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Abstract

Let Py := Fa[z1,22,...,2zx] be the polynomial algebra in k variables
with the degree of each x; being 1, regarded as a module over the mod-2
Steenrod algebra A, and let GLi be the general linear group over the
prime field F2. We study the Peterson hit problem of finding a minimal
set of generators for the polynomial algebra Px as a module over the
mod-2 Steenrod algebra, A. The results are used to study the Singer
algebraic transfer which is a homomorphism from the homology of the
mod-2 Steenrod algebra, Torﬂk+n(F2,F2), to the subspace of Fo ® 4 Pg
consisting of all the G Li-invariant classes of degree n.

In this paper, we explicitly determined the Peterson hit problem for
k = 5 and the dgree 17. Using this result, we show that, Singer’s conjec-
ture for the fifth algebraic transfer is true in this degree.

1 Introduction and statement of results

Let Vi denote a k-dimensional Fao-vector space and let BV denote the clas-
sifying space of V. It may be thought as the product of k copies of the real
projective space RP®. As is well known,

Pk = H*(BVk) = Fg[xl,xg, . ..,xk],
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28 The hit problem for the polynomial algebra

a polynomial algebra on k generators x1, xs, ..., xk, each of degree 1. Here the
cohomology is taken with coefficients in the prime field Fy of two elements.
Being the cohomology of a space, Py is a module over the mod-2 Steenrod
algebra A. The action of A on Py is determined by the elementary properties of
m

the Steenrod squares Sq* and the Cartan formula Sq™(fg) = Y. Sq¢’ (f)Sq™ 7 (g),
j=0

for f, g € Py (see Steenrod-Epstein [13]).

Let GLx := GL(Vy) be the general linear group over the field Fy. This
group acts regularly on Vi and therefore on the cohomology of BVy. Since the
two actions of A and GLg upon H*(BV}) commute with each other, there is
an inherited action of GLj on QP;.

A polynomial f in Py is called hit if it can be written as a finite sum
f=>is0 Sq?' (f;) for suitable polynomials f;. That means f belongs to A* Py,
where AT denotes the augmentation ideal in A. We study the hit problem, set
up by Frank Peterson, of finding a minimal set of generators for the polynomial
algebra Py as a module over the Steenrod algebra. This means that we want
to find a basis of the Fa-vector space QP := A/ AT P, = Fy @4 Py.

The hit problem was first studied by Peterson [8], Wood [23], Singer [11],
and Priddy [10], who showed its relationship to several classical problems re-
spectively in cobordism theory, modular representation theory, Adams spectral
sequence for the stable homotopy of spheres, and stable homotopy type of clas-
sifying spaces of finite groups. The vector space Q P}, was explicitly calculated
by Peterson [8] for k = 1, 2, by Kameko [6] for £ = 3 and by Sum [15] for k& = 4.
However, for & > 5, the problem is still open.

Recently, many authors showed their interest in the study of the hit problem
in conjunction with the transfer, which was defined by Singer [11]. This transfer
is a homomorphism

okt Torfy y(Fa, F2) — (QP)™,
where Torﬁk_m(lﬁ‘g, F3) is isomorphic to Exti{k"’"(lﬁ‘g, F3), the Ey term of the
Adams spectral sequence of spheres, (QPy), is the subspace of QP consisting
of all the classes represented by the homogeneous polynomials of degree n in P
and (QPy)SE* is the the subspace of (QPy),, consisting of all the G Ly-invariant
classes.

Singer showed in [11] that @) is an isomorphism for & = 1,2. Boardman
showed in [1] that 3 is also an isomorphism. Bruner-Ha-Hung [2], Hung [5],
Ha [4], Sum [16] and Sum-Tin [19] have studied the transfer for k = 4,5.
However, for k > 3, the transfer is not a monomorphism. Singer made the
following conjecture.

Conjecture 1.1 (Singer [11]). The algebraic transfer i is an epimorphism
for any k > 0.
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The conjecture is true for k£ < 3. However, for k > 3, it is open.

In this paper, we explicitly determined the Peterson hit problem for £ =5
and the degree 17. This result is used to verify Singer’s conjecture. One of our
main results is the following.

Theorem 1.2. (QPs)17 is the Fy-vector space of dimension 566 with a basis
consisting of all the classes represented by the monomials by, 1 < t < 566,
which are determined as in Subsection 4.2.

The space (QP5)f7L 5 is explicitly computed by using this theorem. We have

Theorem 1.3. There exists uniquely a non-zero class in (QP;,)%L"’.
By combining Theorem 1.3 with the results of Singer [11] and Ha [4], one
gets the following.

Theorem 1.4. The homomorphism ¢ : Toréw(lﬁ‘g,lﬁ‘g) — (QPs)$Fo is an
isomorphism.

The last theorem confirms that Singer’s conjecture is true for k£ = 5 and the
degree 17.

In Section 2, we recall some needed information on the admissible monomi-
alsin Py, Singer’s criterion on the hit monomials and Kameko’s homomorphism.
Our results will be proved in Section 3. Finally, in the appendix, we list all the
admissible monomials of degrees 6, 17 in Ps.

2 Preliminaries

In this section, we recall some results in Kameko [6], Sum [15] and Singer [12]
which will be used in the next section.

Notation 2.1. Let «j(n) denote the j-th coefficients in dyadic expansion of a
non-negative integer n. That means n = ag(n)2°+aq(n)2' +- - +a;(n)27 +- - - |
for aj(n) € {0,1} and j > 0.

Let x = z{'25*...23F € Py. Set I;(z) = {i € Ny : «j(a;) = 0}, for j > 0.

Then we have .
_ 2.7—
r= H le—l(ff)'

j>1
Definition 2.2. For a monomial z = x{'x5>...2}* € Py, we define two se-
quences associated with = by
LL)(J?) = (wl(x)aWQ(x)a'--awj(x)a"')
olx) = (a1,az,...,ax),

where w;(x) = Z1<¢<k aj_1(a;) = degXIj_l(rc),j =1
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The sequence w(x) is called the weight vector of the monomial x and o(x)
called the ezponent vector of the monomial x. The weight vectors and the
exponent vectors can be ordered by the left lexicographical order.

