BIIDEALS IN INVOLUTION RINGS AND SEMI-GROUPS

Usama A. Aburawash¹ and Allam A. Allam²

¹Department of Mathematics and Computer Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt email: aburawash@alex-sci.edu.eg

² Department of Basic and Applied Science, College of Engineering, Arab Academy for Science, Technology and Maritime Transport Alexandria, Egypt email: allamelbehiry@yahoo.com

Abstract

In a semiprime ring (semigroup with 0), every minimal quasiideal is a minimal biideal and vice versa. Moreover, for prime *-semigroups with 0, each *-minimal *-biideal is a minimal *-biideal. Nevertheless, A *-biideal B of a prime *-ring (*-semigroup) A is minimal if and only if B has the form $B = RR^*$, for a minimal right ideal R of A. Furthermore, for a semiprime *-semigroup S, each *-minimal *-biideal B is either minimal or a direct union of a minimal biideal C of S and its involutive image C^* . Finally, a set of equivalent conditions are given for a *-simple *-semigroup S to be the union of its *-minimal *-biideals.

1 Introduction

All rings considered are associative and a semigroup S will always mean a semigroup with an element 0 satisfying 0s = s0 = 0, for all $s \in S$.

Recall that a nonzero idempotent f of a semigroup S is called *primitive* if for every nonzero idempotent $e \in S$, the relation ef = fe = e implies f = e. An element $a \in S$ is *regular*, in the sense of von Neumann, if $a \in aAa$.

A quasiideal Q of a ring (semigroup) A is an additive subgroup (nonempty subset) of A satisfying $QA \cap AQ \subseteq Q$. Since $Q^2 \subseteq QA \cap AQ \subseteq Q$, it follows that the quasiideal Q is a subring (subsemigroup) of A. A biideal B of a ring

Key words: prime *-semigroups, semiprime ring, quasiideal, involution rings 2010 Mathematics Subject Classification. 16W10, 16D25, 16M10, 16M12.

(semigroup) A is a subring (subsemigroup) of A satisfying $BAB \subseteq B$. By the way, each quasiideal Q is a biideal, since $QAQ \subseteq QA \cap AQ \subseteq Q$, but the converse is not true (see [8]).

A semigroup S is the *direct union* of its ideals $A_{\gamma}, \gamma \in \Gamma$; written as $S = \bigcup_{\gamma \in \Gamma} A_{\gamma}, \text{ if } S = \bigcup_{\gamma \in \Gamma} A_{\gamma} \text{ and } A_{\gamma} \cap (\bigcup_{\delta \neq \gamma} A_{\delta}) = 0.$ A ring A is said to be a *-ring if there is an involution * on A satisfying

$$a^{**} = a, (ab)^* = b^*a^*, (a+b)^* = a^* + b^*$$

for all $a, b \in A$. Similarly, a *-semigroup is a semigroup with an involution satisfying the first two identities.

A *-ideal (*-biideal) B of a *-ring (*-semigroup) A will indicate a self adjoint ideal (biideal) B; that is $B^* = B$. A nonzero *-ideal (*-biideal) B of a *-ring (*-semigroup) A is said to be *-minimal if B does not properly contain any nonzero *-ideal (*-biideal) of A (see [3], [4] and [5]). It is clear that a minimal *-ideal (*-biideal) is *-minimal.

A *-ring (*-semigroup) A without identity is said to be *-simple if $A^2 \neq$ 0 and the only *-ideals of A are 0 and A. However, each simple *-ring (*semigroup) is *-simple while the converse is not true (see [1]). A *-simple semigroup containing a primitive idempotent is called completely *-simple.

$\mathbf{2}$ Semiprime rings and semigroups

Our first result shows that in semiprime rings (not necessarily with involution), each minimal quasiideal is a minimal biideal and vice versa.

Proposition 1. Each minimal quasiideal of a semiprime ring is a minimal biideal and vice versa.

Proof Let A be a semiprime ring and Q be a minimal quasiideal of A, then Q is a biideal and by [8, Corollary 7.3a], $Q = eA \cap Af = eAf$, where e and f are idempotents in A such that eA and Af are minimal right and minimal left ideals of A, respectively. To show that Q is a minimal bideal, let S be a nonzero biideal of A contained in Q. Hence $0 \neq S \subseteq Q = eAf \subseteq Af$, and consequently $AS \subseteq Af$. But Af is a minimal left ideal, so either AS = 0 or AS = Af. The first case is impossible because it implies that S is a nonzero left ideal with $S^2 = 0$, which contradicts the primeness of A. Thus AS = Afand similarly SA = eA. Therefore, $Q = eAf = SAf = SAS \subseteq S$ which forces Q = S. The Converse is evident from [9, Theorem 5] and [8, Theorem 6.7a].

