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Abstract

In Euclidean space, upper estimates for curvelength have been studied
mostly in the previous century. Many of these have been extended over
time, either to a larger class of spaces or to a larger class of curves.
Due to limited tools, extentions to a larger class of spaces often end
up with a restricted class of curves. With an appropriate variation of
Reshetnyak’s fan construction technique in comparison geometry, the
obstacle is overcome and a sharp upper length estimate for curves in
terms of total curvature and the radius of a circumball are presented
in this paper for CAT(K) spaces. The configurations of maximizers,
which exist in standard spaces of constant curvature, are also completely
determined. An interesting part is that in spaces of negative constant
curvature, the maximizing configurations are totally different from the
case of nonnegative curvature.

1 Introduction

In this paper we search for a sharp upper estimate of the length of a curve
with known total curvature that is confined to a closed ball of a given radius
in a metric space in which total curvature (an amount measuring deviation
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2 An Upper Length Estimate for Curves in CAT(K) Spaces

from being “straight”) of curves is meaningful. We are also interested in the
configurations of the curves rendering the extremal length. This problem was
discussed by A. D. Alexandrov and Yu. G. Reshetnyak in [6] and its solution
was given there for the Euclidean plane. Our attempt is to extend Alexandrov
and Reshetnyak’s setting to a more general one that covers at least the standard
spaces of constant curvature, namely, the Euclidean spaces, the spheres and the
hyperbolic spaces, and seek for solutions there. Earlier (partial) extensions were
made by B. V. Dekster, who proved an analog of the original result for piecewise
smooth curves in [13, 14] in Riemannian manifolds of curvature bounded below
with boundaries and in Riemannian manifolds of curvature bounded above,
respectively. These extensions were partial because only certain ranges of total
curvature (at most π

2 , depending on the radius of the circumball and the spatial
curvature bound) were considered but in a more general class of spaces.

Here we work in the class of CAT(K) spaces, which turns out to be an
effective way to complete Dekster’s unfinished part. The theory on these spaces
was developed in early 1950s ([3, 4, 5]; see also [1, 7, 8, 9] and [10]). It was
built on the ground of comparison of a basic element of the space, namely the
triangles, with those in the standard 2-dimensional spaces of constant curvature
K (denoted SK throughout). Indeed, a metric space is said to be CAT(K) if
and only if each pair of its points can be joined by a curve realizing the distance
between them (a so-called minimizing geodesic) and if the distance between
any pair of points on any minimizing geodesic triangle in it with perimeter less
than 2π√

K
(= ∞ if K ≤ 0) is dominated by the distance between corresponding

points on the comparison triangle—the triangle with the same sidelengths—in
SK . (Such a space is also called an RK domain.) The key feature is that in
such a space angles between geodesics (and also between curves that behave
well enough) issuing from a common point can be intrinsically measured, which
makes it possible to define total curvature of curves.

In a smooth case the total curvature of a curve is the integral with respect
to arclength of its (unsigned) pointwise scalar curvature. An extensive develop-
ment of the theory on this subject for general curves in the Euclidean space and
on the spheres was presented in [6] while total curvature for closed curves was
introduced independently in [15]. The concept was then extended to CAT(0)
spaces (and hence CAT(K) spaces for all K ≥ 0) in [2]. The hyperbolic case
as well as the CAT(K) case for negative K, however, needed special care and
were treated later in [12]. The unified definition in CAT(K) spaces as found
in [12] was given by first considering polysegments, which are curves formed
by concatenation of finitely many minimizing geodesics called their (geodesic)
segments. The term bisegments, trisegments and n-segments are customarily
adopted with the obvious meanings. For a curve of this special type its total
curvature, initially called total rotation, is naturally defined as the sum of the
supplementary angles of the angles at its interior vertices. The total curvature
of an arbitrary curve is then defined to be the limit supremum of the total rota-
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tions of its inscribed polysegments that are arbitrarily closed to it in a certain
sense. Needless to say, for polysegments this coincides with the total rotation
formerly defined. For more details, readers are advised to consult [12].

The major results that answer the main question covering all possible val-
ues of total curvature and all types of curves are proved in sections 2 and 3
(Theorems 2.4 and 3.13, respectively). Contrary to what one would naturally
expect (an analogy between the classical case and the nonzero spatial curvature
cases), a maximizing curve can take a totally different shape in the hyperbolic
case. Indeed, only in the case of a negative spatial curvature bound K with suf-
ficiently large radius do the maximizers rendering the sharp upper curvelength
bound that exist in the corresponding hyperbolic space of constant curvature
K deform through polysegments as the radius grows, and never contains a non-
trivial circular arc of the boundary of the circumdisk as do the maximizers in
the other cases. A reason that makes this happen is that, unlike the case of
nonnegative curvature bound, the (pointwise) curvature of the boundary of the
circumdisk converges to a positive number as the radius approaches infinity.
Thus it costs more (curvature) for a curve to follow the boundary of a large disk
than it would in the case of nonnegative curvature bound. As a consequence,
a totally different technique is needed in optimizing curvelength in this case.

The main results may be summarized in one theorem, stated in uniformity
below. Here and throughout, κ(γ) and �(γ) denote the total curvature and the
length of γ, respectively. For convenience, rational multiples of π√

K
assume

the value ∞ if K ≤ 0, as did in an earlier paragraph. R0 is the cut-point
of the radius beyond which a circumball is considered “large.” S(R, κ) is the
sharp upper length bound. The precise definitions of R0 and S(R, κ), together
with those of the symbols ΛR,κ, ΓR,κ, Πn

R,κ and Πn
R,κ, which stand for certain

families of curves, are given in sections 2 and 3. Roughly speaking, these are
curves in a disk of radius R in SK with total curvature κ, where ΛR,κ is an
isosceles bisegment, ΓR,κ is an isosceles bisegment with an arc of the boundary
of the disk inserted in the middle (also called a round-tip bisegment), Πn

R,κ is
an (n + 2)-segment with all the n body segments (i.e., all those except the two
ends) of equal length, while Πn

R,κ is an (n+2)-segment with one body segment
exceptionally shorter than the others.

Theorem 1.1. Let γ be a curve contained in a closed ball of radius R < π
2
√

K

in an RK space. Then �(γ) ≤ S(R, κ(γ)). Moreover, for any R < π
2
√

K
and

any κ ≥ 0, curves in a closed disk of radius R that realize the upper length
bound S(R, κ) exist in SK and are as described below:

(i) If R ≤ R0 then there exists a real number κ0 such that maximizers are
ΛR,κ if 0 ≤ κ ≤ κ0 and ΓR,κ if κ0 < κ < ∞.

(ii) If R > R0 then there exist a positive integer N and strictly increasing
sequences κn and κn of positive reals with κn−1 ≤ κn < κn for all n and
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κn−1 = κn for and only for n ≥ N such that maximizers are ΛR,κ if
0 ≤ κ ≤ κ0 and, for κ > κ0,

• Πn
R,κ if κn−1 < κ < κn,

• Πn
R,κ if κn < κ < κn, or if κ = κn with n = 1 or 2, or if κ = κn

with n ≤ N − 2,
• both Πn

R,κ and Πn
R,κ if κ = κn with 2 < n < N , and

• both Πn
R,κ and Πn−1

R,κ if κ = κn with n ≥ N ,

where n is a unique integer (necessarily exists) such that one and only
one of the above exhaustive conditions hold.

Figure 1: Configurations of maximizing curves. Dashed rectangles indicate
co-maximizers.

