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Abstract

We study the area-minimizing property of slices in the weighted warped
product manifold (R+ ×f R

n, e−ϕ), assuming that the density function
e−ϕ and the warping function f satisfy some additional conditions. Based
on a calibration argument, a slice {t0} × G

n is proved weighted area-
minimizing in the class of all entire graphs satisfying a volume balance
condition and some Bernstein type theorems in R

+×f G
n and G

+×f G
n,

when f is constant, are obtained.

1 Introduction

Recently, the study of weighted minimal submanifolds, and in particular
weighted minimal hypersurfaces had attracted many researchers (see, for in-
stance, [2], [4], [5], [7]). A weighted manifold (also called a manifold with
density) is a Riemannian manifold endowed with a positive function e−ϕ,
called the density, used to weight both volume and perimeter elements. The
weighted area of a hypersurface Σ in an (n + 1)-dimensional weighted man-
ifold is Areaϕ(Σ) =

∫
Σ

e−ϕ dA and the weighted volume of a region Ω is
Volϕ(Ω) =

∫
Ω

e−ϕ dV, where dA and dV are the n-dimensional Riemannian
area and (n + 1)-dimensional Riemannian volume elements, respectively. A
typical example of such manifolds is Gauss space G

n+1, R
n+1 with Gaussian
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density (2π)−
n+1

2 e−
r2
2 , which is appeared in probability and statistics. The

hypersurface Σ in Rn+1 is said to be weighted minimal or ϕ-minimal if

Hϕ(Σ) := H(Σ) +
1
n
〈∇ϕ, N〉 = 0,

where H(Σ) and N are the classical mean curvature and the unit normal vector
field of Σ, respectively. Hϕ(Σ) is called the weighted mean curvature of Σ.

A theme widely approached in recent years is problems concerning to hy-
persurfaces in a warped product manifold of the type R+ ×f M, where R+ =
[0, +∞), (M, g) is an n-dimensional Riemannian manifold and f is a positive
smooth function defined on R+ (see [8]). Note that with these ingredients, the
product manifold R+ ×f M is endowed with the Riemannian metric

ḡ = π∗
R+(dt2) + f(πR+)2π∗

M (g),

where πR+ and πM denote the projections onto R+ and M, respectively.
In Rn, let P be a part of a slice, viewed as a graph over a domain D and

let Σ be a graph of a function u over D. It is clear that

Area(Σ) =
∫

D

√
1 + |∇u|2 dA ≥

∫
D

dA = Area(P ).

However, in general, the above inequality doesn’t always hold if the ambient
space is a weighted manifold. For instance, consider R2 with radial density
e−

1
2 (x2+y2). Let R be a positive real number, P = {(x, 0) ∈ R2 : −R ≤ x ≤ R}

and Σ be the half circle defined by x2 + y2 = R2, y ≥ 0. The weighted length
of P, Lϕ(P ), and the weighted length of Σ, Lϕ(Σ), are

Lϕ(P ) =
∫ R

−R

e−
1
2x2

dx,

and

Lϕ(Σ) =
∫ π

0

e−
1
2R2

R dt = e−
1
2R2

Rπ.

A simple computation shows that
√

2π(1 − e−
1
2R2 ) ≤ Lϕ(P ) ≤

√
π(1 − e−R2).

When R = 2, we have Lϕ(P ) ≥ Lϕ(Σ).
As another example, we consider R2 with density ey. Let

P =
{(

x,− ln cos
π

3

)
∈ R

2 : −π

3
≤ x ≤ π

3

}

and Σ be the graph of function y = − ln cosx, x ∈
[
−π

3
,
π

3

]
. It’s not hard to

check that Lϕ(P ) ≥ Lϕ(Σ).
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Hence, the area-minimizing property of slices in weighted warped product
manifolds is not a trivial matter. In this paper, using the same method as in
[2] we prove that if (log f)′′(t) ≤ 0, then the slice is weighted area-minimizing
under a volume balance condition. In particular, when f is constant we get
some Bernstein type theorems in R+ ×f Gn and G+ ×f Gn.