Let w = (w1,ws,...,w;,...) be a non-negative integer such that w; = 0 for
i > 0. Define degw = 7, 2''w;. We denote

Pi(w) = {{z € Py : degx =degw and w(z) < w}) C P,
P (w)=({{zr € Py: degx = degw and w(z) < w}) C Pr(w).

Definition 2.3. Let w be a weight vector and f, g two polynomials of the same
degree in P.

(i) f=g mod A".Py if and only if f + g € AT.Pg. If f =0 then f is called
hit.

(ii) f =, gmod (AT.P, + P, (w)) if and only if f + g € AT.P, + P (w).

Obviously, the relations = and =, are equivalence ones. Denote by Q Py (w)
the quotient of Py(w) by the equivalence relation =, . Then we have

QP (w) = Pr(w)/((AT.P: N Pu(w)) + Py (w)).

For a polynomial f € Py, we denote by [f] the classes in QP represented by
f. If w is a weight vector and f € Pj(w), then denote by [f], the classes in
QP (w) represented by f. Denote by |S| the cardinal of a set S.

It is easy to see that

QPi(w) 2 QP = ({[z] € QP : z is admissible and w(z) = w}).

Then, we get

QP = P QPF= @ QPi(w).

deg w=n deg w=n

Hence, we can identify the vector space QPy(w) with QP C QP;.

We note that the weight vector of a monomial is invariant under the per-
mutation of the generators x;, hence QPy(w) has an action of the symmetric
group X.

For 1 < i < k, define the A-homomorphism ¢; : Py — Py, which is
determined by g¢;(x;) = ®it1, gi(®iy1) = @4, gi(zj) = x; for j #4,i+1, 1 <
i < kand gg(x1) = z1 + x2, gr(z;) = x; for j > 2,. Observe that the general
linear group GL; = GL(V}) is generated by ¢;, 0 < 4 < k and the symmetric
group X C GLj is generated by ¢g;, 1 < ¢ < k — 1. Hence, a homogeneous
polynomial f € Py is an G Lg-invariant if and only if g;(f) = f for 1 < i < k.
If g;(f) = f for 1 <i < k—1, then f is an Yg-invariant.
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Lemma 2.4 (see Sum [17]). If w is a weight vector, then QPy(w) is the
G Lj,-module.

Now, we recall some relations on the action of the Steenrod squares on P.

Proposition 2.5. Let f be a homogeneous polynomial in Py and the Steenrod
squares Sq" : (Pp)n — (Pg)nti, © 2 0.

(i) If i > deg f then Sq¢*(f) = 0. If i = deg f then Sq'(f) = f2.

(ii) Ifi is not divisible by 2° then Sq*(f%") = 0 while S¢"*" (") = (Sq"(f))*".

Definition 2.6. Let x,y be monomials in P;. We say that < y if and only
if one of the following holds

() w(z) < w(y);
(il) w(z) = w(y) and o(z) < o(y).

Definition 2.7. A monomial z is said to be inadmissible if there exist monomi-
als y1,y2, ...,y such that yy <z, for 1 <t <land z = 2121 ys mod (AT.Py).
A monomial z is said to be admissible if is not inadmissible.

Obviously the set of all the admissible monomials of degree n in Py is a
miniaml set of A-generators for Py in degree n.

Definition 2.8. A monomial z in Py is said to be strictly inadmissible if and
only if there exist monomials y1,¥s, ...,y such that y; <z, for j =1,2,...,¢

and
251

t
T = Zyj + Z Sq" (hy)
=1 u=1
with s = max{i : w;(z) > 0} and suitable polynomials h,, € P.

It is easy to see that if x is strictly inadmissible, then it is inadmissible. We
recall the following.

Theorem 2.9 (Kameko [6], Sum [15]). Let z,y, w be monomials in Py such
that wi(x) =0 fori>r >0, ws(w) # 0 and w;(w) =0 fori> s> 0.

(i) If w is inadmissible, then zw? is also inadmissible.

(ii) If w is strictly inadmissible, then wy® is also strictly inadmissible.

Now, we recall a result of Singer [12].

Definition 2.10. A monomial z = 25252 ... 2" is called a spike if b; = 2% — 1

for s; a non-negative integer and 1 < ¢ < k. If z is a spike with s1 > s2 > ... >
s1—1 = s; and s; = 0 for j > [ 4 1, then it is called a minimal spike.
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For a positive integer n, by u(n) one means the smallest number r for which
it is possible to write n = Y3, ;.(2% —1), where d; > 0. In [12], Singer showed
that if p(n) < k, then there exists uniquely a minimal spike of degree n in Pj.

The following is a criterion for the hit monomials in Pj.

Theorem 2.11 (Singer [12]). Suppose © € Py is a monomial of degree n,
where pu(n) < k. Let z be the minimal spike of degree n. If w(x) < w(z) then x
is hit.

From this theorem, we see that if z is a minimal spike, then P (w(z)) C
AT P,.. We set

P) = ({z=a{25? ... | aras...ax = 0}),
P =({z=a{25...20* | aras...a; > 0}).

It is easy to see that P and P,j are the A-submodules of Py. Furthermore,
we have the following.

Proposition 2.12. We have a direct summand decomposition of the Fy-vector
spaces
QPr = QP) ® QP
Here QPY = PYJA*.PY and QP;f = PfJAT. P
Definition 2.13. For 1 < ¢ < k, define the homomorphism f; = fx,; : Pe—1 —
Py, of algebras by substituting
o fay i1<i<i-,
fl(xj) o { Tj4+1 lf] glg k—1.

For a subset B C Py, we denote [B] = {[f]: f € B}. If B C Py(w), then we
set [Bly = {[flw : f € B}. From Theorem 2.11, we see that if w is the weight
vector of a minimal spike in Py, then [B], = [B].

Clearly, we have
Proposition 2.14 (Sum [15]). If B is a minimal set of generators for (Py_1)n,
then f(B) = Ule 1i(B) is the minimal set of generators for (PQ)y.