According to the above result, the configurations of maximizers change as
total curvature grows. Figure 1 summarizes the deformation scheme of the
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maximizers as total curvatures increase. In the case of “small” circumdisks,
the deformation starts from merely a geodesic, advances through bisegments
and ends in a series of round-tip bisegments as shown in the lower two rows of
Figure 1. This is exactly the same result as discussed in [6] in the classical case.
For “large” circumdisks in the negative spatial curvature case, on the other
hand, the maximizers deform through a series of polysegments with gradually
increasing numbers of segments. The upward-series part of Figure 1 illustrates
this.

2 The Case of Small Circumballs: the Classical

Configurations Revisited

As is noted earlier, pointwise curvatures of the boundaries of large disks in
the model spaces behave differently when spatial curvatures change. For small
disks, on the contrary, the response of curvelength to the change in its total
curvature for curves near the boundary can be controlled in some manner no
matter what the spatial curvature is. We therefore consider the case of small
and large circumballs separately. This section will be devoted to the case of
small circumballs. However, we first discuss common tools that apply to both
cases.

Despite being more general and having less structure, CAT(K) spaces
accommodate quite several interesting common properties, mostly obtained
through the use of one type of comparison theorems or another. The following
comparison theorem, also given in [12], makes use of Reshetnyak’s fan con-
struction technique. A version of it appears in [16] as part of the proof of
Reshetnyak’s majorization theorem, hence the accreditation. As is described
in [12], a supporting half space of an n-segment γ in SK corresponding to any
of its minimizing geodesic segment σ is a closed half space of SK containing
all segments of γ adjacent to σ, with boundary containing σ. Two such half
spaces corresponding to adjacent segments are compatible if a deformation by
rotation about their common vertex from one half space to the other exists in
such a way that the two segments always lie in the intermediate half spaces.
The polysegment γ is weakly convex with respect to a point O ∈ SK if every
segment of γ furnishes a supporting half space containing O such that every
pair of these half spaces corresponding to adjacent segments are compatible.

Theorem 2.1. [16] For any n-segment γ in a closed ball of radius R < π
2
√

K

centered at a point O in a CAT(K) space, there exist a closed disk D of radius R
centered at some point O′ in SK , and an n-segment η in D that is weakly convex
with respect to O′ with geodesic segments of the same sequence of lengths and
with an angle at each interior vertex no smaller than the corresponding angle
of γ.
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Because the total curvature of a polysegment is defined in terms of the sum
of supplementary angles of the angles at interior vertices, the above theorem
equips us with a way to produce a polysegment in a disk of the same radius
in the model space that is no shorter and with no greater total curvature than
the original polysegment. The next proposition implies further that, as far as
only polysegments are concerned, in order to obtain the upper estimate we are
aiming at we only need to consider the class of bisegments and “admissible”
polysegments. A polysegment in a closed disk D of radius R < π

2
√

K
in SK is

D-admissible if it is weakly convex with respect to the center of D and if all of
its vertices lie on the boundary of D.

Proposition 2.2. Let η be a polysegment in a closed disk D of radius less
than π

2
√

K
in SK that is weakly convex with respect to the center of D. Then

there exists a polysegment σ in D, which is either a D-admissible polysegment
or a bisegment with endpoints on the boundary of D, such that �(η) ≤ �(σ) and
κ(η) ≥ κ(σ).

Proof. Let us first extend the segments at the two ends of η until they
meet the boundary of D and call the newly obtained polysegment η as well.
The claim is then obvious if the number n of geodesic segments of η is 1 or 2.
Suppose n ≥ 3. We note that weak convexity of η with respect to the center
of D implies the following property:

(∗) For any consecutive vertices A, B, C and E of η the segments AB and
CE both lie on the same closed halfspace whose boundary contains the segment
BC.
Let A, B, C and E be any four consecutive vertices of η. We then prove the
assertion by breaking it into two cases:

Case I. K ≥ 0. We extend the geodesic segments AB through B and CE
through C. If the extensions meet at P before they exit the disk we replace
the segment BC by BPC, thereby reducing the number of vertices of η by
1; otherwise we let P1 be the point at which the extension of AB meets the
boundary of the disk, P2 the analogous point for the extension of CE, and then
replace the segment BC by BP1P2C, thereby increasing the number of vertices
on the boundary. In either case the length of the resulting polysegment is no
smaller than that of the original one, while the total curvature is no greater.
The latter is true by the Gauss-Bonnet formula. Since the weak convexity
of all polysegments and the property (∗) are both preserved, this implies the
existence of σ with the required properties.

Case II. K < 0. We note that the Gauss-Bonnet formula does not apply
here. Let us consider the deformation of η by fixing all of its vertices except
B, which moves in such a way that the length of segment AB increases but the
total length of the polysegment remains unchanged, until either the segments
BC and CE form a geodesic or the resulting polysegment hits the boundary
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of D. By property (∗), this deformation can be shown not to increase total
curvature. On the other hand, it either increases the number of vertices on the
boundary or reduces the total number of vertices without destroying the weak
convexity. Since the resulting polysegment still satisfies (∗), the process can be
repeated until every interior vertex not on the boundary is either eliminated or
brought to the boundary without total curvature increase or length decrease.
We therefore have the existence of σ with the required properties, completing
the proof of the proposition. �

The following fact makes it possible to shift from the case of polysegments
to the general case. The proofs are found in [6] and [12]. Here, the modulus
μγ(σ) of a polysegment σ inscribed in a curve γ is the maximum diameter of
the subcurves which the vertices of σ cut γ into.

Theorem 2.3. [6, 12] Let σn be any sequence of polysegments inscribed in
a curve γ in an RK space such that μγ(σn) → 0. Then σn → γ pointwise,
�(σn) → �(γ) and κ(σn) → κ(γ).

Let us now make some notation agreement so that our main theorem in this
section as well as further development can be concisely presented. For a metric
curvature bound K and a positive real number R < π

2
√

K
, we put λ =

√|K|
and define constants and functions as shown in the following

Table 1.

Constant/
Function

K < 0 K = 0 K > 0

R0
1
λ sinh−1 1 ∞ 1

λ sin−1 1

cR tanhλR R tan λR

κ0 = κ0,R 2 tan−1(cosh λR) π
2 2 tan−1(cosλR)

κ0 = κ0,R 2 cos−1 1−
√

c4
R−c2

R+1

c2
R

2π
3 2 cos−1 −1+

√
c4

R+c2
R+1

c2
R

rR(ϕ) 2
λ

tanh−1(cR sin ϕ) 2cR sinϕ 2
λ

tan−1(cR sin ϕ)

sR(r, κ) 2
λ sinh−1( sinh λr

2
cos κ

2
) r

cos κ
2

2
λ sin−1( sin λr

2
cos κ

2
)

Note that, since the number K will always be fixed, it will be omitted every time
a symbol depending on K is introduced. The formula for rR(ϕ) indeed gives the
length of a chord of a circle of radius R that makes an angle ϕ, 0 < ϕ < π

2
, with

the tangent at one of its endpoints. If the length of an isosceles bisegment with
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minimizing segments in SK does not exceed π√
K

, then it is given by sR(r, κ)
defined above, where r is the chordlength, i.e., the distance between the two
endpoints.

A curve γ in SK is called a round-tip bisegment if γ consists of a chord of
a circle of radius R followed by an arc of that circle and then another chord
of the circle. The rotation at an interior point p corresponding to a parameter
value t of a curve is the supplementary angle of the angle between the two
subcurves which t cuts the curve into. For each κ ≥ κ0, let ΓR,κ be a round-tip
bisegment of total curvature κ with rotation κ0

2
at each end of its circular arc.

