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Abstract

In this paper, we study the generalized quasi-equilibrium problems
and establish some results on the stability of solutions of generalized
quasi-equilibrium problems and its applications.

1 Introduction

Throughout this paper X, Z and Y are supposed to be real topological lo-
cally convex Hausdorff spaces, D ⊂ X, K ⊂ Z are nonempty subsets. Given
multivaled mappings P1 : D → 2D, P2 : D → 2D, Q : K × D → 2K and
F : K × D × D → 2Y , we are interested in the following problems:

Find x̄ ∈ D such that
x̄ ∈ P1(x̄)

and
0 ∈ F (y, x̄, t), for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This problem is called the generalized quasi-equilibrium problem of type II.
In the problems, the multivalued mappings P1, P2 and Q are constraints

mappings and F is an utility multivalued mapping that are often determined
by equalities and inequalities, or by inclusions, not inclusions and intersections
of other multivalued mappings, or by some relations in product spaces. This
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problem involves many problems in optimization theory as special cases, such
as optimal control problems, Minty variational inequalities, Nash equilibrium
problems... The optimal control problem is following:

Example 1.1. Let Ω be open bounded domain in R
n with n ≥ 2 and the

boundary Γ of class C1. We consider the problem of finding a control function
u ∈ Lp(Ω) with 1 < p < +∞ and a coresponding state y ∈ W 1,r(Ω) which

minimizeJ(y, u) =
∫
Ω

L(x, y(x), u(x))dx (1)

subject to

−
n∑

i,j=1

Dj ((aij(x)) .Diy) + h(x, y) = u in Ω,

y = 0 on Γ,

(2)

with one of following contrains:

1). Type 1: Mixed constraints

gi (x, y(x), u(x)) ≤ 0, a.e.x ∈ Ω,

i = 1, ..., n;
(3)

2). Type 2: Homogeneous constraints

g(x, y(x)) ≤ 0, vi mi x ∈ Ω,
u(x) ∈ U, a.e., x ∈ Ω; (4)

3). Type 3: Mixed and homogeneous constraints

g(x, y(x)) ≤ 0, for all x ∈ Ω;
fi(x, y(x), u(x)) ≤ 0, a.e. x ∈ Ω,
i = 1, ..., n,

(5)

where L : Ω × R × R → R, h : Ω × R → R are Carathodory function, gi :
Ω × R × R → R is functions.

We defined the mappings K(y, u) = Ay + h(., y) − u; Gi(y, u) = gi(., y, u).
When gi(., y, u) ∈ C(Ω̄), we defined the mapping

φi(y, u) = max
x∈Ω

gi(x, y(x), u(x)).

The problem (1)-(3) becomes:

minimizeJ(y, u),
subject to K(y, u) = 0, and φi(y, u) ≤ 0,

i = 1, n.
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We set

F (y, u, z, w) = J(y, u) − J(z, w) + R+;

G(y, u, z, w) =
(

K(y, u),
n

Π
i=1

Φi(y, u) − R+

)
.

The above problems equivalent with the problems: Find (ȳ, ū) ∈ W 1,r
0 (Ω) ×

Lp(Ω) such that

0 ∈ F (ȳ, ū, z, w)×
(

K(y, u),
n

Π
i=1

Φi(y, u) − R+

)
,

which means that,

J(ȳ, ū) ≤ J(z, w)
for all (z, w) ∈ W 1,r

0 (Ω) × Lp(Ω);
K(ȳ, ū) = 0;

Φi(ȳ, ū) ≤ 0, i = 1, ..., m.

This optimal are studied by Bui Trong Kien [3].

In [5], Nguyen Xuan Tan and Nguyen Thi Quynh Anh showed the suffi-
cient conditions for the existence of solutions of generalized quasi-equilibrium
problems, one of them is the following:

Theorem 1.1. The following conditions are sufficient for (GEP )II to have a
solution:

i) D is a nonempty convex compact subset;
ii) P1 : D → 2D is a multivalued mapping with a nonempty closed fixed

point set D0 = {x ∈ D| x ∈ P1(x)} in D;
iii) P2 : D → 2D is a multivalued mapping with P−1

2 (x) open and the convex
hull coP2(x) of P2(x) is contained in P1(x) for each x ∈ D;

iv) For any fixed t ∈ D, the set

B = {x ∈ D| 0 /∈ F (y, x, t), for some y ∈ Q(x, t)}

is open in D;
v) F : K × D × D → 2Y is a Q − KKM multivalued mapping.

