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Abstract

In a semiprime ring (semigroup with 0), every minimal quasiideal is a
minimal biideal and vice versa. Moreover, for prime *-semigroups with 0,
each *-minimal *-biideal is a minimal *-biideal. Nevertheless, A *-biideal
B of a prime *-ring (*-semigroup) A is minimal if and only if B has the
form B = RR∗, for a minimal right ideal R of A. Furthermore, for a
semiprime *-semigroup S, each *-minimal *-biideal B is either minimal
or a direct union of a minimal biideal C of S and its involutive image C∗.
Finally, a set of equivalent conditions are given for a *-simple *-semigroup
S to be the union of its *-minimal *-biideals.

1 Introduction

All rings considered are associative and a semigroup S will always mean a
semigroup with an element 0 satisfying 0s = s0 = 0, for all s ∈ S.

Recall that a nonzero idempotent f of a semigroup S is called primitive if
for every nonzero idempotent e ∈ S, the relation ef = fe = e implies f = e.
An element a ∈ S is regular, in the sense of von Neumann, if a ∈ aAa.

A quasiideal Q of a ring (semigroup) A is an additive subgroup (nonempty
subset) of A satisfying QA ∩ AQ ⊆ Q. Since Q2 ⊆ QA ∩ AQ ⊆ Q, it follows
that the quasiideal Q is a subring (subsemigroup) of A. A biideal B of a ring
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(semigroup) A is a subring (subsemigroup) of A satisfying BAB ⊆ B. By the
way, each quasiideal Q is a biideal, since QAQ ⊆ QA ∩ AQ ⊆ Q, but the
converse is not true (see [8]).

A semigroup S is the direct union of its ideals Aγ , γ ∈ Γ; written as

S =
•∪

γ∈Γ
Aγ , if S = ∪

γ∈Γ
Aγ and Aγ ∩ ( ∪

δ �=γ
Aδ) = 0.

A ring A is said to be a *-ring if there is an involution * on A satisfying

a∗∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗

for all a, b ∈ A. Similarly, a *-semigroup is a semigroup with an involution
satisfying the first two identities.

A *-ideal (*-biideal ) B of a *-ring (*-semigroup) A will indicate a self
adjoint ideal (biideal) B; that is B∗= B. A nonzero *-ideal (*-biideal ) B of a
*-ring (*-semigroup) A is said to be *-minimal if B does not properly contain
any nonzero *-ideal (*-biideal) of A (see [3], [4] and [5]). It is clear that a
minimal *-ideal (*-biideal ) is*-minimal.

A *-ring (*-semigroup) A without identity is said to be *-simple if A2 �=
0 and the only *-ideals of A are 0 and A. However, each simple *-ring (*-
semigroup) is *-simple while the converse is not true (see [1]). A *-simple
semigroup containing a primitive idempotent is called completely *-simple.

2 Semiprime rings and semigroups

Our first result shows that in semiprime rings (not necessarily with invo-
lution), each minimal quasiideal is a minimal biideal and vice versa.

Proposition 1. Each minimal quasiideal of a semiprime ring is a minimal
biideal and vice versa.

Proof Let A be a semiprime ring and Q be a minimal quasiideal of A, then
Q is a biideal and by [8, Corollary 7.3a], Q = eA ∩ Af = eAf , where e and
f are idempotents in A such that eA and Af are minimal right and minimal
left ideals of A, respectively. To show that Q is a minimal biideal, let S be
a nonzero biideal of A contained in Q. Hence 0 �= S ⊆ Q = eAf ⊆ Af , and
consequently AS ⊆ Af . But Af is a minimal left ideal, so either AS = 0 or
AS = Af . The first case is impossible because it implies that S is a nonzero
left ideal with S2 = 0, which contradicts the primeness of A. Thus AS = Af
and similarly SA = eA. Therefore, Q = eAf = SAf = SAS ⊆ S which forces
Q = S. The Converse is evident from [9, Theorem 5] and [8, Theorem 6.7a]. �

The following corresponding result for semigroups can be proved similarly
using [8, Corollary 7.3b], [9, Theorem 4] and [8, Theorem 6.7b].
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Proposition 2. Each minimal quasiideal of a semiprime semigroup is a min-
imal biideal and vice versa.

Using Proposition 1, we can replace minimal quasiideal by minimal biideal
in Propositions 7.6a and 7.6b, Corollaries 7.5a and 7.5b and Theorem 10.6 in
[8] to get new adaptations for them.

3 Rings and semigroups with involution

In [7], Mendes proved in Proposition 5 that “ a *-minimal *-biideal of a
prime *-ring A is a minimal *-biideal of A” , By a similar proof, the corre-
sponding result for semigroups can also be obtained as follows.

Proposition 3. Every *-minimal *-biideal B of a prime *-semigroup S is a
minimal *-biideal.

However, the results of Mendes and that of Proposition 3 are not true for
(semiprime) involution rings (semigroups) according to [6, Proposition 4] and
Proposition 7, respectively.