From now on, we denote by By(n) the set of all admissible monomials in
(Pi)n, BY(n) = Bi(n) N (PY)n, B (n) = Bi(n) N (P}),. For a weight w of
degree n, we set By (w) = Bi(n) N Pr(w), Bi (w) = Bi(n) N P (w).

Then, [Bi(w)], and [B{ (w)]., are respectively the basis of the Fa-vector
spaces QP (w) and QP (w) := QPy(w) N (QP )n.

For any monomials z, 21, . .., z: € Pi(w) with t >

Se(z1, ..y 2) ={0z: 0 € Ty, 1 < i <t} C Pr(w),
[B(z1,.. ., 2], = [Br(w)], N ([Zk(z1, -5 20)],),

z€BK (n)NTk(2)

1, we denote
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We denote
N ={(G 1) | I = (i i2,...,0),1 <i<ip <ip <...<i, <k,0<r<k—1}h

Definition 2.15. For any (i;1) € N}, we define the homomorphism p;,7y :
Py — Py_1 of algebras by substituting

i if 1<j<i—1,
p(i;l)(xj)z S%xs_l if j =1,
Tj—1 ifi+1<j<k.

Then p(; ) is a homomorphism of .A-modules. In particular, we have p(;.g)(z;) =
0for1<i<k.

Lemma 2.16 (see [9]). If z is a monomial in Py, then p; 1 (x) € Pr_1(w(x)).

Lemma 2.16 implies that if w is a weight vector and = € Py(w(x)), then
pi,1)(x) € Pr_1(w). Moreover, p(; ) passes to a homomorphism from QP (w)
to QPr_1(w).

We end this section by recalling the definition of Kameko’s homomorphism

—0

Sq, : QPy — @QPy. This homomorphism is an G Li-homomorphism induced by
—~—0

the Fa-linear map, also denoted by Sq, : P — P, given by

S’VO( ) y, ifx=x120... 2832,
* x = .
1 0, otherwise,

—~0
for any monomial x € Pj. Note that Sgq, is not an A-homomorphism. However,
—~0 —0 0
Sq,S¢%* = Sq¢'Sq, and Sq,S¢* ! = 0 for any non-negative integer ¢. Denote

—0
by (Sq.),a) : (QPr)2d+x — (QPr)a Kameko’s homomomorphism in degree
2d + k.

3 Proofs of the results

In this section, we prove our results which are stated in the introduction.

3.1 Proof of Theorem 1.2

—0
Consider Kameko’s homomorphism (Sq,)56) : (@Ps5)17 — (QFs)s. Since
this homomorphism is an epimorphism, we get

(QPs)17 = Ker(5.)s.6) ® (QPs)s
=~ (QPY)17 & (Ker(Sqy) 5.0y N (QP5)17) © (QPs)e.
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The computation of (QPs)g is easy. We have the following.

Proposition 3.1.1. (QPs)g is the Fo-vector space of dimension 74 with a basis
consisting of all the classes represented by the monomials ay, 1 <t < 75, which
are determined as in Subsection 4.1.

From a result in [15] and Proposition 2.14, we easily obtain

Proposition 3.1.2. (QPs)Y; is the Fy-vector space of dimension 335 with a
basis consisting of all the classes represented by the monomials by, 1 <t < 335,
which are determined as in Subsection 4.2.

Now, we compute Ker(Sq,)s,6) N (QP5" )17

Proposition 3.1.3. The set {[b:] : 336 < t < 492} is the basis of the Fy-vector

—~—0
space Ker(Sq,)(s,6) N (QP:")17. Here the monomials by, 336 < t < 492, which
are determined as in Subsection 4.2.

By combining Proposition 3.1.1-3.1.3, we get dim(QPs)17 = 566.
We prove the proposition by proving some lemmas.

Lemma 3.1.4. If x is an admissible monomial of degree 17 in Ps and [z]

belong to Ker(%g)(&ﬁ), then w(x) is one of the sequences: (3,1,1,1), (3,1,3),
(3,3,2).

Proof. Observe z = zi%row3 is the minimal spike of degree 17 in Ps and
w(z) = (3,1,1,1). Since [z] # [0], by Theorem 2.11, we get either wq(z) = 3
or wi(r) = 5. If wi(z) = 5 then z = ryw2737475y% With y a monomial of
degree 6 in Ps5. Since x is admissible, by Theorem 2.9, y is admissible. Hence,
(ng)(576)([x]) = [y] # [0]. This contradicts the fact that [z] € Ker(SqS)(w).
Hence, wy(z) = 3. Then, we have z = z;x;x,y? with 1 <i < j < <5 and y;
is an admissible monomial of degree 7 in Ps. Since y; is admissible, according
to a result in Tin [20], we have either w(y;) = (1,1,1) or w(y1) = (1,3) or
w(y1) = (3,2). The lemma is proved. O

Lemma 3.1.5. The following monomials are stricly inadmissible:

x%x3x4x5 x%x3x4x5 x%x2x4x5 x%x2x3x5 x%x2x3x4
x§x§2x4x5 x%x§2x4x5 x%x%2x4x5 x%x%2x3x5 x%x%2x3x4
x%x%:mxg x%x%x?lx5 x%x%:mxg x%x%x?l:% x%x%:mxg
x%x%x2x5 x%x%xgxg x%x%xgx?l x%x%x%x5 x%x%x%:@

3..4 8 3..4 8 3,48
T1ToX3T4T T1ToT3T 4T TILoX3X4T5-
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Proof. We prove the lemma for the monomial z = z3z3z§z4xs5. The others

can be proved by a similar computation. By a direct computation, we have

4 4 2 12 1 1
xr = xfx2x§x4x5 + xfx2x§x4x5 + zixoxz Taxs + Sq (xfx2x30x4x5)
2 2 2 2 2 1
+ Sq (x?x2x2x4x5 + x?xgxgx4x5 + x?xgxgm% + x1x2x30x4x5)

+ Sq* (23 x3alzazs + atwoaSais + airealraz?) mod(P5 (3,1,1,1)).
Hence, z is strictly inadmissible. O
Lemma 3.1.6. The Fy-vector space QP (3,1,1,1) is spanned by the set

{[be] : 336 < t < 356}.