2 Preliminaries

Consider the warped product R+ ×f Rn with density e−ϕ, where ϕ = ϕ(t, x).
Let u ∈ C2(Rn), and Σ = {(u(x), x) : x ∈ Rn} be the entire graph defined by
u. A unit normal vector field of Σ is

N =

(
f(u)√

f(u)2 + |Du|2 ,− 1
f(u)

√
f(u)2 + |Du|2 Du

)
,

where Du is the gradient of u in Rn, and |Du|2 = 〈Du, Du〉. The curvature

function (relative to N) is H =
1
n

trace(A), where A is the shape operator. A

direct computation gives (see [8, Section 5])

nH(u) = div

(
Du

f(u)
√

f2 + |Du|2

)
− f ′(u)√

f(u)2 + |Du|2
(

n − |Du|2
f(u)2

)
.

Thus,

nHϕ(u) =
1

f(u)
div

(
Du√

f(u)2 + |Du|2

)
− nf ′(u)√

f(u)2 + |Du|2 +
f(u)√

f(u)2 + |Du|2 ϕt

− 1
f(u)

√
f(u)2 + |Du|2 〈Du, Dϕ〉.

It is easy to see that the mean curvature as well as the weighted mean curvature
of slice are constants

H(t0) := H(t0, x) = −(log f)′(t0),

and

Hϕ(t0) := Hϕ(t0, x) = −(log f)′(t0) + ϕt(t0, x).

Furthermore, if ϕ = ϕ(x), x ∈ Rn (i.e., the weighted function e−ϕ does not
depend on the parameter t ∈ R+), Hϕ(t0) = −(log f)′(t0).

Let Σ and N as above. Consider the smooth extension of N by the trans-
lation along t-axis, also denoted by N and the n-differential form defined by

φ(t, x) = f(t)nω(x),
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where ω(X1 , ..., Xn) = det(X1, ..., Xn, N), Xi, i = 1, 2, ..., n, are smooth vector
fields on Σ. It is clear that f(t)n |ω(X1, ..., Xn)| ≤ 1, for all orthonormal vector
fields Xi, i = 1, 2, ..., n and f(t)n |ω(X1, ..., Xn)| = 1 if and only if X1, ..., Xn

are tangent to Σ. Therefore, φ(t, x) represents the weighted volume element of
Σ in (R+ ×f Rn, e−ϕ). We have

divN = −nH − f ′√
f2 + |Du|2

(
n − |Du|2

f2

)
+

f ′|Du|2
(f2 + |Du|2) 3

2
.

Note that dω = div(N) dVR+×Rn , thus

dφ = d(fnω) = div(fnN) dVR+×Rn = fndivN dVR+×Rn + nfn−1f ′〈∂t, N〉 dVR+×Rn

= divN dVR+×f Rn + n
f ′

f
〈∂t, N〉 dVR+×f Rn

=

(
−nH +

f ′|Du|2
f2
√

f2 + |Du|2 +
f ′|Du|2

(f2 + |Du|2) 3
2

)
dVR+×f Rn .

Since

d(e−ϕφ) = d(e−ϕfnω) = e−ϕfndivN dVR+×Rn + 〈∇(e−ϕfn), N〉 dVR+×Rn

= e−ϕdφ − e−ϕfn〈∇ϕ, N〉 dVR+×Rn

= e−ϕ

[
−nH +

f ′|Du|2
f2
√

f2 + |Du|2 +
f ′|Du|2

(f2 + |Du|2) 3
2
− 〈∇ϕ, N〉

]
dVR+×fRn

= e−ϕ

[
−nHϕ +

f ′|Du|2
f2
√

f2 + |Du|2 +
f ′|Du|2

(f2 + |Du|2) 3
2

]
dVR+×f Rn ,

we have

dϕφ = eϕd(e−ϕφ) =

(
−nHϕ +

f ′|Du|2
f2
√

f2 + |Du|2 +
f ′|Du|2

(f2 + |Du|2) 3
2

)
dVR+×fRn .

When Σ is a slice, dϕφ = −nHϕ dVR+×f Rn .

