄ ∈ P1(x̄) and

max
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ max
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄). (5.1)

We claim that

F (y, x, x̄) �⊆ F (y, x̄, x̄) − C\{0} for all x ∈ P2(x̄) and y ∈ Q(x, x̄).

Assume that there exists x̂ ∈ P2(x̄) and ŷ ∈ Q(x̂, x̄) such that

F (ŷ, x̂, x̄) ⊆ F (ŷ, x̄, x̄) − C\{0}.
It follows that

max
z∈F (ŷ,x̂,x̄)

〈ξ, z〉 < max
z∈F (ŷ,x̄,x̄)

〈ξ, z〉.

This contradicts (5.1).
Thus, x̄ is solution of (UPQVIP). The proof is complete. �

Corollary 5.2. If x̄ is a solution of (Bξ) then x̄ is solution of (LPQVIP).

Proof. Assume that x̄ is a solution of (Bξ), that is x̄ ∈ P1(x̄) and

min
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ min
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P2(x̄) and y ∈ Q(x, x̄). (5.2)

We show that

F (y, x̄, x̄) �⊆ F (y, x, x̄) + C\{0} for all x ∈ P2(x̄) and y ∈ Q(x, x̄).
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Assume that there exists x̂ ∈ P2(x̄) and ŷ ∈ Q(x̂, x̄) such that

F (ŷ, x̄, x̄) ⊆ F (ŷ, x̂, x̄) + C\{0}.

We conclude
min

z∈F (ŷ,x̂,x̄)
〈ξ, z〉 < min

z∈F (ŷ,x̄,x̄)
〈ξ, z〉.

This contradicts (5.2).
Hence x̄ is solution of (LPQVIP). The proof is complete. �

Example 5.3. Consider problem (UPQV IP ) where X = Z = R, Y = R
2, C =

(−∞, 0] × (−∞, 0], D = [0, 1], K = (−1, 2], P1(x) = P2(x) = [0, 1], Q(x, t) =
[0, t] for all x, t ∈ [0, 1] and the multivalued mapping F : K × D× D → 2R

2
by

F (y, x, t) = [yt, 1]× [x, 1].

We easily check that the assumptions in Theorem 3.2 are satisfied. Moreover,
for each ξ := (ξ1, ξ2) ∈ C ′+ = (−∞, 0)× (−∞, 0) and x̄ ∈ [0, 1], we have

max
z∈F (y,x̄,x̄)

〈ξ, z〉 = max
z∈[yx̄,1]×[x̄,1]

〈ξ, z〉 = ξ1yx̄ + ξ2x̄,

max
z∈F (y,x,x̄)

〈ξ, z〉 = max
z∈[yx̄,1]×[x,1]

〈ξ, z〉 = ξ1yx̄ + ξ2x.

Then x̄ is a solution of (Aξ) if and only if

ξ1yx̄ + ξ2x̄ ≤ ξ1yx̄ + ξ2x for all x ∈ [0, 1] and y ∈ [0, x̄].

This inequality holds if and only if x̄ = 1. Thus, x̄ = 1 is a unique solution of
(Aξ) and so (UPQV IP ).

6 Pareto quasi-optimization problem

Let A ⊆ Y be a nonempty set and let x0 ∈ A. We say that x0 is an
Pareto efficient point of A with respect to C if there is no x ∈ A such that
x0 − x ∈ C\{0}. The set of all Pareto efficient point of A with respect to C is
denoted by PMin(A|C). Let P : D → 2D, Q : D → 2K and F : K×D×D → 2Y

be multivalued mappings. In this section, we shall apply Corollary 3.15 to the
following Pareto quasi-optimization problem: Find x̄ ∈ D such that x̄ ∈ P (x̄)
and

F (y, x̄, x̄) ∩PMin(F (y, x̄, P (x̄))|C) �= ∅ for all y ∈ Q(x̄).