Our aim is to finding sufficient conditions for solutions mapping to be stable.
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2 Preliminaries and Definitions

Throughout this paper, as in the introduction, by X, Z, W and Y we denote
real topological locally convex Hausdorff spaces. Given a subset D ⊆ X, we
consider a multivalued mapping F : D → 2Y . The domain and the graph of F
are denoted and defined by

domF = {x ∈ D| F (x) 	= ∅} ,

Gr(F ) = {(x, y) ∈ D × Y | y ∈ F (x)} ,

respectively.
We recall that F is said to be a closed mapping if the graph Gr(F ) of F

is a closed subset in the product space X × Y and it is said to be a compact
mapping if the closure clF (D) of its range F (D) is a compact set in Y .

A multivalued mapping F : D → 2Y is said to be upper (lower) semi-
continuous, briefly: u.s.c (respectively, l.s.c) at x̄ ∈ D if for each open set V
containing F (x̄) (respectively, F (x̄) ∩ U 	= ∅), there exists an open set U of x̄
that F (x) ⊆ V (respectively, F (x) ∩ U 	= ∅) for each x ∈ U and F is said to
be u.s.c (l.s.c) on D if it is u.s.c (respectively, l.s.c) at any point x ∈ D. These
notions and definitions can be found in [2].

Let D ⊆ X, K ⊆ Y . The following proposition show the need and sufficient
conditions to multivalued mappings be upper (lower) semicontinuous.

Proposition 2.1. ([4]) Assume F : D → 2Y is a multivalued mappings with
compact valueds. Then, F is lower semicontinuous at x ∈ D iff for all y ∈ F (x)
and for all net {xα} in D xα → x, exists a net {yα} which satisfying yα ∈ F (xα)
for all α, yα → y.

Proposition 2.2. ([6]) If the multivalued mappings F with F−1(x) open in D
then F is lower semicontinuous.

Proposition 2.3. ([1]) If F : D → 2K is an upper semicontinuous multivalued
mapping with closed valueds, then it is closed. Ngc li, if F is a closed mapping
and K is compact, then F is an upper semicontinuous mapping.

3 The stability of solutions of generalized quasi-

equilibrium problems

Let X, Z, D, K, Y, C as the above sections, Λ, Γ, Σ be real topological locally
convex Hausdorff spaces, the mappings Pi : D × Λ → 2D with i = 1, 2, Q :
D×D×Γ → 2K and F : K×D×D×Σ → 2Y . We are interested the generalized
quasi-equilibrium problems dependent on parameter: Find x̄ ∈ P1(x̄, λ) such
that 0 ∈ F (y, x̄, t, μ) for all t ∈ P2(x̄, λ), y ∈ Q(x̄, t, γ).
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For any λ ∈ Λ, μ ∈ Γ, γ ∈ Σ, we set E(λ) = {x | x ∈ P1(x, λ)}; M(λ, γ, μ) =
{x ∈ D | x ∈ E(λ) and 0 ∈ F (y, x, t, μ) for all t ∈ P1(x, λ), y ∈ Q(x, t, γ)}.

Theorem 1.1 showed the sufficient conditions for solution mappings to have
the valueds M(λ, γ, μ) 	= ∅. Next, we state for the stability of solutions of the
problem, involving: upper semicontinuous, lower semicontinuous in Berge’s
sense with respect to (λ, γ, μ).

Theorem 3.1. Let (λ0, γ0, μ0) ∈ Λ × Γ × Σ. Assume that:

1) P1 is an upper semicontinuous multivalued mappings with compact values;
P2 is a lower semicontinuous multivalued mappings;

2) Q is an lower semicontinuous multivalued mappings with compact valueds;

3) The set A = {(y, x, λ, γ, μ) | x ∈ E(λ), 0 ∈ F (y, x, t, γ) for all t ∈
P2(x, λ), y ∈ Q(x, t, μ)} is closed.

Then,
i) M(λ0, γ0, μ0) is closed,
ii) M is upper semicontinuous multivalued mappings at (λ0, γ0, μ0).

Proof Firstly, we proof that M is closed at (λ0, γ0, μ0). We assume that M
is not closed, it means existing the net (xα, λα, γα, μα) → (x0, λ0, γ0, μ0), with
xα ∈ M(λα, γα, μα), x0 /∈ M(λ0, γ0, μ0). From xα ∈ E(λα) and the closedness
of E, it follows that x0 ∈ E(λ0). Since xα ∈ M(λα, γα, μα), it follows that

0 ∈ F (yα, xα, tα, μα)
for all tα ∈ P2(xα, λα),yα ∈ Q(xα, tα).