For each κ ∈ [0, π], let ΛR,κ be any isosceles bisegment of total curvature κ
in a closed disk of radius R, with endpoints at the ends of a diameter of the
disk if 0 ≤ κ ≤ κ0, and with the three vertices on the boundary of the disk if
κ0 ≤ κ ≤ π. Indeed, ΛR,κ0 is an isosceles bisegment with all three vertices on
the boundary and both endpoints at the end of a diameter of the disk.

For R > 0 such that R < π
2
√

K
and R ≤ R0, let S̃(R, κ) (also depending

on K) be the length of a ΛR,κ when 0 ≤ κ ≤ κ0 and that of a ΓR,κ when
κ0 ≤ κ < ∞. It is easily verified that S̃(R, κ) is nondecreasing and continuous
in κ. We are now ready to prove the main theorem of this section:

Theorem 2.4. (Length estimate for curves in small circumballs.) Let γ be a
curve contained in a closed ball of radius R < π

2
√

K
in an RK space, with total

curvature κ. If 0 < R ≤ R0 then �(γ) ≤ S̃(R, κ). Moreover, the upper bound
S̃(R, κ) is achieved by ΛR,κ in a closed disk of radius R in SK if κ ≤ κ0 and
by ΓR,κ if κ > κ0.

Proof. We first prove the theorem for the case of bisegments and D-admissible
polysegments in a closed disk D of radius R, where R is as described in the
theorem statement. Note that direct computation shows that any bisegment
is no longer than an isosceles bisegment with the same total curvature and
chordlength, and that if σ is a bisegment with endpoints on the boundary of
D, then �(σ) ≤ �(ΓR,κ) if κ0 ≤ κ ≤ π.

Suppose now that σ is a D-admissible polysegment and that the number n
of segments of σ is at least three. For any four consecutive vertices A, B, C and
E of σ, we denote by HBC the closed halfspace containing AB and CE and
whose boundary contains the points B and C. Suppose A, B, C and E are the
first four ordered vertices of σ, with A an endpoint. We replace the segment
BC with an arc BC ′ of the boundary of the samelength, where C ′ is chosen so
that it does not lie on the halfspace HBC , and then rotate the rest of σ about
the center O so that the vertex C coincides with C ′. If E is not an endpoint of σ
we then replace the segment C ′E with an arc C ′E′ of the boundary of the same
length, where E′ is chosen so that it does not lie on the halfspace HC′E , and
then rotate the rest of σ about O so that the vertex E coincides with E′. We
continue the process until all but the two ending segments of σ are replaced
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by arcs. We claim that each time an arc is introduced the total curvature
does not increase. This is true by the Gauss-Bonnet formula for K ≥ 0. For
K < 0, if the original segment makes an angle δ with the replacing arc, then
the total curvature is reduced by Δ(δ) = 2δ − 2

tanh λR tanh−1(tanhλR sin δ).
The condition R ≤ R0 implies that Δ′(δ) is nonnegative. But Δ(0) = 0, so
that Δ(δ) is nonnegative for every δ ∈ [0, π

2
], and thus the total curvature is

indeed reduced. This proves the existence of an round-tip bisegment Γ in the
given disk with total curvature not exceeding κ(σ) and length at least �(σ).
It is easily verified that �(Γ) ≤ �(ΛR,κ) if 0 ≤ κ ≤ κ0 and �(Γ) ≤ �(ΓR,κ) if
κ0 ≤ κ < ∞.

This together with the facts noted in the first paragraph complete the proof
of the theorem for the case of bisegments and D-admissible polysegments.

Now let γ be an arbitrary curve contained in a closed ball of radius R in
an RK space, with R as described in the theorem statement. Let σn be a
sequence of polysegments inscribed in γ such that μγ(σn) → 0 and κ(σn) → κ.
Then �(σn) → �(γ). Theorem 2.1 and Proposition 2.2 together with the above
results imply that �(σn) ≤ S̃(R, κ(σn)) for each n. Now taking into account
the continuity of S̃(R, κ) in κ, it follows by taking limits as n → ∞ that
�(γ) ≤ S̃(R, κ) as required. The last statement is readily verified. �

3 Large Circumballs with Negative Spatial Cur-
vature Bounds: Revealing the Unseen

Although it is impossible to obtain an estimate for R > R0 when K > 0, an
extension to the case of large R is still possible when K < 0. Thus in this
section we assume R > R0. In order to get an estimate in this case, we can still
use Theorem 2.1 and Proposition 2.2 to reduce the problem into one involving
only bisegments and admissible polysegments in the model spaces. However,
we need a different approach to take care of the reduced case. To achieve this
we introduce the following conventions, definitions and notations.

For notational convenience, let us assume without loss of generality that
K = −1, so that R0 = sinh−1 1. For each R we fix a closed disk DR of radius
R centered at a fixed origin O in S−1 and let CR be its boundary. Any DR-
admissible polysegment is simply referred to as an admissible polysegment. For
each R and each κ ≥ 0 let P̃(R, κ) denote the set of admissible polysegments
in DR with total curvature κ. Our goal is to find for each R > R0 and κ ≥ 0
the upper bounds

s̃(R, κ) = sup
σ∈P̃(R,κ)

�(σ) and S̃(R, κ) =
{

max {s̃(R, κ), �(ΛR,κ)} if κ ≤ π,
s̃(R, κ) if κ > π,

where the latter is the upper bound for which we are looking. For any chord
c of CR, the ending angle ĉ ≤ π

2
of c is the angle that c makes with CR. By
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an ending angle of an admissible polysegment we mean the ending angle of
any of its segments. Now, letting σ1, σ2, . . . , σn be the ordered segments of
an admissible n-segment σ in DR, we define the excessive semi-total curvature

κs(σ) of σ by κs(σ) =
n∑

i=1

σ̂i. Let n ≥ 2 be an integer and let σ be an admissible

n-segment in DR. The segments σ1 and σn are called the tail segments and
σ2, . . . , σn−1 the body segments of σ. The linked tail or simply the tail of σ,
denoted by σT , is any of the bisegments in the congruent class of admissible
bisegments in DR consisting of segments σT

1 of length �(σ1) and σT
2 of length

�(σn). The body of σ is an admissible polysegment σB in DR congruent to the
concatenation σ2 ∗ σ3 ∗ · · · ∗ σn−1. It is easy to see that �(σ) = �(σT ) + �(σB),
κs(σ) = κs(σT ) + κs(σB) and κ(σ) = κs(σT ) + 2κs(σB). Thus κs(σ) = κ(σ)
if σ is a bisegment and κs(σ) − 1

2
κ(σ) = 1

2
κ(σT ) in general, which justifies the

term “excessive semi-total curvature.” Since variation in ending angles of body
segments of a given admissible polysegment doubly affects its total curvature
as compared to variation in the ending angles of its tail, we will first study
bodies and linked tails of admissible polysegments separately in connection
with excessive semi-total curvature.

For each κs ≥ 0, let P(R, κs) be the set of admissible polysegments in
DR with excessive semi-total curvature κs. In addition, let s(R, κs) be the
supremum

s(R, κs) = sup
σ∈P(R,κs)

�(σ).

We are concerned at the moment to compute s(R, κs) for given κs. Any poly-
segment in P(R, κs) can be thought of as the body of an admissible polysegment
in DR. Similarly, any bisegment in P(R, κs) can be thought of as the linked
tail of an admissible polysegment in DR.