3 The results

3.1 The results on slices

Consider R+ ×f Rn with density e−ϕ, ϕ = ϕ(t, x). Suppose that D is a domain
in Rn such that D, the closure of D, is compact. Let PD = {t0} × D and ΣD

be the graph of a function t = u(x), x ∈ D, such that PD and ΣD have the
same boundary, i.e., ∂PD = ∂ΣD . Let E1 = {(t, x) ∈ R+ × D : t ≤ u(x)} and
E2 = {(t, x) ∈ R+ × D : t ≤ t0}. The following theorem shows that PD has
least weighted area in the class of hypersurfaces with the same boundary.
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Theorem 3.1. If Volϕ(E1) = Volϕ(E2) and (log f)′′(t) ≤ 0, then Areaϕ(PD) ≤
Areaϕ(ΣD).

Proof. Denote by φ the volume form of Rn. By Stokes’ Theorem and the suit-
able orientations for objects (see Figure 1), we get

Areaϕ(D) − Areaϕ(ΣD) ≤
∫

D

e−ϕφ −
∫

ΣD

e−ϕφ =
∫

D−ΣD

e−ϕφ

=
∫

E1

e−ϕdϕφ =
∫

E1\E2

e−ϕdϕφ +
∫

E1∩E2

e−ϕdϕφ,

Areaϕ(PD) − Areaϕ(D) ≤
∫

PD

e−ϕφ −
∫

D

e−ϕφ =
∫

PD−D

e−ϕφ

= −
∫

E2

e−ϕdϕφ = −
∫

E2\E2

e−ϕdϕφ −
∫

E1∩E2

e−ϕdϕφ.

Therefore,

Areaϕ(PD) − Areaϕ(ΣD) ≤
∫

E1\E2

e−ϕdϕφ −
∫

E2\E2

e−ϕdϕφ

= −
∫

E1\ E2

e−ϕnHϕ(t) dV +
∫

E2\E2

e−ϕnHϕ(t) dV.

The condition (log f)′′(t) ≤ 0 means that Hϕ is non-decreasing along t-axis.

Figure 1: A part of slice and graph have the same boundary

Therefore,

Hϕ(t0) ≤ Hϕ(t), ∀(t, x) ∈ E1 \ E2; Hϕ(t) ≤ Hϕ(t0), ∀(t, x) ∈ E2 \ E1.
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Hence

Areaϕ(PD) − Areaϕ(ΣD) ≤ −nHϕ(t0)

(∫
E1\E2

e−ϕ dV −
∫

E2\E1

e−ϕ dV

)

= −nHϕ(t0)(V olϕ(E1 \ E2) − Volϕ(E2 \ E1)) = 0,

because Volϕ(E1) = Volϕ(E2). Thus, Areaϕ(PD) ≤ Areaϕ(ΣD). �

In the case of Rn is the Gauss space Gn, consider R+ ×f Gn, i.e., R+ ×f Rn

with density e−ϕ = (2π)−n/2e−
|x|2
2 . In this space, slices are proved to be global

weighted area-minimizing.

Theorem 3.2. If (log f)′′(t) ≤ 0, then a slice is weighted area-minimizing in
the class of all entire graphs satisfying Volϕ(E1) = Volϕ(E2).

Proof. Let P be the slice {t0} ×Gn and Σ be the graph of a function t = u(x)
over G

n. Let Sn−1
R be the (n−1)-sphere with center O and radius R in G

n and
CR = R × Sn−1

R be the n-dimensional cylinder. Let E1 = {(t, x) ∈ R+ × Gn :
t ≤ u(x)} and E2 = {(t, x) ∈ R+ × Gn : t ≤ t0}. Let A = E1 \ E2 ∪ E2 \ E1.
The parts of P, Σ, E1, and E2, bounded by CR, are denoted by PR, ΣR, E1R ,
and E2R , respectively.