Morever, (yα, xα, tα) ∈ D is compact, without loss of generality, we may assume
that yα → y0, xα → x0, tα → t0. We have (yα, xα, tα, λα, γα, μα) ∈ A and
(yα, xα, tα, λα, γα, μα) → (y0, x0, t0, λ0, γ0, μ0), it implies (y0, x0, t0, λ0, γ0, μ0) ∈
A. Since that, we have x0 ∈ M(λ0, γ0, μ0). We have a contradition. So, M is
closed at (λ0, γ0, μ0).

Next, we proof that the mappings M : Λ × Γ × Σ → 2D is upper semi-
continuous at (λ0, γ0, μ0). We assume that M is not upper semicontinuous at
(λ0, γ0, μ0). Then, exists the open set U contains M(λ0, γ0, μ0) such that for
any net {(λα, γα, μα)} converges to (λ0, γ0, μ0), exists xα ∈ M(λα, γα, μα), xα /∈
U. Since P1 is a multivalued mappings with compact valueds, it implies P1 (so,
E) is a closed mappings. We may assume that xα → x0, so x0 ∈ E(λ0). If
x0 /∈ M(λ0, γ0, μ0) then there exists t0 ∈ P2(x0, λ0), y0 ∈ Q(x0, t0, γ0) such
that

0 /∈ F (y0, x0, t0, μ0). (6)

From (xα, λα) → (x0, λ0), P2 is lower semicontinuous at (x0, λ0), it implies that
tα ∈ P2(xα, λα), tα → t0. Morever, Q is lower semicontinuous at (x0, t0, γ0),
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so yα ∈ Q(xα, tα, γα), yα → y0. Since xα ∈ M(λα, γα, μα), we have 0 ∈
F (yα, xα, tα, μα). On the other hand, (yα, xα, tα, λα, γα, μα) → (y0, x0, t0, λ0, γ0, μ0),
xα ∈ E(λα), tα ∈ P2(xα, λα), yα ∈ Q(xα, tα, μα), 0 ∈ F (yα, xα, tα, μα). In view
of the closedness of A, we obtain

(y0, x0, t0, λ0, γ0, μ0) ∈ A.

x0 ∈ E(λα);
0 ∈ F (y0, x0, t0, μ0),

for all t0 ∈ P2(x0, λ0), y0 ∈ Q(x0, t0, μ0).

This conflict with (6), we have M is an upper semicontinuous multivalued
mapping. �

Theorem 3.2. Assume that:

1) E is a lower semicontinuous multivalued mappings at λ0;

2) Q is an upper semicontinuous mapping with compact values;

3) P2 is a closed multivalued mapping;

4) The set A = {(y, x, t, λ, γ, μ) ∈ D×D×D×Λ×Γ×Σ | x ∈ P1(x, λ), 0 /∈
F (y, x, t, λ, γ, μ), t ∈ P2(x, λ), y ∈ Q(x, t, μ)} is closed.

Then, M is a lower semicontinuous multivalued mapping at (λ0, γ0, μ0).

Proof We assume that M is not lower semicontinuous at (λ0, γ0, μ0), i.e. there
exists the net (λα, γα, μα) → (λ0, γ0, μ0), x0 ∈ M(λ0, γ0, μ0) such that xα ∈
M(λα, γα, μα), xα 	→ x0. By the lower semicontinuty of E, x0 ∈ E(λ0), λα →
λ0, there exists x′

α ∈ E(λα), x′
α → x0, x

′
α /∈ M(λα, γα, μα). Therefore, there ex-

ists tα ∈ P2(xα, λα), yα ∈ Q(xα, tα, μα) such that 0 /∈ F (yα, xα, tα, λα, γα, μα).
One the other hand, Q is an upper semicontinuous mapping with compact val-
ueds, P2 is a closed mapping, {tα} ⊆ D, {yα} ⊆ K is l comparative compact.
Hence, we may assume that yα → y0, tα → t0 and y0 ∈ Q(x0, t0, μ0), t0 ∈
P2(x0, λ0). We have

(yα, xα, tα, λα, γα, μα) ∈ A, (yα, xα, tα, λα, γα, μα) → (y0 , x0, t0, λ0, γ0, μ0).

So (y0 , x0, t0, λ0, γ0, μ0) ∈ A, i.e.

0 /∈ F (y0, x0, t0, μ0), x0 ∈ P1(x0, λ0),
t0 ∈ P2(x0, λ0), y0 ∈ Q(x0, t0, μ0).