Recall that the formula rR(t) = 2 tanh−1(tanhR sin t) gives the length of
any chord of CR with ending angle t. The function r (with the subscript R
dropped out for convenience) and its derivative r′ given by

r′(t) =
2 tanhR cos t

1 − tanh2 R sin2 t

defined on [0, π
2
] play very important roles in our discussion so we summa-

rize their properties here. Firstly, r is strictly increasing and vanishes at
0. Its derivative r′, on the other hand, is strictly increasing and decreas-
ing respectively on the left and right hand side of the parameter value τ2 =
cos−1(cschR) ∈ (0, π

2 ). It vanishes at π
2 and gives the same value 2 tanhR at 0

and at τ∞ = cos−1(csch2R) ∈ (τ2,
π
2
). As functions of R, τ2 and τ∞ are strictly

increasing, approach 0 as R → R+
0 and approach π

2 as R → ∞. The ratio
τ∞
τ2

is strictly decreasing with R and approaches
√

2 as R → R+
0 . The importance
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of the numbers τ2 and τ∞ defined here is that they will appear as lower and
upper bounds for ending angles of almost all segments of the polysegments that
attain the maximum length in P(R, κs). Figure 2 shows sketches of graphs of
r, r′ and r′′. It also locates the dual ending angle d(t) and the co-dual ending
angle D(t) of an arbitrary t ∈ [0, τ∞], where d(t) is the only t∗ ≤ τ∞ on the
opposite side of τ2 as compared with t (unless t = τ2) such that r′(t∗) = r′(t),
while D(t) is the only t̂ > τ2 such that r′(t̂ ) = 1

2r′(t). We also conveniently
write t∗ for d(t), f∗(t) for (f(t))∗ (if f is a function) and t̂ for D(t).

Figure 2: Sketches of graphs of r, r′ and r′′.

Let us now fix a point O′ = O′(R) on the boundary of DR, a κs > 0 and
a positive integer n such that the interval Iκs,n = [κs

n , κs

n−1 ] ∩ [τ2, τ∞] contains
more than one element. For each t ∈ Iκs ,n let P t = P t(κs, n) ∈ P(R, κs) be
a (possibly degenerate) n-segment, which starts at O′ and winds around the
center O in the counter-clockwise direction, with P̂ t

1 = P̂ t
2 = · · · = P̂ t

n−1 = t

and P̂ t
n = κs − (n − 1)t ≤ t. An admissible polysegment whose arrangement

of ordered ending angles is a rearrangement of those of P t(κs, n) for some t
and n is said to be of a generic A-type if it either is equilateral or has an
exceptional ending angle (the one that is smaller than the others) less than τ2.
We refer to those ending angles that are at least τ2 as major ending angles.
For convenience, we regard P t(κs, n) as a polysegment with major ending angle
t even though n = 1. In the following lemma we show that any maximizing
polysegment in P(R, κs), where κs > 0, is of a generic A-type.

Lemma 3.1. If a polysegment σ ∈ P(R, κs), where κs > 0, is not of a generic
A-type, then there exists a generic A-type polysegment η ∈ P(R, κs) such that
�(σ) < �(η).

Proof. Assume that σ ∈ P(R, κs), where κs > 0, is not of a generic A-type.
If no segments of σ have ending angle greater than τ∞ we let σ′ = σ. Suppose
otherwise. We shall show that by adding new segments to σ, each segment with
ending angle more than τ∞ can be expelled without length decrease. Without
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loss of generality, let σ̂1 > τ∞ be the ending angle of a segment of σ to be
rid of. Let σt ∈ P(R, κs), 0 ≤ t ≤ σ̂1

2 , be a polysegment obtained from σ by
replacing σ1 with two segments whose ending angles are t and σ̂1− t. Then the
length of σt is given by

l(t) = �(σ) + r(t) + r(σ̂1 − t) − r(σ̂1),

and its derivative with respect to t by

l′(t) = r′(t) − r′(σ̂1 − t).

Because l′(0) > 0, we can deform σ = σ0 through σt in such a way that l(t)
increases until t = t0 at which l′ first vanishes. If t0 = (σ̂1 − t0)∗ then both t0

and σ̂1 − t0 are at most τ∞. Otherwise, t0 =
σ̂1

2
. In the latter case, if t0 is still

greater than τ∞ the whole process may be repeated until all the new segments
have ending angles at most τ∞. Since the number of segments of σ with ending
angles greater than τ∞ is finite, a finite number of iterations of the operation
described above will result in a polysegment σ′ with no segments with ending
angles greater than τ∞ and with �(σ) < �(σ′).

Now, if at most one of the segments of σ′ has ending angle smaller than τ2 we
let σ′′ = σ′. Suppose more than one segment of σ′ have ending angles smaller
than τ2. We prove that those extra segments can be eliminated without length
decrease. To see this, we assume without loss of generality that σ̂′

2 ≤ σ̂′
1 <

τ2. Consider a deformation of σ′ through a family of admissible polysegments
σt, t ≥ 0 defined by replacing the first two segments of σ′ with segments whose
ending angles are σ̂t

1 = σ̂′
1 + t and σ̂t

2 = σ̂′
2 − t, and holding all other segments

of σ′ fixed. Then σ0 = σ′ and

d

dt
�(σt) = r′(σ̂′

1 + t) − r′(σ̂′
2 − t) ≥ 0

as long as t ≤ t0, where t0 = min {σ̂′
2, τ2 − σ̂′

1}. Note that this is true because
τ2 ≥ σ̂′

1+t ≥ σ̂′
2−t for such t. Indeed, the strict inequality holds for 0 < t < t0.

Thus the deformation can be carried out until t = t0, where we stop. The
resulting polysegment σt0 has greater length and fewer segments with ending
angles smaller than τ2. Since the number of segments of σ′ is finite, it is
possible to perform this procedure inductively finitely many times and get a
polysegment σ′′ ∈ P(R, κs) with at most one segment having ending angle
smaller than τ2 such that �(σ′) < �(σ′′). Notice that σ′′ has no ending angle
greater than τ∞.

Next we show the existence of η with the described properties. If σ′′ is a
geodesic we let η = σ′′, which obviously has the required properties. Suppose
without loss of generality that σ′′ is an m-segment, m ≥ 2, with ending angles
σ̂′′

1 ≥ σ̂′′
2 ≥ · · · ≥ σ̂′′

m. Let k, where m− 1 ≤ k ≤ m, be the number of segments
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of σ′′ having ending angles at least τ2. Let t0 be the average of these ending

angles, i.e., t0 =
1
k

k∑
i=1

σ̂′′
i . Let ti, where 1 ≤ i ≤ k, be the deviation of σ̂′′

i from

t0: ti = σ̂′′
i − t0 and let η be an m-segment in P(R, κs) with η̂i = t0 for all i

such that 1 ≤ i ≤ k and η̂m = σ̂′′
m if m = k + 1. Then

�(η) − �(σ′′) =
k∑

i=1

[r(t0) − r(t0 + ti)]

=
∑

1≤i≤k, ti<0

∫ t0

t0+ti

r′(t) dt −
∑

1≤i≤k, ti>0

∫ t0+ti

t0

r′(t) dt

≥
∑

1≤i≤k, ti<0

∫ t0

t0+ti

r′(t0) dt −
∑

1≤i≤k, ti>0

∫ t0+ti

t0

r′(t0) dt.