Proof. Let x be an admissible monomial in Ps such that w(z) = (3,1,1,1).
Then, wy(z) = 3, = z;xjzy* with 1 <i < j < £ << 5 and y a monomial of
degree 7 in Ps. Since z is admissible, according to Theorem 2.9, y € Bs(1,1,1)
(see [20]).

Let 2 € Bs(1,1,1) and 1 < i < j < £ < 5. By a direct computation, we
see that if xixjngQ %+ by, Vt, 336 < t < 356, then there is a monomial w which
is given in Lemma 3.1.5 such that z;z;z¢2% = wz?" with suitable monomial
z1 € Ps, and u = max{s € Z : ws(w) > 0}. By Theorem 2.9, z;z;x,2? is
inadmissible. Since z = x;z;zy* with y € Bs(1,1,1) and x is admissible, one
gets © = by for some ¢t. The lemma is proved. O

Lemma 3.1.7. The following monomials are stricly inadmissible:

3,4, 4,5 3.4, 5.4 .3 4.4 .5 3.4 4.5
TITGTITLLTE  TITHTITIT5  TTToTZ3T4TE TITGTRTITs

viviadwaxt  wdwialadrs  adadaxiagwl adadriaies

Proof. We only prove the lemma for the monomial x = zjzirszizd. We

have

4 4 1 1
T = wirerarial + S¢t (xiraxizer?)
2,25 2,6

+ Sq* (x?x%xgxixg + x?x2x3x4x5 + x?x2x3x4x5
+ Sq* (2iz3zsaiad + atwoniaial + izszsaizl) mod(P5 (3,1,3)).
This equality implies x is strictly inadmissible. O

Lemma 3.1.8. The Fy-vector space QPs(3,1,3) is spanned by the set

{[be](3,1,3): 357 <t < 366}.
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Proof. Let x be an admissible monomial in P5 such that w(x) = (3,1, 3).
Then, wy(x) = 3, = z;xjzy* with 1 <i < j < £ << 5 and y a monomial of
degree 7 in Ps. Since z is admissible, according to Theorem 2.9, y € Bs(1, 3).

Let z € B5(1,3) and 1 <4 < j < £ < 5. A direct computation shows that if
xixjxng % by, Vt, 357 < t < 366, then there is a monomial w which is given in
one of Lemmas 3.1.5, 3.1.7 such that x;x,;72? = wz?  with suitable monomial
z1 € P5, and r = max{s € Z : ws(w) > 0}. By Theorem 2.9, z;z;ze2? is
inadmissible. Since z = z;xjz,y* with y € Bs(1,3) and z is admissible, one
gets © = by for some ¢, 357 < ¢t < 366, completing the proof. O

By an easy computation, we get the following.

Lemma 3.1.9. If (i, j,¢,m,n) is a permutation of (1,2,3,4,5) such that i < j,

then the monomials x2xjxiz3, is stricly inadmissible.

Lemma 3.1.10. The following monomials are stricly inadmissible:

xlxgxg:mxg x1x3x2x1x5 x1x§x§x2x5 xlxgngmxg x1x3x3x1x5
xlxgxgxi% x1x§x§x2x5 xlxgxgxi% xengxf{:% xzxgxgxi%
x1x3x§x2x5 xlxgxg:mxg xlxgxgxi:% xlxgxgxixg xw%x%xix?
edrlaleded  pdrleletsd

Proof. We only prove the lemma for the monomials = = xlxgxgmxg and
y = z12$z3xir3. The others can be proved by a similar computation. A direct

computation shows

2 5 2 2 1,2
r = xyseieiel + riveaSaial + S¢t (vivaxdranl)

+ S¢® (2122252428 + 12205 242]) mod (P5 (3,3,2)),

4 4 4 4
Y= x1x§x§x4xg + xlxgxgxg% + xlxgxgxixg + xlxgxgx?lxg

4 4 4 4
+ xlxgxgxi% + xlxgxgx4xg + xlexgxixg + xlexgx?lxg

+ xlxéxgxixg + xlxgxgxixg + xlxgxgxixg + xlxgxgxixé
+ Sqt (wixdadaied + aladadaied + afadadeiad + plwdedatal)
+ Sq2 (xlxgxgxixg + xlxgxgxixg + xlxgxgxixg + xlxgxgxixg
+ z1z5ziied) mod(Ps (3,3,2)).
Hence, z,y are strictly inadmissible. O
Lemma 3.1.11. The Fy-vector space QP;_(LU) is spanned by the set
{[bt]@, 367 <t <492},

where w = (3,3, 2).
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Proof. Let x be an admissible monomial in P5 such that w(x) = (3,3,2).
Then, wy(x) = 3, = z;xjzy* with 1 <i < j < £ << 5 and y a monomial of
degree 7 in Ps. Since z is admissible, according to Theorem 2.9, y € Bs(3,2).
Let z € B5(3,2) and 1 <i < j < £ < 5. A routine computation shows that
if xixjxgzz % by, Vt, 367 < t < 492, then there is a monomial w which is given in
one of Lemmas 3.1.9, 3.1.10 such that z;2;7,2? = w2?" with suitable monomial
z1 € P5, and r = max{s € Z : ws(w) > 0}. By Theorem 2.9, z;z;z42? is
inadmissible. Since z = z;xjz,y* with y € B5(3,2) and z is admissible, one
gets © = by for some ¢, 367 <t < 492, completing the proof. O
Now, we are ready to prove Proposition 3.1.3.

