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Abstract

In this paper, we find the expected duration of multi - dimensional
gambler’s ruin problem for the case of non-uniform and symmetric game.
We also show that our result is a generalization of Kmet and Petkovsek’s
result where they considered uniform and symmetric game. Numerical
Results are also provided.

1 Introduction

In the classical one-dimensional two-player gambler’s ruin problem, we consider
the game which total value of fortune is N and two players start out with i
and j dollars where 1 � i, j � N − 1 and i + j = N . In each round, one of the
two gamblers wins one dollar with probability p where p ∈ (0, 1) or loses one
dollar to the adversary with probability 1− p. The play continues until one of
the two players goes broke, so that the winning player ends up with N dollars.
The expected duration of the game is ij [4].

There are several aspects of the gambler’s ruin problems that brought re-
searcher’s attentions. For example, in the aspect of multiple player games
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and multidimensional games. In the n-player games, the n players start with
initial fortunes of c1, c2, . . . , cn, respectively. When one of the n players wins,
each of other players must pay one dollar to the winner, so the winner has a
total gain of n−1 dollars for the round. Play continues until one of the players
is ruined. In each round, player ith (i = 1, . . . , n) either wins with probabil-
ity pi or loses with probability 1 − pi where p1 + p2 + · · · + pn = 1. When
p1 = p2 = · · · = pn = 1

n , the game is said to be symmetric; otherwise it is
asymmetric.

Extensions of the classical two-player gambler’s ruin problem to n-player sym-
metric games were studied by Sandell [13], Chang [1], and Cho [3] for 3 play-
ers, 4 players and n players, respectively. Rocha and Stern [11] considered the
asymmetric n-player game for n � 3 with equal initial fortunes of d dollars,
1 ≤ d ≤ n + 1, and then generalized their previous studies to the games with
equal initial fortunes of n + c dollars for fixed c, c ∈ N∪ {0} and n ≥ max(c, 2)
in Rocha and Stern [12]. The case when ties may occur in each round was stud-
ied by Hashemiparast and Sabzevari [6]. They derived a closed-form formula
for the expected time until ruin and computed individual ruin probability and
proved the independence of the ruin time and which player is ruined.

In the multidimensional games, the players randomly select one of the m
currencies to gambling in each round and the game is over when one of the
players ruins one currency. In each round, the gamblers select the jth cur-
rency (j = 1, . . . , m) with probability rj where r1 + r2 + · · ·+ rm = 1. When
r1 = r2 = · · · = rm = 1

m , the game is said to be uniform; otherwise it is non-
uniform. Orr and Zeilberger [10] considered the two-dimensional symmetric
and uniform game with two players and derived a formula for the expected du-
ration of the game by using generating function. Kmet and Petkovsek [7] gener-
alized Orr and Zeilberger’s results to the case of the m-dimensional symmetric
and uniform two-player game. Hashemiparast and Sabzevari [6] extended Orr
and Zeilberger’s results to the two-dimensional asymmetric and non-uniform
n-player game with equal initial fortunes of d where 1 ≤ d ≤ n + 1. The result
was then extended to the three-dimensional game in Chanpana et al. [2].

In this paper, we consider the m-dimensional two-player asymmetric and non-
uniform gambler’s ruin problem. Our main result is provided in Section 2
where we find a solution of the expected duration of the asymmetric and non-
uniform with two players and m currencies. Corresponding numerical results
with discussion can be found in Section 3.
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2 Main Results

Kmet and Petkovsek [7] gave a solution of the expected duration of the sym-
metric and uniform two-player game in m dimensions that is the two players
have equal chances of winning and the probabilities of choosing currencies are
equal. However, the assumption could be too restricted. Therefore, in this
paper, we extend their studies to find a solution for a more general case of
asymmetric and non-uniform game in m dimensions. We first find a solution
of the expected duration of the two-dimensional game and then generalize our
technique to give a solution in the general m-dimensional game which results
are presented in Theorem 1 and Theorem 2, respectively.

2.1 A solution of expected duration of the two-dimensional
game

We now consider the two-dimensional game with two players. The players
use two different currencies and start with the initial fortunes of (i, j) and
(N − i, N − j), respectively where N is the total value of fortunes in each cur-
rency. In each round, they toss a coin to decide the currency to gambling. The
play continues until one of the two players goes broke one currency.