The last two sums are identical because the sums of the lengths of intervals of
integration that appear in both sums are the same, so that �(η) ≥ �(σ′′). Note
also that the equality holds only if every ti is zero. Thus �(η) = �(σ) only if
η = σ′′ = σ′ = σ. This completes the proof of the lemma. �

In light of the above lemma we now focus on the class of generic A-type
polysegments. Here and below a generic A-type polysegment whose ending
angles have the same image under r′ is said to be of a specific A-type. A
specific A-type polysegment is of an E-type if it is equilateral; it is of an N -type
if its smallest ending angle is at most τ2. Note that N -type n-segments are
non-equilateral, except for those with n = 1 or with all ending angles equal to
τ2 or τ∞. Now, for each positive integer n, we define a function kn = kn,R on
[τ2, τ∞] by

kn(t) = (n − 1)t + t∗.

Then kn(t) is the excessive semi-total curvature of an N -type n-segment all but
one ending angles equal to t. We will show in Lemma 3.2 that non-equilateral
maximizing polysegments in P(R, κs) are of this type. An important but easy-
to-verify property of kn’s is that for each n there exists a unique τn ∈ [τ2, τ∞)
such that k′

n(τn) = 0, kn is strictly increasing on [τ2, τn] and strictly decreasing
on [τn, τ∞] (and hence k2 is strictly decreasing, in particular). An explicit form
of τn can be derived (but we do not give it here), from which it follows that τn

is strictly increasing with n and approaches τ∞ as n → ∞, justifying the use of
the symbols τ2 and τ∞. Sketches of graphs of a few kn’s are shown in Figure 3
for typical n > 2.

Note in particular that for any integer n ≥ 2 the graph of kn is trapped
in a trapezoid defined by the vertical lines t = τ2 and t = τ∞ and the lines
k = Kn(t) and k = Kn−1(t). Here Kn’s are the linear functions Kn(t) = nt
representing the excessive semi-total curvature of E-type polysegments.
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Figure 3: Sketches of graphs of kn’s and Kn’s.

In what follows, the only ending angle value t ≥ τn such that kn(t) = k, if
one exists, will serve as maximizers’ body ending angles in certain cases and
thus will be denoted by tn(k) for convenience. Our next lemma eliminates all
but finitely many candidates for the maximizing polysegments in P(R, κs).

Lemma 3.2. Let κs ≥ 0 be given. Then maximizing polysegments in P(R, κs)
exist and are of a specific A-type.

Proof. The assertion is clear for κs = 0. If 0 < κs ≤ τ2 then by Lemma 3.1
any σ in P(R, κs) is no longer than a geodesic chord with ending angle κs.
Suppose κs > τ2. It suffices to consider, for each fixed n ≥ 2 with nontrivial
Iκs ,n, the length

l(t) = lκs ,n(t) = (n − 1)r(t) + r (κs − (n − 1)t)

of P t(κs, n). Direct calculation shows that critical points of l for all possible
n correspond to the points where the line k = κs cuts the graphs k = kn(t)
and the graphs k = Kn(t), together with τ2 and τ∞ at the two ends. (See
Figure 3.) By analyzing derivatives of l up to the fourth order, it can be shown
that the critical points corresponding to the intersections of the line k = κs

and the increasing part of the graphs k = kn(t) as well as the points τ2 and τ∞
never give local maxima unless they correspond to E-type polysegments. Local
maxima can occur at other critical points, all but possibly one of which also
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correspond to E-type polysegments. The only exception is the critical point
tn(κs) corresponding to the intersection of the line k = κs and the decreasing
part of a graph k = kn(t), where at most one n = 1 + 
 κs

τ∞ � can give rise to it.
This critical point is easily seen to correspond to an N -type polysegment since
κs = kn(t) implies κs − (n − 1)t = t∗. �

Corollary 3.3. The maximizing polysegments in P(R, κs) are

(i) geodesic chords of CR with ending angles κs if 0 ≤ κs ≤ τ∞,

(ii) non-isosceles bisegments with ending angles t2(κs) and κs−t2(κs) if τ∞ <
κs < 2τ2, and

(iii) isosceles bisegments with ending angles κs

2
if 2τ2 ≤ κs ≤ 2τ∞.

Proof. The assertions are verified through the use of Lemmas 3.1 and 3.2,
with an analysis of critical points of l(t) as is done in the above lemma for case
(iii). �

Now we return to our original goal of maximizing the length of polysegments
in P̃(R, κ), in which the facts discovered in the case of semi-total curvature
above will be utilized. In addition to the values of s̃(R, κ) for κ ≤ τ∞, the
following proposition gives a lower bound for the semi-total curvature of the
linked tail of maximizing polysegments in P̃(R, κ) for κ > τ∞.

Proposition 3.4. Let σ ∈ P̃(R, κ), κ > 0, be a polysegment with κs(σT ) ≤ τ∞.
Then there exists a deformation of σ into a polysegment η with �(σ) < �(η) such
that

(i) η is a geodesic chord with ending angle κ if 0 < κ ≤ τ∞, and

(ii) η ∈ P̃(R, κ) with κs(ηT ) > τ∞ if κ > τ∞.

In particular, if κ ≤ τ∞, then s̃(R, κ) = r(κ). In this case, a maximizing
polysegment does not exists, but a polysegment in P̃(R, κ) can be chosen to be
arbitrarily close in length to a geodesic chord with ending angle κ.

Proof. Suppose that 0 < κ ≤ τ∞ and that σ ∈ P̃(R, κ) is a bisegment.
Since κs(τ ) = κ(τ ) for any bisegment τ , Corollary 3.3 implies the existence
of η with the asserted properties. If σ has more than two ordered segments
σ1, σ2, . . . , σn with σ̂n ≥ σ̂1, then it reduces into a bisegment case by applying
the same argument on its linked tail σT to get a new polysegment σ′ with
�(σ) < �(σ′) and κ(σ′) = (σ̂1 + σ̂n) + σ̂2 + 2(σ̂3 + · · · + σ̂n−1). Thus by
increasing σ̂′

1 to 2σ̂2 ≤ τ∞ < π
2 , the newly obtained polysegment still has total

curvature κ, and is longer than the original one. Since the number of segments
is reduced, we can repeat the process until a bisegment is obtained.
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Suppose now that κ > τ∞ and σ has at least three segments with κs(σT ) ≤
τ∞. The same arguments are still valid unless 2σ̂2 > π

2 . In this case, instead
of increasing σ̂′

1 to 2σ̂2, we increase it to π
2 and add another body segment

for total curvature adjustment. If the semi-total curvature of the linked tail
of σ′ is still no greater than τ∞, then this special case does not occur and the
deformation can be repeated. If the process can be done repeatedly without
adding a new segment then it must stop at or before a bisegment stage. In any
case, the semi-total curvature of the linked tail of the resulting polysegment is
greater than τ∞. This proves the existence of η with the required properties. �

Next we give the values of s̃(R, κ) for τ∞ < κ < 2τ2.

Proposition 3.5. If τ∞ < κ < 2τ2 then s̃(R, κ) = r(t2(κ)) + r(κ − t2(κ))
and the maximizing polysegments in P̃(R, κ) are non-isosceles bisegments with
ending angles t2(κ) and κ − t2(κ).