Denote by φ the volume form of G
n. Let R be large enough such that CR

meets both E1 \ E2 and E2 \ E1 (see Figure 2). In a similar way to the proof
of Theorem 3.1, we have

Areaϕ(Gn
R) − Areaϕ(ΣR) +

∫
CR∩E1

e−ϕφ ≤
∫

Gn
R

e−ϕφ −
∫

ΣR

e−ϕφ +
∫

CR∩E1

e−ϕφ

=
∫

E1R

e−ϕdϕφ =
∫

E1R
\E2R

e−ϕdϕφ +
∫

E1R
∩E2R

e−ϕdϕφ,

Areaϕ(PR) − Areaϕ(Gn
R) +

∫
CR∩E2

e−ϕφ ≤
∫

PR

e−ϕφ −
∫

Gn
R

e−ϕφ +
∫

CR∩E2

e−ϕφ

= −
∫

E2R

e−ϕdϕφ = −
∫

E2R
\E1R

e−ϕdϕφ −
∫

E2R
∩E1R

e−ϕdϕφ.

Therefore,

Areaϕ(PR) − Areaϕ(ΣR) +
∫

CR∩A

e−ϕφ ≤
∫

E1R
\E2R

e−ϕdϕφ −
∫

E2R
\E2R

e−ϕdϕφ

=
∫

E2R
\E1R

e−ϕnHϕ(t) dV −
∫

E1R
\ E2R

e−ϕnHϕ(t) dV. (3.1)
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Figure 2: The slice P, entire graph Σ and Gn in R+ ×f Gn

Since (log f)′′(t) ≤ 0,

Hϕ(t0) ≤ Hϕ(t), ∀(t, x) ∈ E1R \ E2R and Hϕ(t) ≤ Hϕ(t0), ∀(t, x) ∈ E2R \ E1R .

Thus,

Areaϕ(PR) − Areaϕ(ΣR) +

∫
CR∩A

e−ϕφ ≤ nHϕ(t0)
(
Volϕ(E2R

\ E1R
) − Volϕ(E1R

\ E2R
)
)
.

(3.2)

Moreover, it is easy to see that limR→∞
∫

CR∩A
e−ϕφ = limR→∞ e−cR2 ∫

CR∩A
φ =

0.
By the assumption Volϕ(E1) = Volϕ(E2), we have

lim
R→∞

Volϕ(E1R \ E2R) = lim
R→∞

Volϕ(E2R \ E1R).

Hence, taking the limit of both sides of (3.2) as R goes to infinity, we obtain
Areaϕ(P ) ≤ Areaϕ(Σ). �

3.2 Some Bernstein type results

3.2.1 A Bernstein type result in R+ ×a Gn

Consider the weighted warped product manifold R+×a Gn with density e−ϕ =

(2π)−n/2e−
|x|2
2 , where a is a positive constant. Let P, Σ, E1, E2, A, CR, PR,

ΣR, E1R , E2R be defined as in the proof of Theorem 3.2. If u is bounded, then
Volϕ(E1), Volϕ(E2) and Volϕ(A) are finite. Since the weighted mean curvature
of Σ on the region A, Hϕ, does not change along any vertical line, we get the
following results:

Theorem 3.3. If Hϕ(Σ) and u are bounded and Volϕ(E1) = Volϕ(E2), then

Areaϕ(Σ) ≤ Areaϕ(P ) +
1
2
n(M − m)Volϕ(A),

where m = inf Hϕ(Σ) and M = sup Hϕ(Σ).
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Proof. Denote by φ the volume form of Σ. In this case, dϕφ = −nHϕ dV. Let
R be large enough such that CR meets both E1 \ E2 and E2 \ E1 (see Figure
2). By changing ΣR and PR together in (3.1), we have

Areaϕ(ΣR) − Areaϕ(PR) +

∫
CR∩A

e−ϕφ ≤
∫

E1R
\E2R

e−ϕnHϕ(Σ) dV −
∫

E2R
\E1R

e−ϕnHϕ(Σ) dV

≤ nM Volϕ(E1R
\ E2R

) − nm Volϕ(E2R
\ E1R

).
(3.3)

By the assumption Volϕ(E1) = Volϕ(E2), taking the limit of both sides of (3.3)

as R goes to infinity, we get Areaϕ(Σ) ≤ Areaϕ(P ) +
1
2
n(M − m)Volϕ(A). �

Corollary 3.4 (Bernstein type theorem in R+ ×a Gn). A bounded entire
constant mean curvature graph must be a slice and therefore, is minimal.