Corollary 6.1. If x̄ is a solution of (Bξ) for P1 = P2 = P, Q and F , then x̄
is a solution of Pareto quasi-optimization problem.
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Proof. Assume that x̄ is a solution of (Bξ), that is x̄ ∈ P (x̄) and

min
z∈F (y,x̄,x̄)

〈ξ, z〉 ≤ min
z∈F (y,x,x̄)

〈ξ, z〉 for all x ∈ P (x̄) and y ∈ Q(x̄). (6.1)

Assume that there exists ȳ ∈ Q(x̄) such that

F (ȳ, x̄, x̄) ∩ PMin(F (ȳ, x̄, P (x̄))|C) = ∅.
Let v̄ ∈ F (ȳ, x̄, x̄) such that

〈ξ, v̄〉 = min
z∈F (ȳ,x̄,x̄)

〈ξ, z〉.

Since v̄ �∈ PMin(F (ȳ, x̄, P (x̄))|C), there exists x∗ ∈ P (x̄) and v∗ ∈ F (ȳ, x̄, x∗)
such that

v̄ − v∗ ∈ C\{0}.
This implies

min
z∈F (ȳ,x̄,x̄)

〈ξ, z〉 = 〈ξ, v̄〉 > 〈ξ, v∗〉 ≥ min
z∈F (ȳ,x̄,x∗)

〈ξ, z〉.

This contradicts (6.1).
Hence

F (y, x̄, x̄) ∩PMin(F (y, x̄, P (x̄))|C) �= ∅ for all y ∈ Q(x̄).

The proof of the corollary is complete. �

Example 6.2. Consider Pareto quasi-optimization problem, where X = Z =
R, Y = R

2, C = R
2
+ := [0, +∞) × [0, +∞), D = [0, 1], K = (−1, 2], P (x) =

Q(x) = [0, 1] for all x ∈ [0, 1] and the multivalued mapping F : K×D×D → R
2

by
F (y, x, t) = (x − x2, 1 − yt) for all (y, x, t) ∈ K × D × D.

Now we check that the condition (v) in Corollary 3.15 satisfied. Indeed, let

{x1, x2, ..., xn} ⊆ D and x =
n∑

i=1

αixi, αi ≥ 0(i = 1, 2, ..., n),
n∑

i=1

αi = 1. We

have
n∑

i=1

αixi−(
n∑

i=1

αixi)2 =
n∑

i=1

αixi(1−
n∑

i=1

αixi) ≤ max
1≤i≤n

xi(1− max
1≤i≤n

xi) = xj−x2
j ,

where xj = max
1≤i≤n

xi. This implies

F (y, x, x) = (x − x2; 1 − yx) = (
n∑

i=1

αixi − (
n∑

i=1

αixi)2; 1− yx)

∈ (xj − x2
j ; 1− yx) + R

2
+ = F (y, xj, x) + R

2
+ for all y ∈ [0, 1].
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Hence F is diagonally upper (Q, R2
+)− quasiconvex-like in the second vari-

able. Therefore, all conditions of Corollary 3.15 are fulfilled.
Moreover, for each ξ := (ξ1, ξ2) ∈ C ′+ = (0, +∞) × (0, +∞) and x̄ ∈ [0, 1], we
have

min
z∈F (y,x̄,x̄)

〈ξ, z〉 = ξ1(x̄ − x̄2) + ξ2(1 − yx̄),

min
z∈F (y,x,x̄)

〈ξ, z〉 = ξ1(x − x2) + ξ2(1 − yx̄).

Thus, x̄ is a solution of (Bξ) if and only if

x̄ − x̄2 ≤ x − x2 for all x ∈ [0, 1].

This inequality holds if and only if x̄ ∈ {0, 1}. Thus, {0, 1} is solution set of
(Bξ).

A direct calculation shows that

F (y, 0, 0) ∈ PMin(F (y, 0, P (0))|R2
+) for all y ∈ Q(0).

F (y, 1, 1) ∈ PMin(F (y, 1, P (1))|R2
+) for all y ∈ Q(1).

Hence x̄ = 0, x̄ = 1 is solutions of Pareto quasi-optimization problem.
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