Proof. Suppose that τ∞ < κ < 2τ2 and that σ ∈ P̃(R, κ). Applying
Proposition 3.4, we assume without loss of generality that κs = κs(σT ) > τ∞.
Notice that whenever the body of σ contains a segment that is shorter than
a tail segment of it, swapping these two segments followed by lengthening
appropriate segment(s) and/or adding one more body segment results in a
longer polysegment having the same total curvature. With successive use of
such a body-tail swapping technique together with Corollary 3.3 we get a no
shorter trisegment δ ∈ P̃(R, κ) (possibly degenerate, i.e., having trivial body)
with κ′

s = κs(δT ) ≥ κs > τ∞. The ending angles of δ are:

δ̂1 = t2(κ′
s), δ̂2 =

κ − κ′
s

2
, and δ̂3 = κ′

s − t2(κ′
s) = t∗2(κ

′
s),

where δ̂2 is the smallest (possibly zero) among the three ending angles of δ.
Note that δ̂3 ≤ τ2 ≤ δ̂1. Let l(k) be the length of a trisegment δk with ordered
ending angles t2(k), κ−k

2 and k − t2(k) = t∗2(k). Then

l(k) = r(t2(k)) + r(t∗2(k)) + r

(
κ − k

2

)

and direct computation yields l′(k) = r′(t2(k)) − 1
2r′

(
κ−k

2

)
. Now l′(k) > 0 if

κ′
s ≤ k ≤ κ since

r′(t2(k)) ≥ r′(t2(κ′
s)) = r′(t∗2(κ

′
s)) = r′(δ̂3)

≥ r′(δ̂2) = r′
(

κ − κ′
s

2

)
≥ r′

(
κ − k

2

)
.

Hence we can deform δ = δκ′
s through a family of trisegments δk by increasing k

until k = κ without length decrease. This implies the assertion to be proved. �



Mantana Chudtong and Chaiwat Maneesawarng 17

Here come the roles of co-dual ending angles defined earlier. We contend
below that τ̂2 and τ̂∞ are the sharp lower and upper bounds for the ending
angles of tail segments of maximizers in P̃(R, κ) for large κ. We also note here
that τ2 + τ̂2 > τ̂∞.

Proposition 3.6. Let σ ∈ P̃(R, κ), κ ≥ 2τ2, be a polysegment such that either
σT is not isosceles or κs(σT ) < 2τ2. Then there exists a longer polysegment
η ∈ P̃(R, κ), whose linked tail ηT is isosceles with κs(ηT ) ≥ 2τ2. In particular,
if 2τ2 ≤ κ ≤ 2τ̂2 then s̃(R, κ) = 2r

(
κ
2

)
and the maximizing polysegments in

P̃(R, κ) are isosceles bisegments ΛR,κ.

Proof. Let σ be as given. If κs(σT ) ≥ 2τ2 we set η = σ. Suppose κs(σT ) <
2τ2. We assume without loss of generality that κs = κs(σT ) > τ∞ with σT

having ending angles t2(κs) > τ2 and κs − t2(κs) and that σB is of a specific
A-type. If there is also a body segment with ending angle at least τ2 we
perform a body-tail swapping technique to get a longer polysegment η with
κs(ηT ) ≥ 2τ2. Otherwise we apply the same arguments as did in the previous
proposition to get η = δ2τ2 so that κs(ηT ) ≥ 2τ2. Now if ηT is not isosceles a
simple deformation of ηT will finish the proof.

For the last assertion, let us fix κ ∈ [2τ2, 2τ̂2]. If κs(σT ) < 2τ2, we assume
without loss of generality that κs = κs(σT ) > τ∞, that the tail segments of σ
have ending angles t2(κs) and κs − t2(κs) = t∗2(κs) and that σB is of a specific
A-type. If no body segments of σ have ending angle at least τ2 we set β = σ
and apply the arguments used in the proof of the previous proposition, with
the same use of notations until a trisegment η = δ2τ2 is obtained. If σ has
a body segment with ending angle at least τ2 then a segment swap technique
can be used to get a polysegment η with κs(ηT ) ≥ 2τ2. If σT is not isosceles
a deformation can be performed to make the linked tail isosceles. Thus we
assume now that σ is a polysegment in P̃(R, κ) whose linked tail is isosceles
with ending angles t0 ≥ τ2. We shall eliminate σ2 by a deformation that
increases arclength. Note that t0 < κ

2 ≤ τ̂2. Let l(t) be the length of the
polysegment σt obtained from σ by decreasing σ̂2 and increasing the ending
angle of each of the tail segments by t ≥ 0. Then

l′(t) = 2r′(t0 + t) + r′(σ̂2 − t) > 0

if t < σ̂2, because for such t we have t0 + t < κ
2
≤ τ̂2 and 2r′(t0 + t) > r′(τ2),

which is the maximum value of r′. Thus we obtain by a deformation of σ = σ0

through σt a longer polysegment σ′ having a smaller number of segments. By
repeating the whole process we get an isosceles bisegment of greater length
while the total curvature remains fixed. �

Proposition 3.7. Let σ ∈ P̃(R, κ), κ > 2τ̂2, be a polysegment such that at
least one of the following conditions fails to hold:
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(i) σT is isosceles,

(ii) κs(σT ) ≥ 2τ̂2, and

(iii) κs(σT ) ≤ 2τ̂∞.

Then there exists a longer polysegment η ∈ P̃(R, κ) which satisfies all of these
conditions. In particular, if 2τ̂2 ≤ κ ≤ 2τ̂∞ then s̃(R, κ) = 2r

(
κ
2

)
and the

maximizing polysegments in P̃(R, κ) are isosceles bisegments ΛR,κ.

Proof. If σT is not isosceles, Proposition 3.6 implies a longer polysegment
with the same total curvature and with isosceles linked tail. If κs(σT ) < 2τ̂2,
the same arguments as used in the previous proposition, with an appropriate
modification, give rise to a longer polysegment in P̃(R, κ) whose linked tail is
isosceles and has semi-total curvature 2τ̂2. Finally, if κs(σT ) > 2τ̂∞, an ana-
logue of the proof of Proposition 3.6 above yields a polysegment whose linked
tail is isosceles and has semi-total curvature 2τ̂∞. The resulting polysegment
also has greater length and the same total curvature. We now complete the
proof by verifying the last part.

By the previous paragraph, it suffices to consider polysegments in P̃(R, κ)
with isosceles tails whose ending angles are equal to some t ∈ [τ̂2, τ̂∞]. The
bodies of these polysegments have semi-total curvature at most κ

2
− τ̂2 ≤ τ̂∞ −

τ̂2 < τ2, and hence can be replaced by chords of the circle CR with ending
angles κ

2 − t. Consider a parametrization of representatives σt of admissible
trisegments, of the type of our concern, by the ending angle t of their isosceles
linked tails. The length of σt is l(t) = 2r(t)+ r

(
κ
2 − t

)
whose derivative l′(t) =

2r′(t) − r′
(

κ
2 − t

)
can be shown to be strictly positive for every t ∈ (

τ̂2,
κ
2

)
.

Indeed, by setting Ft(k) = 2r′(t)− r′(k− t) on [t, τ̂∞] for each fixed t ∈ [τ̂2, τ̂∞]
we have F ′

t (k) = −r′′(k−t), which vanishes only if k = t or k = t+τ2 ≥ τ̂2 +τ2.
Since the latter contradicts k ≤ τ̂∞, we conclude that t is the only zero of F ′

t .
Now, because r′′ is strictly positive on (0, τ2), Ft must be strictly decreasing
on [t, τ̂∞]. A long but elementary calculation showing that Ft(τ̂∞) is positive
for all t ∈ (τ̂2, τ̂∞) completes our proof. �

We now state key properties of maximizers for larger value of total curva-
ture.