This is a contradition with x0 ∈ M(λ0, γ0, μ0). The proof are complete. �
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Example 3.1. Consider in optimal control problem on times (see in Introduc-
tion):

Let Ω be open bounded domain in R
n with n ≥ 2 and the boundary Γ

of class C1. We consider the problem of finding a control function (u, γ, μ) ∈
Lp(Ω) ×Γ× Σ with 1 < p < +∞ and a coresponding state (y, γ, μ) ∈ W 1,r(Ω)
which

minimizeJ(y, u, μ) =
∫
Ω

L(x, y(x), u(x), μ)dx (7)

subject to

−
n∑

i,j=1

Dj ((aij(x)) .Diy) + h(x, y, γ) = u in Ω,

y = 0 on Γ,

(8)

with one of following contrains:

1). Type 1: Mixed constraints

gi (x, y(x), u(x), γ) ≤ 0, a.e.x ∈ Ω,

i = 1, ..., n;
(9)

2). Type 2: Homogeneous constraints

g(x, y(x), γ) ≤ 0, vi mi x ∈ Ω,
u(x) ∈ U, a.e., x ∈ Ω; (10)

3). Type 3: Mixed and homogeneous constraints

g(x, y(x), γ) ≤ 0, for all x ∈ Ω;
fi(x, y(x), u(x), γ) ≤ 0, a.e. x ∈ Ω,
i = 1, ..., n,

(11)

Assume that
1
n

>
1
r
≥ 1

p
− 1

n
. (12)

(u, γ) ∈ W 1,r(Ω) × Γ, (y, γ) ∈ W 1,r
0 (Ω) × Γ is a solution of (8) iff

∫
Ω

⎛
⎝ n∑

i,j=1

aijDiyDjϕ

⎞
⎠dx +

∫
Ω

h(x, y, γ)ϕdx

= 〈u, ϕ〉 ∀ϕ ∈ W 1,r
0 (Ω).

From (12)and Sobolev and Rellich Theorem, we have Lp(Ω) ↪→ W 1,r(Ω). Hence,
(u, γ) ∈ Lp(Ω) × Γ, the equation (8) c duy nht nghim (y, γ), y ∈ W 1,r

0 (Ω) ↪→
C(Ω̄).
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We define the mappings:

K(y, u, γ) = Ay + h(., y, γ) − u, Gi(y, u, γ) = gi(., y, u, γ).

If gi(., y, u, γ) ∈ C(Ω̄), the mapping

φi(y, u, γ) = max
x∈Ω

gi(x, y(x), u(x), γ)

is well defined. The above problem becomes:

minimizeJ(y, u, μ),
s.t.K(y, u, γ) = 0, v φ(y, u, γ) ≤ 0.

Setting
F (y, u, z, w, μ) = J(y, u, μ) − J(z, w, μ) + R+,

G(y, u, z, w, γ) = (K(y,u, γ),
n

Π
i=1

Φi(y, u, γ) − R+).

The above problem equivalent with following problem: Find (ȳ, ū, γ̄, μ̄) ∈
W 1,r

0 (Ω) × Lp(Ω) × Γ × Σ such that

0 ∈ F (ȳ, ū, z, w, μ̄) ×
(

K(ȳ, ū, γ̄),
n

Π
i=1

Φi(ȳ, ū, γ̄) − R+

)
,

that is
J(ȳ, ū, μ̄) ≤ J(z, w, μ̄)

for all (z, w) ∈ W 1,r
0 (Ω) × Lp(Ω);

K(ȳ, ū, γ̄) = 0, Φi(ȳ, ū, γ̄) ≤ 0, i = 1, 2, ...,m.

Assume that P1, Q are as in Section 2.5. We call M : Λ × Γ × Σ → W 1,r
0 (Ω) ×

Lp(Ω) is a solutions mapping of the optimal control problem: Find (ȳ, ū, γ̄, μ̄) ∈
W 1,r

0 (Ω) × Lp(Ω) × Γ × Σ such that

J(ȳ, ū, μ̄) ≤ J(z, w, μ̄)
for all z, w ∈ W 1,r

0 (Ω) × Lp(Ω),
K(ȳ, ū, γ̄) = 0,

Φi(ȳ, ū, γ̄) ≤ 0, i = 1, 2, ...,m,

for all w ∈ P1(x̄, λ̄), z ∈ Q(x̄, w).
To show that M be an upper (lower) semicontinuous multivalued mapping

at (γ̄, μ̄), we find conditions to ensure that A (in 3.1, 3.2) is closed. For example,
if J is a continuous function and P1, Q as in 3.1, then A is closed.
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