Proof. Assume that Σ is an entire constant mean curvature graph of a bounded
function u. Since Volϕ(E1) is finite, there exists a slice P such that Volϕ(E1) =
Volϕ(E2). Because m = M, by Theorem 3.3, it follows that Areaϕ(Σ) ≤
Areaϕ(P ). Moreover,

Areaϕ(Σ) =
∫

Gn

e−ϕ
√

a4 + a2|Du|2 dA ≥
∫

Gn

e−ϕ
√

a4 dA = Areaϕ(P ).

Therefore, Areaϕ(Σ) = Areaϕ(P ) and Du = 0, i.e., u is constant. It is not
hard to see that Σ = P and therefore, is minimal. �

3.2.2 A Bernstein type result in G+ ×a Gn

Now, consider the weighted warped product manifold G+ ×a Gn with density
e−ϕ = (2π)−(n+1)/2e−

r2
2 , and let Σ be an entire graph of a function u(x) over

Gn, since

〈∇ϕ(u(x) + Δt, x), N(u(x) + Δt, x)〉 − 〈∇ϕ(u(x), x), N(u(x), x)〉
= 〈(u(x) + Δt, x)− (u(x), x), N〉 = 〈(Δt, 0), N〉 ≥ 0, for Δt ≥ 0,

the weighted mean curvature of Σ is increasing along any vertical line. We have

Lemma 3.5.

Areaϕ(Gn) ≤ Areaϕ(Σ).

Proof. Denote by φ the volume form of G
n. Replacing CR by SR, the n-sphere

with center O and radius R, in Subsection 3.2.1. Let R be large enough such
that SR meets Σ (see Figure 3), we get

Areaϕ(Gn
R) − Areaϕ(ΣR) +

∫
SR∩E1

e−ϕφ ≤ −
∫

E1R

e−ϕnHϕ(Gn) dV = 0.

Therefore, Areaϕ(Gn) ≤ Areaϕ(Σ). �
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Figure 3: An entire graph Σ and Gn in G+ ×a Gn

Theorem 3.6 (Bernstein type theorem in G+ ×a Gn). The only entire
weighted minimal graph in G+ ×a Gn is Gn.

Proof. Denote by φ the volume form of Σ (see Figure 3), we have

Areaϕ(ΣR) − Areaϕ(Gn
R) +

∫
SR∩E1

e−ϕφ ≤
∫

E1R

e−ϕnHϕ(Σ) dV = 0. (3.4)

Taking the limit of both sides of (3.4) as R goes to infinity, we get

Areaϕ(Σ) ≤ Areaϕ(Gn).

Hence, it follows from Lemma 3.5 that

Areaϕ(Σ) = Areaϕ(Gn). (3.5)

Since Volϕ(G+ ×a Gn) is finite, there exists a slice P such that Volϕ(E1) =
Volϕ(E2). Using the similar arguments as in the proof of Theorem 3.3 (see
Figure 4), we get

Figure 4: The slice P and entire graph Σ in G+ ×a Gn

Areaϕ(ΣR) − Areaϕ(PR) +

∫
SR∩A

e−ϕφ ≤
∫

E1R
\E2R

e−ϕnHϕ(Σ) dV −
∫

E2R
\E1R

e−ϕnHϕ(Σ) dV = 0,

because Σ is a weighted minimal graph. Therefore, Areaϕ(Σ) ≤ Areaϕ(P ). By
Theorem 3.2, it follows that

Areaϕ(Σ) = Areaϕ(P ). (3.6)
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Thus, it follows from (3.5) and (3.6) that

Areaϕ(P ) = Areaϕ(Gn).

Hence, P = Gn and Volϕ(E1) = Volϕ(E2) = 0, i.e., Σ = Gn. �
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