The following corresponding result for semigroups can be proved similarly using [8, Corollary 7.3b], [9, Theorem 4] and [8, Theorem 6.7b].

Proposition 2. Each minimal quasiideal of a semiprime semigroup is a minimal biideal and vice versa.

Using Proposition 1, we can replace minimal quasiideal by minimal biideal in Propositions 7.6a and 7.6b, Corollaries 7.5a and 7.5b and Theorem 10.6 in [8] to get new adaptations for them.

3 Rings and semigroups with involution

In [7], Mendes proved in Proposition 5 that "a *-minimal *-biideal of a prime *-ring A is a minimal *-biideal of A", By a similar proof, the corresponding result for semigroups can also be obtained as follows.

Proposition 3. Every *-minimal *-biideal B of a prime *-semigroup S is a minimal *-biideal.

However, the results of Mendes and that of Proposition 3 are not true for (semiprime) involution rings (semigroups) according to [6, Proposition 4] and Proposition 7, respectively.

For prime *-rings, the following proposition gives a necessary and sufficient condition for a *-biideal to be minimal.

Proposition 4. A *-biideal B of a prime *-ring (*-semigroup) A is minimal if and only if B has the form $B = RR^*$, where R is a minimal right ideal of A

Proof Because A is prime, $A^2 \neq 0$. If B is a minimal *-biideal of the prime *ring A, then $0 \neq BAB$ and $0 \neq BA^2B$ are biideals of A and by the minimality of B we get $B = BAB = BA^2B = (BA)(AB) = RR^*$, where R = BAis a right ideal of A and $R^* = (BA)^* = AB$. To show that R = BA is a minimal right ideal of A, let C be a right ideal of A such that $C \subseteq BA$. Then $CB \subseteq BAB \subseteq B$ is a biideal of A and the minimality of B implies $CB = B \subseteq C$ Thus $BA \subseteq CA \subseteq C$ and C = BA follows. Conversely, let R be a minimal right ideal of A, then $B = RR^*$ is *-biideal . Since R^* is a minimal left ideal of A and $0 \neq RAR^* \subseteq RR^*$, it follows by [8, Theorem 6.7a] and Proposition 1 that B is a minimal *-biideal of A.

Proposition 5. Let A be a prime *-ring (*-semigroup) and B be a minimal *-biideal of A. Then for every $a \in A$, the subring aBa^* is either zero or a minimal *-biideal of A.

Proof If $aBa^* \neq 0$, then $0 \neq aB$ is a minimal bideal of A, by [8, Proposition 7.6a] and Proposition 1. Apply [8, Proposition 7.6a] and Proposition 1 again, aBa^* is a minimal *-bideal, since it is closed under involution.

By a similar proof to Corollary 3 in [6], if $\langle M \rangle$ denotes the ideal of a semigroup S generated by the subset M, we get the corresponding result for semiprime *-semigroups.

Lemma 6. Let S be a semiprime *-semigroup. If M is a subset of S, then the following conditions are equivalent:

1) $\langle M \rangle \cap \langle M^* \rangle = 0,$ 2) $MSM^* = 0,$ 3) $M^*SM = 0,$ 4) $SM \cap M^*S = 0,$

5) $MS \cap SM^* = 0.$

3) MS + SM = 0

The characterization of *-minimal *-biideals in semiprime *-semigroups is given as follows.

Proposition 7. Let S be a semiprime *-semigroup. If B is a *-minimal *bideal of S, then either B is a minimal *-bideal or $B = C \cup C^*$, as a direct union, for a minimal bideal C of S.