For prime *-rings, the following proposition gives a necessary and sufficient
condition for a *-biideal to be minimal.

Proposition 4. A *-biideal B of a prime *-ring (*-semigroup) A is minimal
if and only if B has the form B = RR∗, where R is a minimal right ideal of A
.

Proof Because A is prime, A2 �= 0. If B is a minimal *-biideal of the prime *-
ring A, then 0 �= BAB and 0 �= BA2B are biideals of A and by the minimality
of B we get B = BAB = BA2B = (BA)(AB) = RR∗, where R = BA
is a right ideal of A and R∗ = (BA)∗ = AB. To show that R = BA is a
minimal right ideal of A, let C be a right ideal of A such that C ⊆ BA. Then
CB ⊆ BAB ⊆ B is a biideal of A and the minimality of B implies CB = B ⊆ C
Thus BA ⊆ CA ⊆ C and C = BA follows. Conversely, let R be a minimal
right ideal of A, then B = RR∗ is *-biideal . Since R∗ is a minimal left ideal
of A and 0 �= RAR∗ ⊆ RR∗, it follows by [8, Theorem 6.7a] and Proposition 1
that B is a minimal *-biideal of A. �

Proposition 5. Let A be a prime *-ring (*-semigroup) and B be a minimal
*-biideal of A. Then for every a ∈ A, the subring aBa∗ is either zero or a
minimal *-biideal of A.

Proof If aBa∗ �= 0, then 0 �= aB is a minimal biideal of A, by [8, Proposition
7.6a] and Proposition 1. Apply [8, Proposition 7.6a] and Proposition 1 again,
aBa∗ is a minimal *-biideal, since it is closed under involution. �
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By a similar proof to Corollary 3 in [6], if 〈M〉 denotes the ideal of a
semigroup S generated by the subset M , we get the corresponding result for
semiprime *-semigroups.

Lemma 6. Let S be a semiprime *-semigroup. If M is a subset of S, then the
following conditions are equivalent:
1) 〈M〉 ∩ 〈M∗〉 = 0,
2) MSM∗ = 0,
3) M∗SM = 0,
4) SM ∩ M∗S = 0,
5) MS ∩ SM∗ = 0.

The characterization of *-minimal *-biideals in semiprime *-semigroups is
given as follows.

Proposition 7. Let S be a semiprime *-semigroup. If B is a *-minimal *-
biideal of S, then either B is a minimal *-biideal or B = C

•∪ C∗, as a direct
union, for a minimal biideal C of S.

Proof S is semiprime and B is *-minimal imply B2 = B and B = BSB. If
B is not minimal, then there exists a nonzero biideal C � B. We claim that
CSC∗ = 0, otherwise B = CSC∗, by the *-minimality of B. Lemma 6 gives
C∗SC �= 0 and similarly B = C∗SC. Hence B = BSB = CSC∗SC∗SC ⊆
CSC ⊆ C which contradicts the choice of C. Thus CSC∗ = C∗SC = 0 and
consequently C ∪C∗ is a *-biideal of S because

(C ∪ C∗)S(C ∪ C∗) ⊆ CSC ∪ C∗SC∗ ⊆ C ∪ C∗.

Lemma 6 again gives C ∩C∗ = 0. Since C
•∪C∗ is a nonzero *-biideal contained

in B, the *-minimality of B implies B = C
•∪ C∗. Finally, to show that C

is a minimal biideal, let D be a biideal such that D � C, whence D
•∪ D∗ �

C
•∪C∗ = B. The *-minimality of B forces D

•∪D∗ = 0 which implies D = 0. �

Proposition 8. Let S be a semiprime *-semigroup. If C is a minimal biideal
of S, then either C is a *-minimal *-biideal or B = C

•∪ C∗ is a *-minimal
*-biideal of S.

Proof Clearly C is a *-minimal biideal. If C is not closed under involution,
then C ∩ C∗ = 0 and B = C

•∪ C∗ is a *-minimal *-biideal of S. �
To prove the main theorem of this section, we need the following auxiliary

results.

Lemma 9. Let e be a primitive idempotent of a *-semigroup S. If each element
of the *-biideal e∗Se (eSe∗) is regular, then it is a *-minimal *-biideal of S.
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Proof Let B be a nonzero *-biideal contained in e∗Se and 0 �= a ∈ B ⊆
e∗Se = e∗S ∩ Se. Since a is regular, it follows from Proposition 10.4 in [8]
that Se = Sa and e∗S = aS, whence e∗Se = e∗Sa = aSa ⊆ BSB ⊆ B. Thus
e∗Se = B is a *-minimal *-biideal. �

Corollary 10. Let e be a primitive idempotent of the simple *- semigroup S.
Then the *-biideal e∗Se (eSe∗) is *-minimal.

Proof S is completely simple and by [8, Corollary 10.8], it is regular. Hence
e∗Se (eSe∗) is regular and the result follows from Lemma 9. �

Finally, we prove some equivalent statements for which a *-simple semigroup
is the union of its *-minimal *-biideals.