Proof.  [Proof of Proposition 3.1.3] Lemmas 3.1.6, 3.1.8, 3.1.11 and 3.1.4

imply that the space Ker(%g)(w) N (QP5H)17 is spanned by the set {[b] :
336 <t < 492}. Now, we prove this set is linearly independent in QPs.
Suppose there is a linear relation S = 222336 vb = 0, where v, € Fo, for
all t, 336 < t < 492. For (i;1) € N5, we explicitly compute p(;;1)(S) in terms
ot the admissible monomials of degree 17 in P;. By a direct computation
from the relations p(;;1)(S) = 0 with either I = (j),1 < i < j < b5ori =
1,1 =1(2,3),(2,4),(3,4) we will obtain ¢ = 0 for all ¢, 336 < ¢ < 492. The
proposition is proved. U

3.2 Proof of Theorem 1.3

To prove the theorem, we need to compute (QP5)§L5.

Proposition 3.2.1. (QPF))g;Ls _
Proof. By Proposition 3.1.1, if [h] € (QP5)S™*, then h = Z:il e with

v € Fy and g;(h) = h for i = 1,2,3,4,5. By a direct computation from the
relations g;(h) = h for i = 1,2, 3, 4, we obtain

Y = 71, t, 1 <t <10,

Ve = 711, VE, 11 <t < 40,

v = 0,Vt, 41 <t <50, and 71 <t< 74,
Y = 51, Vt, 51 <t < 70.

Now, computing directly from the relation gs(h) = h, one gets v1 = y1 =

~v51 = 0. Hence, v = 0, Vt, 1 <t < 74. The proposition is proved. O
—~0

Recall that Kameko’s homomorphism (S5¢, )s.6) : (@P5)17 — (QPs)s is a

homomorphism of G Ls-modules. Hence, using Proposition 3.2.1, we need to
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—0
compute (Ker(Sg,)(,6)))¢%?. We have a direct summand decomposition of the
Ys-modules:

(Ker(S4.)5.9)) = (QPY)1r €D ((Ker(Sa2)5.0) ¥4 (Y @P 7).

By Theorem 1.2, we have

QP17 =QPY(3,1,1,1) DQPI(3,1,3) D QPI(3,3,2).
Lemma 3.2.2. We have

QP50(35 1) 1) 1)25 = <[p(b1]a [p(b31)]a [p(bﬁl)]a [p1]>a
where p1 = ii(;l by.
Proof. [Outline of the proof] By a direct computation using the results of
Theorem 1.2, we see that see that there is a direct summand decomposition of
the ¥5-modules:

QPY(3,1,1,1) = ([Z5(b1)]) @S5 (531)]) N[5 b6 )]) ED([Es(br1, buso)],

where

B5(b1) = {bt 01 S t S 30}, B5(b31) = {bt : 31 S t S 60},
B5(b61) = {bt 161 g t g 70}, B5(b71, b136) = {bt 171 g t g 160}

Let [f] € ([Z5(0))])™*, j = 1,31,61. Then, f =, 3. pp,)V--2- By a direct
computation, we can see that the action of X5 on (QPs induces the one of
it on the set [B(b;)]. Furthermore, this action is transitive. Hence, we get
Vo =Y. = € Fy, for all 2,2’ € B(b;). This implies f = vp(b;).

If [f] € ([Z5(b71,b136)])¥5. Then f = Zii(;l vtbe. Computing directly from
the relation g;(f) = f for i = 1,2,3,4, gives v = v71, 71 < ¢t < 110 and 3 =0
for t > 110. Hence f = y71p1. The lemma is proved. O

Proposition 3.2.3. Let w = (3,3,2). Then, QPs(w)%Ls = ([pa]s), where

D2 = baog + ba2g + bazg + baao + bago + bag1 + bag2

2 2,.3..6.5
= xlexgxixg + xlxgxgx?lxg + xlexgx‘ng + T125T32,4T5

3,.3,.3.4, 4 3,343 4 3,3,4.4.3
+ TITHTZT Ty + T{THT3TYTs + TITHTT4 T

We prepare some lemmas for the proof of the proposition.
From Theorem 1.2, there is a direct summand decomposition of the Xs-
modules:

QPY(w) = ([Z5(b161)]w) @D([Z5(br91))w) ED([Ss(b221)))
D ([Es(b321)]) @D ([E5(b392)]w) D (1S5 (baso)ler)-
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where

Lemma 3.2.4. We have

i) ([Z5(05)]w)™® = ([p(bi)]w) fori=161,191,321.
ii) ([Z5(b221)]w)™ = ([p3lw) with p3 = 52221 be.

iii) ([E5(b302)]w)™® = ([pa)w) with ps =Y Z567 be.

Ju)™5 = (
iv) ([25(bazo)]w)™ = ([p2)w)-

Proof. [Outline of the proof] Let [f] € ([Z5(bu)]w)™,
u = 161,191,221, 321,392. Then, f =, ZZGB(bu)’yz.z. The lemma is proved
by a direct computation from the relations g;(f) =, f for i = 1,2, 3, 4. O

Proof. [Proof of Proposition 3.2.3] Using Lemma 3.2.4, we have

QP5(w)™ = ([p(bi61)]w, [P(b101)]ws [P(b221)]ws, [P(B321)]ws [P2)ws [P35 [Pa)e)-

Let f € Ps(w) such that [f], € QPs(w)%Ls. Then,
[ =w mplaier) + y2p(aior) +y3p(asz1) + yap2 + 15p3 + Y6pa
with v; € Fy for j =1,2,3,4,5,6. By a direct computation, we have
95(f) + [ =w 71b176 + Y2b191 + Y3b224 + V50314 + V60301 + Other terms =, 0.

This equality implies y; = 0 for j = 1,2, 3,5,6. So, f =, vap2. The proposition
is proved. ([
We now prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] Let f € Ps(w) such that [f] € (QP5)$ . Using
Theorem 1.2, we have [f], € QPs(w)“%s. By Proposition 3.2.3, f =, yp2.
Hence, using Theorem 1.2, one gets

366

f=ape+ > wbi+ f7,

t=336

where fx € (QPY)17. Since ypa + Zfi?ggﬁ Ybe € (QP5 )17, by computing from
the relations g;(f) = f, we g;(f*) = f* fori = 1,2, 3, 4. Hence [f*] € (QP?)}%.
Using Lemma 3.2.2, we have f* = v1p(b1) + v2p(bs1) + 3p(be1) + yap1 with
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~; € Fy for j = 1,2,3,
g;(f) = f for j =1,2,3,

4. Now, by a direct computation using the relations
4,5, we obtain

M =72 =7 =737 =0,

v =0, Vt, 326 < t < 356, and t # 336, 350, 351, 354,

v =", t =4,336,350,351, 354,358,359, ...,366.