Proof S is semiprime and B is *-minimal imply $B^2 = B$ and B = BSB. If B is not minimal, then there exists a nonzero bideal $C \subsetneq B$. We claim that $CSC^* = 0$, otherwise $B = CSC^*$, by the *-minimality of B. Lemma 6 gives $C^*SC \neq 0$ and similarly $B = C^*SC$. Hence $B = BSB = CSC^*SC^*SC \subseteq$ $CSC \subseteq C$ which contradicts the choice of C. Thus $CSC^* = C^*SC = 0$ and consequently $C \cup C^*$ is a *-bideal of S because

 $(C \cup C^*)S(C \cup C^*) \subseteq CSC \cup C^*SC^* \subseteq C \cup C^*.$

Lemma 6 again gives $C \cap C^* = 0$. Since $C \cup C^*$ is a nonzero *-biideal contained in B, the *-minimality of B implies $B = C \cup C^*$. Finally, to show that Cis a minimal biideal, let D be a biideal such that $D \subsetneq C$, whence $D \cup D^* \subsetneq C^* \subseteq C \cup C^* = B$. The *-minimality of B forces $D \cup D^* = 0$ which implies D = 0. \Box

Proposition 8. Let S be a semiprime *-semigroup. If C is a minimal bideal of S, then either C is a *-minimal *-bideal or $B = C \stackrel{\bullet}{\cup} C^*$ is a *-minimal *-bideal of S.

Proof Clearly C is a *-minimal bideal. If C is not closed under involution, then $C \cap C^* = 0$ and $B = C \stackrel{\bullet}{\cup} C^*$ is a *-minimal *-bideal of S.

To prove the main theorem of this section, we need the following auxiliary results.

Lemma 9. Let e be a primitive idempotent of a *-semigroup S. If each element of the *-biideal e^*Se (eSe^*) is regular, then it is a *-minimal *-biideal of S.

66

Proof Let *B* be a nonzero *-biideal contained in e^*Se and $0 \neq a \in B \subseteq e^*Se = e^*S \cap Se$. Since *a* is regular, it follows from Proposition 10.4 in [8] that Se = Sa and $e^*S = aS$, whence $e^*Se = e^*Sa = aSa \subseteq BSB \subseteq B$. Thus $e^*Se = B$ is a *-minimal *-biideal.

Corollary 10. Let e be a primitive idempotent of the simple *- semigroup S. Then the *-bideal e^*Se (eSe^*) is *-minimal.

Proof S is completely simple and by [8, Corollary 10.8], it is regular. Hence e^*Se (eSe^*) is regular and the result follows from Lemma 9.

Finally, we prove some equivalent statements for which a *-simple semigroup is the union of its *-minimal *-biideals.

Theorem 11. Let S be a *-simple *-semigroup. The following are equivalent conditions on S:

1) S contains a primitive idempotent.

2) S contains at least one *-minimal *-biideal.

3) S contains a minimal right ideal possessing a nonzero idempotent element.

4) S contains a minimal left ideal possessing a nonzero idempotent element.

5) S is the union of its minimal left ideals and the union of its minimal right ideals.

6) S is the union of its minimal bideals.

7) S is the union of its *-minimal *-biideals.

Proof S is *-simple and by [2, Lemma 1], S is either simple or $S = K \overset{\bullet}{\cup} K^*$ as a direct union, where K is an ideal of S and is a simple subsemigroup. Moreover S is semiprime.

Consider first the case when S is simple.

1) \implies 2). If e is a primitive idempotent of S, then by Corollary 10, e^*Se is a *-minimal *-bideal of S.

2) \implies 3). Since S is semiprime, it has a minimal bideal, by Proposition 7, whence it has a minimal right ideal possessing a nonzero idempotent element, by [8, Corollary 7.5b] and Proposition 1.

3) \implies 4) is evident since the involutive image of a minimal right ideal is a minimal left ideal.

 $(4) \Longrightarrow (5)$ follows from [8, Theorem 10.6] and Proposition 1.

 $5) \Longrightarrow 6$ is direct by [8, Theorem 10.6] and Proposition 1.

6) \implies 7). If $S = \bigcup_{\gamma \in \Gamma} B_{\gamma}$ is the union of its minimal bideals $B_{\gamma}, \gamma \in \Gamma$, then $S = S^* = \bigcup_{\gamma \in \Gamma} B_{\gamma}^*$ and by Propositions 8, S is the union of *-minimal *-bideals.

From Proposition 7, each *-minimal *-biideal of S is either a minimal *-biideal B_{γ} or $B_{\delta} \cup B_{\delta}^*$ for a minimal biideal B_{δ} .

 $7) \Longrightarrow 1$). Similar to the proof of the implication $6 \Longrightarrow 7$, S is the union of its

minimal biideals. Hence S possesses a primitive idempotent, by [8, Theorem 10.6] and Proposition 1.

Now, let $S = K \stackrel{\bullet}{\cup} K^*$, as a direct union, where K is an ideal of S and is a simple subsemigroup.