Denote by game(i, j) the game with first player’s initial assets equal to (i, j)
where 1 ≤ i, j ≤ N − 1. Assume that the first gambler wins with probability p

q

and looses with probability q−p
q where p < q and the probabilities in choosing

currencies are r1 and r2, respectively where 0 < r1, r2 < 1 and r1 + r2 = 1.
Then, after the first step; game(i, j) turns into game (i +1, j) with probability
p
q r1; game(i, j+1) with probability p

q r2; game(i−1, j) with probability (q−p)
q r1;

or game(i, j − 1) with probability (q−p)
q r2.

Let ai,j(for 1 ≤ i, j ≤ N − 1) be the expected duration of game(i, j) satisfying
the recurrence equation

ai,j =
pr1ai+1,j + (q − p)r1ai−1,j + pr2ai,j+1 + (q − p)r2ai,j−1

q
+ 1 (1)

with the boundary conditions
a0,j = aN,j = ai,0 = ai,N = 0 for 0 ≤ i, j ≤ N. (2)

Let A1 = [ai,j]N−1
i,j=1 be the matrix of unknown values ai,j. By writing (1) in

the form

((q − p)r2ai,j−1 − q

2
ai,j + pr2ai,j+1) + ((q − p)r1ai−1,j − q

2
ai,j + pr1ai+1,j) = −q,

(3)
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for 1 ≤ i, j ≤ N − 1, and using the boundary conditions (2), we can show that
A1 satisfies the matrix equation

A1DT
r2

+ Dr1A1 = −qJ1, (4)

where

Dr1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− q
2

pr1 0 0 . . . 0
(q − p)r1 − q

2
pr1 0 . . . 0

0 (q − p)r1 − q
2 pr1 . . . 0

...
...

. . .
. . .

. . .
...

0 0 . . . (q − p)r1 − q
2

pr1

0 0 . . . 0 (q − p)r1 − q
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

and

Dr2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− q
2

pr2 0 0 . . . 0
(q − p)r2 − q

2 pr2 0 . . . 0
0 (q − p)r2 − q

2
pr2 . . . 0

...
...

. . .
. . .

. . .
...

0 0 . . . (q − p)r2 − q
2 pr2

0 0 . . . 0 (q − p)r2 − q
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

are (N−1)×(N−1) tridiagonal Toeplitz matrices and J1 is the (N−1)×(N−1)
matrix of ones.

From Laub ([8], p.145), we can rewrite (4) as a vector equation

(IN−1 ⊗ Dr1 + Dr2 ⊗ IN−1)a1 = −qj1, (7)

where a1 and j1 are the vectors obtained by stacking the columns of A1 and
J1, respectively.

By Theorem 7, Dr1 and Dr2 are tridiagonal Toeplitz matrices having N − 1
linearly independent eigenvectors, so they are diagonalizable. Then, Dr1 =
Pr1Λr1P

−1
r1

and Dr2 = Pr2Λr2P
−1
r2

where Λr1 and Λr2 are diagonal matrices
of the eigenvalues of Dr1 and Dr2 , respectively and Pr1 and Pr2 are invertible
matrices whose columns are eigenvectors corresponding to the eigenvalues of
Dr1 and Dr2 , respectively. From Laub ([8], p.140), we can rewrite (7) as

(Pr2 ⊗ Pr1)(Λr2 ⊗ IN−1 + IN−1 ⊗ Λr1 )(Pr2 ⊗Pr1)
−1a1 = −qj1.

By Theorem 7, all eigenvalues of DT
r2

and Dr1 are [− q
2

+ 2r2

√
p(q − p) cos iπ

N
]

and Dr1 are [− q
2 +2r1

√
p(q − p) cos jπ

N ], respectively, where i, j ∈ {1, . . . , N −
1}. Assume that there exist i, j ∈ {1, . . . , N − 1} such that λr1,i + λ′

r2,j = 0
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where λr1,i is an eigenvalue of Dr1 and λ′
r2,j is an eigenvalue of DT

r2
. Thus

0 = λr1,i + λ′
r2,j (8)

= −q + 2
√

p(q − p)[r1 cos
iπ

N
+ r2 cos

jπ

N
]

< −q + 2
√

p(q − p) (−1 < cos
xπ

N
< 1 for all x ∈ {1, . . . , N − 1}).

This implies that q < 2
√

p(q − p) and so (q−2p)2 < 0 which is not true. Then
−DT

r2
and Dr1 have no common eigenvalues. Then Λr2 ⊗ IN−1 + IN−1 ⊗ Λr1

is invertible matrix. Therefore the vector of expected duration time is given as
follows.

a1 = −q(Pr2 ⊗ Pr1)(Λr2 ⊗ IN−1 + IN−1 ⊗ Λr1 )
−1(Pr2 ⊗ Pr1)

−1j1.