The last equality implies f = 7(131 + p2 + bszg + b3so + b3s1 + bsss + Zfi%% bt).
The theorem is completely proved. ([

3.3 Proof of Theorem 1.4

From the results of Tangora [21], Lin [7] and Chen [3], we have
Torgigy(F2, F2) = ((hado)),

and hady # 0, where hy denotes the Adams element in Ext}f(]FQ,]Fg) and
do € Ext’y"(Fa, Fy).

In [11], Singer showed that the Adams elements hs is in the image of ¢}. Ha
showed in [4] that the element dy is in the image of ¢}. Since ¢* = P, -, ¢%
is the homomorphism of algebras, we see that the element hady is in the image
of ¢f. This fact implies that ¢5((hadg)*) # 0. Hence, from Theorem 1.3, the
homomorphism

. A GLs
P5 : Tor5722(IF2,IF2) — (Q@P5)17

is also an isomorphism. Therefore, Singer’s conjecture is true in the case k =5
and the degree 17. Theorem 1.4 is proved.

4 Appendix

In the appendix, we list all the admissible monomials of degrees 6 and 17 in
Ps.

4.1 The admissible monomials of degree 6 in Ps.

Bs(6) = B2(6) U B (6), where B2(6) is the set of 70 monomials a;, 1 <t <
70:
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1. adx3 2. xixd 3. zixd 4. z3x}

5. zixd 6. w3z} 7. x3xd 8. zixd

9. z3a3 10. x3a3 11. wzzixd 12, z3aix?
13. x3z422 14. zoxixd 15. moxix? 16. zozixd
17. woxdad 18. zoxix? 19. moxix? 20. a3wx?
21. x3w3x? 22. z3x372 23. xiwird 24. xywixd
25. maixd 26. 2373 27. maix? 28. zix3T?
29. zasTd 30. @237 31. za3zs 32. ziaix?
33. mxia? 34. xiw3rd 35. xiwax? 36. xiwsxd
37. x3x37? 38. aiwox? 39. z3zox? 40. x3wox3

41. xgxgxixg 42. x2x§x4x§ 43. xlxgxixg 44, x1x§x4x§
45. xlxgxixg 46. xlxgxgxg 47. xlxgxgxi 48. x1x§x4x§
49. xlxgxgxg 50. xlxgxgxi 51. x2x3x4xg 52. x2x3x2x5
53. x2x§x4x5 54. x§x3x4x5 55. x1x3x4xg 56. x1x3x2x5
57. x1x§x4x5 58. x1x2x4xg 59. x1x2x2x5 60. xlxgxgxg
61. xlxgxgxi 62. x1x2x§x5 63. x1x2x§x4 64. x1x§x4x5
65. x1x§x3x5 66. x1x§x3x4 67. x§x3x4x5 68. x§x2x4x5
69. x%x2x3x5 70. x%x2x3x4

B;(G) is the set of 4 monomials a;, 71 <t < 74:

71. x1x2x3x4x§ 72. x1x2x3x2x5 73. x1x2x§x4x5 74. x1x§x3x4x5.

4.2 The admissible monomials of degree 17 in Ps.

We have Bs(17) = BY(17)UBZ (3,1,1, 1) UBZ (3,1, 3)UBZ (3, 3, 2)Uy(B5(6)),
where 1 : Ps — Ps is the Fa-linear map determined by 9(z) = c1xox3147572
for any monomials = in Ps.

B2(17) is the set of 335 monomials: b;, 1 <t < 335:

1. x3x4xé5 2. xgx}l5x5 3. x§5x4x5 4. x2x4xé5

5. xgx}l5x5 6. JZQJ?;}J?%5 7. xgxgx}f 8. x2x§5x5
9. x2x§5x4 10. x%5x4x5 11. x%5x3x5 12. x%5x3x4

13. x1x4xé5 14. xlx}l5x5 15. xlxgx%5 16. xlxgx}f

17. x1x§5x5 18. x1x§5x4 19. xlxgx%5 20. xlex}f
21. zwezl® 22, mxddws 23, mxddmy 24 xixddas
25. x%5x4x5 26. x%5x3x5 27. x%5x3x4 28. x%5x2x5
29. x%5x2x4 30. x%5x2x3 31. xgxﬁxég 32. x§x4x%3
33. a3wiBxs 34, wexizl® 35, wemdxl®  36. woxdald
37. ziwaxl® 38, xdxiPrs 39, zdwsxl® 40, adwsxl?

41. z3xPBrs 42, w3xlPzy 43,0 madzl® 44, ziadal
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45.
49.
53.
o7.
61.
65.
69.
73.
7.
81.
85.
89.
93.
97

101.
105.
109.
113.
117.
121.
125.
129.
133.
137.
141.
145.
149.
153.
157.
161.
165.
169.
173.
177.
181.
185.
189.
193.
197.
201.

x1x3x4x%4
xlxgxgx%4

x2x§x4x%2

x1x§x4x%2

xlxgxgx%Q

x%x3x4x%2

x%xgxgx%Q
x%x2x4x§
x%x3x4x§
x%x%x§x5

x1x§4x4x5

x2x§x4x%3
xlxgxi3x5
x1x§x4x%3
x1x§x§3x5
xlxgxix%Q
xlxgxixg
xgxgxﬁxg
xlxgxgxg
x%xgxgxg
xlxgxixg
x%xgxixg
x%xeg
x%xgxg
x%x%x%
x%xeg
x%x;xz
xzxgxg
x{x%x%
x{x%xi
xgxngxg
xlxngxg

riz3aial

46.
50.
54.
58.
62.
66.
70.
4.
78.
82.
86.
90.
94.
98.