Theorem 11. Let S be a *-simple *-semigroup. The following are equivalent
conditions on S:
1) S contains a primitive idempotent.
2) S contains at least one *-minimal *-biideal.
3) S contains a minimal right ideal possessing a nonzero idempotent element.
4) S contains a minimal left ideal possessing a nonzero idempotent element.
5) S is the union of its minimal left ideals and the union of its minimal right
ideals.
6) S is the union of its minimal biideals.
7) S is the union of its *-minimal *-biideals.

Proof S is *-simple and by [2, Lemma 1], S is either simple or S = K
•∪K∗ as a

direct union, where K is an ideal of S and is a simple subsemigroup. Moreover
S is semiprime.
Consider first the case when S is simple.
1) =⇒ 2). If e is a primitive idempotent of S, then by Corollary 10, e∗Se is a
*-minimal *-biideal of S.
2) =⇒ 3). Since S is semiprime, it has a minimal biideal, by Proposition 7,
whence it has a minimal right ideal possessing a nonzero idempotent element,
by [8, Corollary 7.5b] and Proposition 1.
3) =⇒ 4) is evident since the involutive image of a minimal right ideal is a
minimal left ideal.
4) =⇒ 5) follows from [8, Theorem 10.6] and Proposition 1.
5) =⇒ 6) is direct by [8, Theorem 10.6] and Proposition 1.
6) =⇒ 7). If S = ∪

γ∈Γ
Bγ is the union of its minimal biideals Bγ , γ ∈ Γ, then

S = S∗ = ∪
γ∈Γ

B∗
γ and by Propositions 8, S is the union of *-minimal *-biideals.

From Proposition 7, each *-minimal *-biideal of S is either a minimal *-biideal
Bγ or Bδ ∪ B∗

δ for a minimal biideal Bδ .
7) =⇒ 1). Similar to the proof of the implication 6 =⇒ 7, S is the union of its
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minimal biideals. Hence S possesses a primitive idempotent, by [8, Theorem
10.6] and Proposition 1.

Now, let S = K
•∪ K∗, as a direct union, where K is an ideal of S and is a

simple subsemigroup.
1) =⇒ 2). The primitive idempotent e is contained in either K or K∗. If e ∈ K,
then by [8, Theorem 10.6] and Proposition 1, K has a minimal biideal C which
is also a minimal biideal of S, by [8, Theorem 10.2]. Since C is not closed
under involution it follows from Proposition 8 that B = C

•∪C∗ is a*-biideal of
S. Moreover, B is *-minimal, because any *-biideal D of S contained in B has
the form D = I

•∪ I∗, where I is a nonzero biideal of S contained in C, which
is impossible from the minimality of C.
2) =⇒ 3). By Proposition 7, S has a minimal biideal and [8, Theorem 10.6]
and Proposition 1 give the result.
3) =⇒ 4) is evident from [8, Theorem 10.6].
4) =⇒ 5). Let L be a minimal left ideal of S possessing a nonzero idempotent
element, then L is contained in either K or K∗. If L ⊆ K, then L∗ ⊆ K∗ is
a minimal right ideal of S possessing a nonzero idempotent element. Applying
[8, Theorem 10.6], each of K and K∗ is the union of its minimal left ideals and
the union of its minimal right ideals. But each minimal left (right) ideal of S
is contained in either K or K∗ , so that S is the union of its minimal left ideals
and the union of its minimal right ideals.
5) =⇒ 6). If S = ∪

γ∈Γ
Lγ is the union of its minimal left ideals Lγ , γ ∈ Γ, then

S = S∗ = ∪
γ∈Γ

L∗
γ is the union of its minimal right ideals. From S = S2 =

( ∪
γ∈Γ

L∗
γ)( ∪

γ∈Γ
Lγ) ⊆ ∪

γ∈Γ
∪

δ∈Γ
(L∗

γLδ), we get S = ∪
γ∈Γ

∪
δ∈Γ

(L∗
γLδ). Moreover, the

product L∗
γLδ, by [9, Theorem 4], is a minimal biideal of S and according to

[9, Theorem 5], each minimal biideal of S has this form, so S is the union of
its minimal biideals.
6) =⇒ 7). If S = ∪

γ∈Γ
Bγ is the union of its minimal biideals Bγ , γ ∈ Γ, then

S = S∗ = ∪
γ∈Γ

B∗
γ and by Propositions 8, S is the union of *-minimal *-biideals.

From Proposition 7, each *-minimal *-biideal of S is either a minimal *-biideal
Bγ or Bδ ∪ B∗

δ for a minimal biideal Bδ .

7) =⇒ 1). S has a *-minimal *-biideal B = C
•∪ C∗, as a direct union, for

a minimal biideal C of S, by Proposition 7 and the fact that S = K
•∪ K∗.

Further, C ⊆ K or C ⊆ K∗, whence K or K∗ contains a primitive idempotent,
by [8, Theorem 10.6] and Proposition 1, which is a primitive idempotent of
S. �
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