Thus, we have proven the following theorem.

Theorem 1. For a two - dimensional asymmetric and non-uniform game with
two players where the first gambler wins with probability p

q
and looses with

probability q−p
q where 0 < p < q and the probabilities in choosing currencies

are r1 and r2, respectively where 0 < r1, r2 < 1 and r1 + r2 = 1. The solution
of the expected duration of the game is given as

a1 = −q(Pr2 ⊗ Pr1)(Λr2 ⊗ IN−1 + IN−1 ⊗ Λr1 )
−1(Pr2 ⊗ Pr1)

−1j1,

where for i = 1, 2, Pri is a matrix whose columns are eigenvectors and Λri is a
diagonal matrix of the eigenvalues of Dri defined in (5) and (6), respectively.

2.2 A generalization of the multi-dimensional game

In m-dimensional games, the two players use m different currencies. Their
initial fortunes of the m currencies are (i1, . . . , im) and (N − i1, . . . , N − im),
respectively where N is the total value of fortune of each currency. In each
round, players randomly select 1 of the m currencies to gambling. The play
continues until one of the two players goes broke one currency. In this section,
we generalize our study in the previous section to find a solution expected du-
ration to m-dimensional games.

Assume that the probability in choosing the ith currency is ri (0 < ri < 1)
where 1 ≤ i ≤ m and

∑m
i=1 ri = 1. Denote by game (i1, . . . , im) the game with

first player’s initial assets equal to (i1, . . . , im) where 1 ≤ i1, . . . , im ≤ N − 1.
Let ai1,...,im be the expected duration of the game(i1, . . . , im). We define Ak be
the (N −1)k×(N −1) matrix whose the lth column a.,.,...,l is obtained by stack-
ing the columns of the (N − 1)k−1 × (N − 1) matrix [ai1,i2,...,ik−1,l]N−1

i1,i2,...,ik−1=1
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one above another and, for k = 1, 2, . . . , m,

Drk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− q
m

prk 0 0 . . . 0
(q − p)rk − q

m
prk 0 . . . 0

0 (q − p)rk − q
m prk . . . 0

...
...

. . .
. . .

. . .
...

0 0 . . . (q − p)rk − q
m

prk

0 0 . . . 0 (q − p)rk − q
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Consider the m-dimensional case, we have the recurrence

−q = ((q − p)rmai1,i2 ,...,im−1 − q

m
ai1 ,i2,...,im + prmai1 ,i2 ,...,im+1)

+ · · · + ((q − p)r1ai1−1,i2 ,...,im − q

m
ai1 ,i2 ,...,im + pr1ai1+1,i2 ,...,im ),

for 1 ≤ i1, i2, . . . , im ≤ N − 1. The equation is equivalent to

Am−1DT
rm

+ Dm−2Am−1 = −qJm−1, (10)

where
Dm−2 = Drm−1 ⊗ I(N−1)m−2 + IN−1 ⊗Dm−3 = Dm−3 ⊕Drm−1

for m ≥ 3, D0 = Dr1 and Jm−1 is the (N − 1)m−1 × (N − 1) matrix of ones.

To show that (10) has a unique solution for all m ≥ 3, by Theorem 6, it is
sufficient to show that Dm−2 and −DT

rm
have no eigenvalues in common. The

proof is given as follows.

Let Λrk = diag(λrk ,i)N−1
i=1 be the diagonal matrix of the eigenvalues of Drk

for all k = 1, 2, . . . , m and i = 1, . . . , N − 1.
Since Drk is a tridiagonal Toeplitz matrix for all k = 1, 2, . . . , m, by Theorem
7,

λrk ,i = − q

m
+ 2rk

√
p(q − p) cos

iπ

N
.

Since Dm−k = Drm−k+1 ⊕Dm−k−1 for all 1 ≤ k < m,

Dm−2 = (((Dr1 ⊕ Dr2) · · · ⊕Drm−3 ) ⊕ Drm−2 ) ⊕ Drm−1 .

By Theorem 5, the set of all eigenvalues of Dm−2 is

{λr1,j1 + · · ·+ λrm−1 ,jm−1 | for j1, . . . , jm−1 = 1, . . . , N − 1}.