Theorem 3.8. Any polysegment σ ∈ P̃(R, κ), κ > 2τ̂∞, that realizes the
maximum length s̃(R, κ) satisfies the following conditions:

(i) σT is isosceles with ending angles between τ̂2 and τ̂∞.

(ii) σB is of a specific A-type.

(iii) any ending angle s of σT and t of σB satisfy s = t̂.
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Proof. (i) and (ii) have just been proved above. The derivative of the length
function l(t) = nr(t)+2r

(
κ
2
− nt

)
for an E-type n-segment candidate in P̃(R, κ)

satisfying (i) with body ending angles t is given by l′(t) = nr′(t)−2nr′
(

κ
2 − nt

)
.

This implies (iii) for E-type candidates. The N -type case can be validated in
a similar manner. Note that the condition κ ≥ 2τ̂∞ allows the domain of l to
be all of [τ2, τ∞]. �

A candidate for the maximizers of P̃(R, κ), i.e., a polysegment σ ∈ P̃(R, κ)
satisfying (i)–(iii) of the above theorem, is said to be of an Ẽ-type if its body is
of an E-type and of an Ñ -type if its body is of an N -type. Further investigation
will be based on two families of total curvature functions k̃n and K̃n defined
by

k̃n(t) = 2(n − 1)t + 2t∗ + 2t̂, K̃n(t) = 2nt + 2t̂,

and two families of corresponding length functions l̃n and L̃n defined by

l̃n(t) = (n − 1)r(t) + r(t∗) + 2r(t̂ ), L̃n(t) = nr(t) + 2r(t̂ ).

These are meaningfully defined for each integer n ≥ 1 and each t ∈ [τ2, τ∞]:
k̃n and l̃n are respectively the total curvature and the length of an Ñ -type
(n+2)-segment candidate whose major body ending angles are t while K̃n and
L̃n are those of an Ẽ-type (n+2)-segment candidate whose body ending angles
are all t. To allow the use of differential calculus in length comparison, we
consider these expressions as functions of two variables n and t and extend the
domains over which the variable n ranges to all real numbers no less than 1. We
state without proof here some properties of k̃n and K̃n analogous to those of
kn and Kn that for each n ≥ 2 (not necessary an integer) there exists a unique
τ̃n ∈ [τ2, τ∞), with τ̃2 = τ2, such that k̃′

n(τ̃n) = 0, k̃n is strictly increasing on
[τ2, τ̃n] and strictly decreasing on [τ̃n, τ∞] (and hence k̃2 is strictly decreasing,
in particular). Moreover, τ̃n is strictly increasing with n and approaches τ∞ as
n → ∞. For 1 ≤ n ≤ 2, k̃n is strictly decreasing. On the other hand, K̃n, like
Kn, is strictly increasing on [τ2, τ∞] for all n ≥ 1. Sketches of graphs of k̃n’s
and K̃n’s are shown in Figure 4.

Theorem 3.8 implies (in a similar manner to what is done in the proof of
Lemma 3.2) that local maximizing candidates correspond to the points where
the line k = κ cuts the graphs k = k̃n(t) and the graphs k = K̃n(t). As is the
case with kn, the critical points corresponding to the intersection of the line
k = κ and the increasing part of the graphs k = k̃n(t) never give local maxima.
To achieve that for large κ, let us first prove the following

Lemma 3.9. Given t ∈ (τ2, τ∞], there exist a unique real number νt > 2 and
a unique ending angle t̆ ∈ (τ2, t] such that k̃νt(t) = K̃νt(t̆ ) and l̃νt(t) = L̃νt(t̆ ).
Moreover, νt is strictly increasing with t and τ̃νt < t.
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Figure 4: Sketches of graphs of k̃n’s and K̃n’s.

Proof. Fix t ∈ (τ2, τ∞]. It is obvious from the formulas for k̃n and K̃n that
for any given s ∈ [τ2, t) there is a unique nc = nc(s) such that k̃nc(t) = K̃nc(s).
Similarly, there is a unique nl = nl(s) such that l̃nl(t) = L̃nl(s). It can be
shown that nc and nl are positive, strictly increasing and approach ∞ as s
approaches t. Moreover, the difference Δ = nl − nc turns out to have a unique
zero, which we will denote by t̆. Indeed, Δ is negative on the left side and
positive on the right side of t̆. Now, by letting νt = nl(t̆ ) = nc(t̆ ), we have
k̃νt(t) = K̃νt(t̆ ) and l̃νt(t) = L̃νt(t̆ ). That νt is strictly increasing with t and
approaches 2 as t approaches τ2 ensures that νt > 2. Uniqueness easily follows.

Putting z(t) = t̆, direct calculation with careful formulation shows that z(t)
is strictly increasing. On the other hand, implicit differentiation gives

z′(t) =
−k̃′

νt
(t)

[
r(t)−r(̆t )

t−t̆
− r′(t)

]

K̃′
νt

(t̆ )
[
r′(t̆ ) − r(t)−r(̆t )

t−t̆

] .

Since K̃′
νt

(t̆ ) and the expressions in the two brackets are all positive, we con-
clude that k̃′

νt
(t) < 0, which means τ̃νt < t. �

Of all the values of νt’s the one that plays the most significant role is ντ∞ ,
to which we give n̂ as a shorthand. It can be shown that n̂ > 3. In the proof



Mantana Chudtong and Chaiwat Maneesawarng 21

of the following lemma and later on, the only ending angle value t such that
K̃n(t) = k, if one exists, will be denoted by t˜n(k). Also, the only ending angle
value t ≥ τ̃n such that k̃n(t) = k, if one exists, will be denoted by t̃n(k). These
will turn out to be the only possible major ending angles maximizers have.

Lemma 3.10. Let η ∈ P̃(R, κ), where κ > 2τ̂∞, be a nonequilateral Ñ -type
(n + 2)-segment with major body ending angles t. Then each of the following
implies that there is an Ẽ-type (n + 2)-segment σ ∈ P̃(R, κ) such that �(σ) >
�(η).

(i) t < τ̃n and n > 2,

(ii) t ≥ τ̃n and n ≥ n̂.

Proof. Let κ > 2τ̂∞ be given. For (i), we assume η with the stated properties.
Let σ be the Ẽ-type (n + 2)-segment with body ending angles s = t˜n(κ).
Obviously, σ ∈ P̃(R, κ). Now since t > τ2, it makes sense to let νt and t̆ be as in
Lemma 3.9 above. Since τ̃νt < t < τ̃n, we have (with an imitation of notations
from Lemma 3.9) nc(t̆ ) = νt < n = nc(s). It follows that t̆ < s and hence
Δ(s) > 0 or, equivalently, nl(s) > nc(s) = n. Thus, �(σ) = L̃n(s) = L̃nl(s)(s)−
[nl(s)−n]r(s) = l̃nl(s)(t)−[nl(s)−n]r(s) = l̃n(t)+[nl(s)−n][(r(t)−r(s)] > �(η)
as was to be proved.

To prove (ii), we first note that n ≥ n̂ implies k̃n(τ2) < k̃n(τ∞) and hence
the existence of t˜n(κ) follows. We claim that the Ẽ-type (n + 2)-segment σ
with body ending angles t˜n(κ) will also do the job. Indeed, since t < τ∞, we
obtain νt < n̂ ≤ n, i.e., νt < n as did in (i) above and hence the arguments
used there apply. �

We have now pinned down the candidates for maximizers to only at most
one Ñ -type candidate (as the line k = κ can cut at most one of the graphs
k = k̃n(t)) and some others that are all of an Ẽ-type. Let us turn our attention
to the Ẽ-type candidates at the moment. To seek for the winning Ẽ-type
contestants for a given total curvature κ, we see that the condition K̃n(t) = κ

gives n as a function of t, from which L̃n(t) may be expressed as a function L
of t only, with

L′(t) =
1
2t

K̃′
n(t)(tr′(t) − r(t)).