102.
106.
110.
114.
118.
122.
126.
130.
134.
138.
142.
146.
150.
154.
158.
162.
166.
170.
174.
178.
182.
186.
190.
194.
198.
202.
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xlxgxgxi4

xgxgxi2x5
xlxgxi2x5
xlxgxgxiQ
xfxgxi2x5

x%xgxgxiQ

x%x%x§x5
x%x%x§x5
x%x%x§x4
x1x§4x3x5

xgxgxi3x5

xlxgxixég

x1x§x§3x4

xlxgxgx%Q
xlxgxixg
x%xgxﬁxg
xlxgxgxg
x%xgxgxg
xlxgxixg
x%xgxixg
x%xﬁxg
x%x%xz
x%x%xz
x%xgxg
x%x;xg
xzxgxz
x{x%xz
xzxgxg
xgxgxixg
xlxgxixg

a3l

47.
o1.
55.
59.
63.
67.
71.
75.
79.
83.
87.
91.
95.
99.

103.
107.
111.
115.
119.
123.
127.
131.
135.
139.
143.
147.
151.
155.
159.
163.
167.
171.
175.
179.
183.
187.
191.
195.
199.
203.

rizial?

313
TIT3T5

x2x3x4x%4
x1x2x4x%4
x1x2x§4x5
x§x3x4x%2
x1x§x4x%2
x1x§x§2x5

3 12
T1T2T 4Ty

x%x2x§2x5

riziwaad

r3rdrgad

x2x§4x4x5
x1x§4x3x4

xlxgxixég

xlxgxgxég

xlxgxgxég

xgxgxﬁx%Q

xlxgxgxiQ

ryx3ied

TiTiTiT?

riwzxird

Toziriad

xlxgxgxg

3 208
T{T2X3TE

rixia?

e

vjwies

rizir]

7.3.7
T1TyTs

70T 73
T{T5TE

r{zirl

rozdzlal
rizsr]?
ryxirie?

rixdziel

48.
52.
56.
60.
64.
68.
72.
76.
80.
84.
88.
92.
96

100.
104.
108.
112.
116.
120.
124.
128.
132.
136.
140.
144.
148.
152.
156.
160.
164.
168.
172.
176.
180.
184.
188.
192.
196.
200.
204.

x1x§x§3

3, 13
TIT3Ty

x1x2x§4x4

x%xgxi2x5

x%x2x§2x4

x%x%x§x5
x%xgxgxﬁ
x1x§4x4x5

xgxgxixég
x1x§x4x%3
xlxgxgxig

xlxgxgxig
xlxgxix%Q
xgxgxixg
xlxgxgxg
xlxgxﬁxg
x%xgxﬁxg
x%xgxixg
xlxgxgxﬁ
x%xgxgxﬁ
x%xeg
xngxg
x%x%xi
x%xgxg
xIxeg
xzxgxi
x{x%x%
xgxgxixg
x%x§x4x§
xlxngxg

st
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205. zizirizl
209. zlxszizl
213. z]zoxia?
217. x]zoxlx?
221. zozSaizl
225. x3z3wiad
229. xlxgxixg
233. maSzia?

237. zia8alad

6,.7

3
241. xiz3zTs

245. x3zoxial

6
7,.6

3
249. xizomiTy

253. alrzala?
257. xlzoxlx]
261. x3z3x3xl
265. riririzl
269. rirdxix?
273. xixdxiz?
277. alxdziz?

281. x3zixixl
285. xiririzl

289. xirdxiad
293. air3xizr]
297. alxdzia}
301. zoxixlal
305. ziziadal
309. zizdxiad
313. mrdxixd
317. alxsaial

3,.3,.5..6
321. xsx3ThTE
325. wixiaia’
329. zixdadal

333.

wiadaiz]

206.
210.
214.
218.
222.
226.
230.
234.
238.
242.
246.
250.
254.
258.
262.
266.
270.
274.
278.
282.
286.
290.
294.
298.
302.
306.
310.
314.
318.
322.
326.
330.
334.

BF(3,1,1,1) is the set

336.
340.
344.
348.
352.
356.

xlxgxgxix%Q

xlxgxgxi2x5
x1x§x§x4x2
x1x3x2x4x§
x1x§x§x4x§

x%x2x§x§x5

337.
341.
345.
349.
353.

ryxiria]
rlzszia?
rzozdal
rlxlz 2l
zoxlaia?
r3xlzr,al
rya§aia?
r1a§rial
ry iz
rirgrial
rizox§al
rixlrywd
w3z 2l
rlr3z,al
r3rfaia?
rirfaia?
rixdzial
rixlaia?
rlrdaia?
r3rizias
rirdziat
rirdrial
rixlaias
rlrdzias
Toxiriad
ryriziad
rr32§al
ryairied
rlzoxial
wlairiad
i
Pt

el

207. xiwixiz?  208.
211. xzx§x4x§ 212.
215. zimoxiz] 216.
219. zixlzsz?  220.
223. zomwix§xd 224
227. xlrsx§ad  228.
231. xizlzfad 232
235. mpaSaizl  236.
239. ziwix§ad  240.
243. x3rir,xd 244
247. x3woxlaxl  248.
251. wixbrsxd 252
255. xengxg 256.
259. zix3zsxd  260.
263. z3ririr? 264
267. xiriziz?  268.
271. x3xdxix] 272
275. aixsxia? 276
279. xlxsxja?  280.
283. z3xiriri 284
287. xixixizd  288.
291. zixdzix] 292
295. zixbrizd  296.
299. zlxszizd  300.
303. xgxgxﬁxg 304.
307. xixixiad  308.
311. zyx3x$a] 312
315. xizlziad  316.
319. xengxg 320.
323. x3x3aSxd 324
327. wizdxfald  328.
331. x3x3aSad 332
335. wizdalad

of 21 monomials: by,

x1x2x§x4x%2 338.
x1x§x§2x4x5 342.
rizdriairs  346.
rixdzdaes  350.
rirariaies 354,