Assume that there exists i ∈ {1, . . . , N − 1} and j ∈ {1, . . . , (N − 1)m−1} be
such that λ′

rm,i + μj = 0 where λ′
rm,i is an eigenvalue of DT

rm
and μj is an
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eigenvalue of Dm−2. We can generalize the equation (8) to the m-dimensional
games where μj =

∑m−1
l=1 λrl ,jl . Then λrm,i + μj �= 0 for all i ∈ {1, . . . , N − 1},

j ∈ {1, . . . , (N−1)m−1}, by Theorem 6, (10) has a unique solution for all m ≥ 3.

Then for all m ≥ 3 we have

Dm−1am−1 = −qjm−1,

where Dm−1 = Drm ⊗ I(N−1)m−1 + IN−1 ⊗ Dm−2 = Dm−2 ⊕Drm .

Thus,

am−1 = −qD−1
m−1jm−1,

where am−1 is the vector with components ai1,...,im and jm−1 is the vector with
all components equal to 1.
Therefore, we have proven the following theorem.

Theorem 2. For an m-dimensional asymmetric and non-uniform game with
two players where the first gambler wins with probability p

q and looses with
probability q−p

q where 0 < p < q and the probabilities in choosing currencies

are ri (i = 1, 2, . . . , m) where 0 < ri < 1 and
m∑

i−1

ri = 1. The solution of the

expected duration of the game is given by an iterative form as follows.

am−1 = −qD−1
m−1jm−1, (11)

where Dm−1 = Drm ⊗ I(N−1)m−1 + IN−1 ⊗Dm−2 = Dm−2⊕Drm and Drk (k =
1, 2, . . . , m) are given in (9).

Remark 1. Note that in the case N = 3, the matrices Drk ( k = 1, . . . , m)
appeared in Equations (4) and (10) are not tridiagonal. Then the techniques in
showing the existence and uniqueness of the solutions used previously are not
hold. We give an alternative technique in this remark as follows.
By direct calculations, eigenvalues of Drk are − q

m ± rk

√
pq − p2. If Drm and

Dm−2 in Equations (4) and (10) have common eigenvalues, then

− q

m
± rm

√
pq − p2 +

m−1∑
k=1

[
− q

m
± rk

√
pq − p2)

]
= 0.

Then q2 =
[∑m

k=1 ±rk

√
pq − p2

]2

= (pq − p2)(
∑m

k=1 ±rk)2 = pq − p2 < q2

which is not true. By Theorem 6, the Equations (4) and (10) have unique
solutions.
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Remark 2. In this section, we give a formula of the expected duration for the
m-dimensional asymmetric and non-uniform game. For a special case of our
result, symmetric and uniform game, the formula (11) in Theorem 2 reduces
to Kmet and Petkovsek’s result [7] given as follows.

am−1 = −2mD−1
m−1jm−1,

where Dm−1 = D ⊗ I(N−1)m−1 + IN−1 ⊗Dm−2 and

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
. . . . . . . . .

...
0 0 . . . 1 −2 1
0 0 . . . 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

3 Numerical results

In this section, we present some numerical results of Theorem 2 in calculating
the expected duration time of the three-dimensional game which we will con-
sider in four cases: symmetric and uniform game (p/q = 1/2 and r1 = r2 = r3),
symmetric and non-uniform game (p/q = 1/2 and r1 = 1/3, r2 = 2/9), asym-
metric and uniform game (p/q = 1/3 and r1 = r2 = r3) and asymmetric and
non-uniform game (p/q = 1/3 and r1 = 1/3, r2 = 2/9).
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TABLE I
Numerical results of expected duration in the three-dimensional two-player

game with N = 4.

Expected duration of game (ai,j,k)
Game (i, j, k)

p/q = 1/2 and p/q = 1/2 and p/q = 1/3 and p/q = 1/3 and

r1 = r2 = r3 r1 = 1
3
, r2 = 2

9
r1 = r2 = r3 r1 = 1

3
, r2 = 2

9
(1,1,1) 2.588 2.601 1.784 1.798
(2,1,1) 3.176 3.193 2.352 2.374
(3,1,1) 2.588 2.601 2.182 2.202
(1,2,1) 3.176 3.086 2.352 2.230
(2,2,1) 3.941 3.829 3.209 3.035
(3,2,1) 3.176 3.086 2.969 2.810
(1,3,1) 2.588 2.601 2.182 2.081
(2,3,1) 3.176 3.193 2.969 2.818

(3,3,1) 2.588 2.601 2.749 2.612
(1,1,2) 3.176 3.267 2.352 2.489
(2,1,2) 3.941 4.053 3.209 3.407
(3,1,2) 3.176 3.267 2.969 3.150
(1,2,2) 3.941 3.916 3.209 3.186
(2,2,2) 4.941 4.908 4.535 4.499
(3,2,2) 3.941 3.916 4.187 4.155
(1,3,2) 3.176 3.267 2.969 2.957
(2,3,2) 3.941 4.053 4.187 4.156
(3,3,2) 3.176 3.267 3.870 3.841