1) \Longrightarrow 2). The primitive idempotent e is contained in either K or K^* . If $e \in K$, then by [8, Theorem 10.6] and Proposition 1, K has a minimal bideal C which is also a minimal bideal of S, by [8, Theorem 10.2]. Since C is not closed under involution it follows from Proposition 8 that $B = C \stackrel{\circ}{\cup} C^*$ is a*-bideal of S. Moreover, B is *-minimal, because any *-bideal D of S contained in B has the form $D = I \stackrel{\circ}{\cup} I^*$, where I is a nonzero bideal of S contained in C, which is impossible from the minimality of C.

2) \implies 3). By Proposition 7, S has a minimal bideal and [8, Theorem 10.6] and Proposition 1 give the result.

3) \implies 4) is evident from [8, Theorem 10.6].

4) \Longrightarrow 5). Let L be a minimal left ideal of S possessing a nonzero idempotent element, then L is contained in either K or K^* . If $L \subseteq K$, then $L^* \subseteq K^*$ is a minimal right ideal of S possessing a nonzero idempotent element. Applying [8, Theorem 10.6], each of K and K^* is the union of its minimal left ideals and the union of its minimal right ideals. But each minimal left (right) ideal of S is contained in either K or K^* , so that S is the union of its minimal left ideals and the union of its minimal right ideals.

5) \Longrightarrow 6). If $S = \bigcup_{\gamma \in \Gamma} L_{\gamma}$ is the union of its minimal left ideals $L_{\gamma}, \gamma \in \Gamma$, then $S = S^* = \bigcup_{\gamma \in \Gamma} L_{\gamma}^*$ is the union of its minimal right ideals. From $S = S^2 = (\bigcup_{\gamma \in \Gamma} L_{\gamma}^*) (\bigcup_{\gamma \in \Gamma} L_{\gamma}) \subseteq \bigcup_{\gamma \in \Gamma} \bigcup_{\delta \in \Gamma} (L_{\gamma}^* L_{\delta})$, we get $S = \bigcup_{\gamma \in \Gamma} \bigcup_{\delta \in \Gamma} (L_{\gamma}^* L_{\delta})$. Moreover, the product $L_{\gamma}^* L_{\delta}$, by [9, Theorem 4], is a minimal bideal of S and according to [9, Theorem 5], each minimal bideal of S has this form, so S is the union of its minimal bideals.

6) \Longrightarrow 7). If $S = \bigcup_{\gamma \in \Gamma} B_{\gamma}$ is the union of its minimal bideals $B_{\gamma}, \gamma \in \Gamma$, then $S = S^* = \bigcup_{\gamma \in \Gamma} B^*_{\gamma}$ and by Propositions 8, S is the union of *-minimal *-bideals. From Proposition 7, each *-minimal *-bideal of S is either a minimal *-bideal B_{γ} or $B_{\delta} \cup B^*_{\delta}$ for a minimal bideal B_{δ} .

7) \implies 1). S has a *-minimal *-biideal $B = C \stackrel{\bullet}{\cup} C^*$, as a direct union, for a minimal biideal C of S, by Proposition 7 and the fact that $S = K \stackrel{\bullet}{\cup} K^*$. Further, $C \subseteq K$ or $C \subseteq K^*$, whence K or K^* contains a primitive idempotent, by [8, Theorem 10.6] and Proposition 1, which is a primitive idempotent of S.

References

- U. A. Aburawash, On *-simple involution rings with minimal *-biideals, Studia Sci. Math. Hungar., 32 (1996), 455-458.
- [2] U. A. Aburawash and R. Wiegandt, The Rees and Steinfeld Theorem for semigroups with involution, Semigroup Forum, Vol. 57 (1998), 440-444.
- [3] U. A. Aburawash, On involution rings, East-West J. Math., 2(2) (2000), 109-126.
- [4] U. A. Aburawash, On *-minimal *-ideals and *-biideals in involution rings, Acta Math. Hungar., 129 (4) (2010), 297–302.
- [5] I. N. Herstein, "Rings with Involution", Univ. Chicago Press, 1976.
- [6] N. V. Loi, On the structure of semiprime involution rings, Contr. to General Algebra. Proc. Krems Conf., 1988, North-Holland (1990), 153-161.
- [7] D.I.C. Mendes, Minimal ,*-biideals of involution rings, Acta Sci. Math. (Szeged) 75 (2009), 487-491.
- [8] O. Steinfeld, "Quasi-ideals in rings and semigroups", Akad. Kiadó, 1978.
- [9] F. Szász, On minimal biideals of rings, Acta Sci. Math. (Szeged), 32 (1971), 333-336.