336 < t < 356:

xlxgxgxi2x5

xlxgxgxﬁxg
xlxgxgxixg
xlxgxgxﬁxg

3 4.8
T1T2X3T 4T 5

7

43

7.2

x1x2x3x4

7

2,..7

T{T2TLTE

7

iz

3

xlxgxgxg
xgxi

338l

7,3

6

x2x3x4x5

ra$rial

raSelad

7

6.3

x1x2x3x4

3

6,.7

x1x2x4x5

3

7..6

x1x2x3x5

3,.7

6

x1x2x3x4

7

6.3

T{T2T3 T

7,3

6

x1x2x3x4

viwiriay

3..5

2,..7

L1LoTy Ly

3..5

7.2

L1LoT3L5

3,7 7522
TITHTZTY

73752
T{THTZTY

7,3

3

rirdriad

3.3

4.7

L1LoT 4Ty

3.3

7.4

x1x2x3x5

3,.7,.3,.4
L1ToX3Ty

7.3,3. .4
L1 ToX3Ty

7

3.6

x2x3x4x5

rir3rsal

3

7..6

x1x2x3x5

rxsrias

7

3.6

T{T2T5T,

3.3

5.6

L1T3T4 Ty

3..3

5.6

L1LoT3Ly

3..5

3.6

L1LoT3Ly

339.
343.
347.
351.
355.

x1x§x3x4x%2

xlxgxgxﬁxg
xlxgxgxixg
xlxgxgxﬁxg

3 4 8
T1T2X3T4T 5
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B (3,1,3) is the set of 10 monomials: by, 357 < t < 366:

357.
361.
365.

B;(S, 3,2) is the set of 126 monomials: by, 367 < ¢t < 492:

367.
371.
375.
379.
383.
387.
391.
395.
399.
403.
407.
411.
415.
419.
423.
427.
431.
435.
439.
443.
447.
451.
455.
459.
463.
467.
471.
475.
479.
483.
487.
491.

Tirdrieia?
Tir3ririTs
r3vowiaiTs

xlxgxgxgxg
xlxgxgxixg
xlxgx§x4x§
xzxgxgxixg
xlxgxngxé
xlxgxgxﬁxg
xlxgxgxixé
x%xgxngxé
x%xgxgxﬁxg
x%xgxgxixé
xzxgxgxﬁxg
xzx§x§x4x§
x1x§x§x4x2
xlxgxgxixg
xlxgxngxg
xlxgxgxgxg
xlxgxgx4xg
x1x3x§x4x2
xlxgxgxixg
xlxgxgxixg
xlxgxgxixg
x%xgxgxgxg
x%xgxgxixg
x%x%x%x2x5
xlxgxgxgxé
xlxgxgxﬁxg
x%xgxgxixg
x%x%xgxﬁxg
x%x%x§x4xg
wdrdadaed
wdririated

rirseyrivs

358.
362.
366.

368.
372.
376.
380.
384.
388.
392.
396.
400.
404.
408.
412.
416.
420.
424.
428.
432.
436.
440.
444.
448.
452.
456.
460.
464.
468.
472.
476.
480.
484.
488.
492.
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rizirdaied

TiTiriaied

3705 ik
TITETITH T

xlxgxngxg
xlxgxgxgxg
xlxgxgxixg
xzxgxgxgxg
xlxgxgxﬁxg
xlxgxgxﬁxg
xlxgxgxﬁxg
x%xgxgxixg
x%x%xgxixg
x%xgxgxﬁxg
xzxgxgxixé
xlxgxgxgxg

xzx2x§x4x2

i asrdxiad

xlxgxgxﬁxg
xlxgxgxixg
xlxgxgx2x5
x%xgxgxgxg
xlxgxgxgxg
xlxgxgxgxg
xlxgxgxixg
x%xgxgxixg
x%xgxgxixg
x%x%x%x4x§
xlxgxgxixg
xlxgxgxixé
x%xgxgxgxg
x%x%xgxgxé
edaadedad
wdzdzdatas
wdzdzada]

rirswyries

359.
363.

369.
373.
377.
381.
385.
389.
393.
397.
401.
405.
409.
413.
417.
421.
425.
429.
433.
437.
441.
445.
449.
453.
457.
461.
465.
469.
473.
477.
481.
485.
489.

rixdriaiad

rivowinia?

xlxgxgxixg
xlxgxgxixg
xlxgxgxgxg
xzx2x2x4x§
xlxgxngxg
xlxgxngxé
xlxgxgxixé
x%xgxngxg
x%x%xngxg
x%x%x§x4x§
x{x%xgxixé
xlxgxngxg
xlxgxgxixg
xzxgxgxixg
xlxgxgxﬁxg
xlxgxgxgxg
xlxgxgxixg
x%x2x3x4x2
xlxgxgxixg
xlxgxgxixg
xlxgxgxixg
x%xgxgxgxg
x%xgxgxgxg
x%x%x%xix5
xlxgxgxgxg
x%xgxgxﬁxg
x%xgxgxixé
x%x§x§x4xg
e3edadain?
wdrhadate’

3,5,.3,.4,.2
LIT T 3L T5

360.
364.

370.
374.
378.
382.
386.
390.
394.
398.
402.
406.
410.
414.
418.
422.
426.
430.
434.
438.
442.
446.
450.
454.
458.
462.
466.
470.
474.
478.
482.
486.
490.

T r3Tiriad

rivorinias

xlxgxngxg
xlxgxngxg
xlxgxgx4x§
xlxgxgxﬁxg
xlxgxgxixé
xlxgxgxixé
x%xgxgxﬁxg
x%xgxgxixé
x%x%x§x4x§
xzxgxgxixé
x{x%xgxﬁxg
x1x§x§x4x2
xlxgxngxg
xlxgxgxixg
xzxgxgxﬁxg
xlxgxgxgxg
xlxgxgxgxg
x%x2x3x2x5
xlxgxgxgxg
xlxgxgxgxg
x%xgxgxixg
x%xgxgxixg
x%x%x§x4xg
xlxgxgxﬁxg
xlxgxgxixé
x%xgxgxgxé
x%xgxgxﬁxg
x%x%xgxixg
eSadrdata?
i I

3,3.3,.4,4
LIT X3 L5
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We denote by by = 1(ar—492), 493 <t < 566.
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