(1,1,3) 2.588 2.601 2.182 2.307
(2,1,3) 3.176 3.193 2.969 3.156
(3,1,3) 2.588 2.601 2.749 2.920
(1,2,3) 3.176 3.086 2.969 2.952
(2,2,3) 3.941 3.829 4.187 4.170
(3,2,3) 3.176 3.086 3.870 3.854
(1,3,3) 2.588 2.601 2.749 2.742
(2,3,3) 3.176 3.193 3.870 3.855
(3,3,3) 2.588 2.601 3.580 3.566

From Table I, we can see that ai,j,k = aN−i,j,k = ai,N−j,k = ai,j,N−k =
aN−i,N−j,k = aN−i,j,N−k = ai,N−j,N−k = aN−i,N−j,N−k in symmetric and
non-uniform game and clearly that ai,j,k = ai,k,j = aj,i,k = aj,k,i = ak,i,j =
ak,j,i in asymmetric and uniform game but ai,j,k = aN−i,j,k is not true. These
observations are also true for general m-dimensional games.

4 Conclusion

In this paper, we give formula of the expected duration time of the m-dimensional
asymmetric and non - uniform games with two players. Some further exten-
sions of our studies can be done. For example, the game with multiple players
and the case where ties may occur.
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5 Appendix

In this section, we state some definitions and theorems used in our paper. One
main approach of our paper is to consider the Sylvester’s equation of the form

AX + XB = C

where A ∈ R
n×n, B ∈ R

m×m, and C ∈ R
n×m.

Definition 3. Let A ∈ R
m×n and B ∈ R

p×q. Then the Kronecker product (or
tensor product) of A and B, denoted A⊗ B, is the mp × nq block matrix:

A⊗ B =

⎛
⎝ a11B · · · a1nB

.

.

.
.
.
.

am1B · · · amnB

⎞
⎠

Definition 4. Let A ∈ R
n×n and B ∈ R

m×m. Then the Kronecker sum (or
tensor sum) of A and B, denoted A⊕B, is the mn × mn matrix (Im ⊗ A) +
(B⊗ In). Note that, in general, A⊕ B �= B⊕ A.

Theorem 5. (Laub [8]) Let A ∈ R
n×n have eigenvalues λi, i = 1, . . . , n, and

let B ∈ R
m×m have eigenvalues μj, j = 1, . . . , m. Then the Kronecker sum

A⊕ B = (Im ⊗A) + (B ⊗ In) has mn eigenvalues

λ1 + μ1, . . . , λ1 + μm, λ2 + μ1, . . . , λ2 + μm, . . . , λn + μm.

Moreover, if x1, . . . , xp are linearly independent right eigenvectors of A corre-
sponding to λ1, . . . , λp (p ≤ n), and z1, . . . , zq are linearly independent right
eigenvectors of B corresponding to μ1, . . . , μq (q ≤ m), then zj ⊗ xi ∈ R

mn

are linearly independent right eigenvectors of A⊕B corresponding to λi + μj,
i = 1, . . . , n, j = 1, . . . , m.

Theorem 6. (Laub [8]) Let A ∈ R
n×n, B ∈ R

m×m and C ∈ R
n×m. Then the

Sylvester equation

AX + XB = C

has a unique solution if and only if A and −B have no eigenvalues in common.

Theorem 7. (Mayer [9]) Let A be the n × n tridiagonal Toeplitz matrix be
such that

A =

⎡
⎢⎢⎢⎢⎢⎣

b a 0 0 . . . 0
c b a 0 . . . 0
...

...
. . . . . . . . .

...
0 0 . . . c b a
0 0 . . . 0 c b

⎤
⎥⎥⎥⎥⎥⎦

with a, c �= 0.
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Then A is diagonalizable with n different eigenvalues and eigenvectors, respec-
tively; define by

λk = b + 2a

√
c

a
cos

kπ

n + 1

and

xk =

⎡
⎢⎢⎢⎢⎢⎣

(c/a)1/2 sin (1kπ/(n + 1))
(c/a)2/2 sin (2kπ/(n + 1))
(c/a)3/2 sin (3kπ/(n + 1))

...
(c/a)n/2 sin (nkπ/(n + 1))

⎤
⎥⎥⎥⎥⎥⎦

for k = 1, . . . , n.
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