Thus the critical points of L are exactly the zeros of the function M(t) =
tr′(t)−r(t). Elementary calculus shows that M has only one zero τ◦ ∈ (τ2, τ∞),
and is positive on the left side and negative on the right side of τ◦. Clearly, if
n(τ◦) is an integer, the finalist will then consist of this Ẽ-type n(τ◦)-segment
and possibly the Ñ -type candidate mentioned above. Otherwise, the final-
ist consists of at most three candidates, namely the Ẽ-type 
n(τ◦)�-segment,
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the Ẽ-type (
n(τ◦)�+ 1)-segment and the Ñ -type candidate mentioned above.
Nevertheless, identifying the winner(s) among the finalist requires further in-
vestigation.

Proposition 3.11. Let n > 2 be an integer. Then upto isometry of the space
and body segment rearrangement:

(i) If n < n̂ then there are a unique Ñ -type (n + 2)-segment η and a unique
Ẽ-type (n + 2)-segment σ having the same total curvature and the same
length. Moreover, the major body ending angles of η equals t̃n(κ), where
κ is the common total curvature.

(ii) If n ≥ n̂ then there are a unique Ẽ-type (n + 1)-segment σ and a unique
Ẽ-type (n + 2)-segment σ′ having the same total curvature and the same
length. Moreover, the body ending angles t of σ and t′ of σ′ satisfy t′ <
τ◦ < t.

Proof. Let n > 2 be an integer. To prove (i) for n < n̂, let t be the unique
ending angle value such that νt = n. Choose σ to be the Ẽ-type (n+2)-segment
with body ending angle t̆ and choose η to be the Ñ -type (n + 2)-segment with
major body ending angle t. The first assertion follows. By lemma 3.9, t > τ̃n

and hence must equal t̃n(κ). Uniqueness is easily verified.
To prove (ii), let us first sketch a proof of a result analogous to Lemma 3.9

that given t ∈ (τ◦, τ∞] there exist a unique real number νt ≥ n̂ and a unique
ending angle t ∈ [τ2, t) such that K̃νt−1(t) = K̃νt(t) and L̃νt−1(t) = L̃νt(t): Fix
t ∈ (τ◦, τ∞] and define nc and nl on [τ2, t) by the equations K̃nc−1(t) = K̃nc(s)
and L̃nl−1(t) = L̃nl

(s). Then nc and nl, as functions of s, are positive, strictly
increasing and approach ∞ as s approaches t. Letting νt = nl(t) = nc(t), where
t is the only zero of the difference Δ = nl −nc, the result follows. Moreover, Δ
is always negative if t ≤ τ◦ while it is negative on the left side and positive on
the right side of t if t > τ◦. t and νt are proved to be strictly decreasing with t,
with the former approaching τ◦ and the latter approaching ∞ as t approaches
τ◦, so we define τ◦ = τ◦ so that t is defined and continuous at all t ∈ [τ◦, τ∞].
Note also that ντ∞ = n̂.

Now suppose n ≥ n̂. Then there is a unique t ∈ (τ◦, τ∞] such that νt = n.
Choose σ to be the Ẽ-type (n + 1)-segment with body ending angles t and
choose σ′ to be the Ẽ-type (n + 2)-segment with body ending angles t′, where
t′ = t < τ◦. This proves existence. Uniqueness is verified in the same manner
as is done in (i). �

In view of Proposition 3.11, for each integer n > 2 we let κn be the common
total curvature asserted by (i) if n < n̂ and that asserted by (ii) if n ≥ n̂. In
addition, by letting κn = K̃n(τ2) for n = 1 and 2 we now have an unbounded
strictly increasing sequence κn, the importance of which is clearly shown in
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the main theorem that will follow shortly. In order to present our main result
in a systematic pattern, let us also define κ0 = 2τ̂∞ (this conforms with the
definition of κ0 in Table 1 for R ≤ R0), κn = K̃n(τ∞) for each positive integer
n < n̂ − 1 and κn = κn+1 for n ≥ n̂ − 1. Figure 4 locates κn’s and κn’s for
small values of n. It is easy to see that for each κ > 2τ̂∞ there exists a unique
integer n such that one and only one of the following statements holds:

(i) κn−1 < κ < κn.

(ii) κ = κn.

(iii) κn < κ < κn.

(iv) κ = κn−1 �= κn (equivalently, κ = κn−1 and n < n̂).

The unique integer n in association with a given κ as asserted above is formally
denoted by nκ. Lastly, we define S̃(R, κ) for R > R0 and κ ≥ 0, which will
serve as the upper bound of the length of the curves of our concerns, by

S̃(R, κ) =

⎧⎪⎨
⎪⎩

�(ΛR,κ) if 0 ≤ κ ≤ κ0,
�(Πnκ

R,κ) if κ > κ0 and κnκ−1 < κ < κnκ ,

�(Πnκ

R,κ) otherwise,

where the symbol ΛR,κ is as mentioned before in Section 2, while Πn
R,κ and

Πn
R,κ refer respectively to any Ẽ- and Ñ -type (n+2)-segment with major body

ending angles respectively t˜n(κ) and t̃n(κ) in a disk of radius R. Note that
these polysegments necessarily have total curvature κ.

Lemma 3.12. Let n be an integer and κ > 2τ̂∞. Then the following hold,
given that the involving polysegments exist:

(i) If n < n̂ then �(Πn
R,κ) is less than, equal to or greater than �(Πn

R,κ)
accordingly as κ is less than, equal to or greater than κn.

(ii) If n > 2 then �(Πn
R,κ) is less than, equal to or greater than �(Πn−1

R,κ )
accordingly as κ is less than, equal to or greater than κn.

Proof. For (i), suppose the two polysegments exist with n < n̂. Putting
s = t˜n(κ), t = t̃n(κ) and t′ = t̃n(κn), we have n = νt′ . Then κ < κn implies
t′ < t and hence s < ť < ť′. It folllows, with the same use of notations as
in the proof of Lemma 3.9, that Δ(s) < 0, i.e., nl(s) < nc(s) = n. Thus,
�(Πn

R,κ) = L̃nl(s)(s) = l̃nl(s)(t) < l̃n(t) = �(Πn
R,κ). If κ > κn then all the

inequalities reverse. These together with the trivial case κ = κn amount to (i).
To prove (ii) we suppose again that the two involving polysegments exist

but with n > 2. We now let s = t˜n(κ), t = t˜n−1(κ) and t′ = t˜n−1(κn). With
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the same notations as those used in the proof of Proposition 3.11 (ii), we then
have n = νt′ . Thus, similar to the above, κ < κn implies t < t′. If t ≤ τ◦ then
Δ(s) < 0. If t > τ◦ then s < t′ < t and hence Δ(s) < 0 anyway. An analysis
analogous to that in the proof of (i) above yields the required result. �

In conclusion, we contend that our discussion in this section can be gener-
alized, with the usual scaling factor λ =

√−K, to all negative values of spatial
curvature K. The following theorem states a general result for arbitrary K < 0,
with the same set of notations as used above.

Theorem 3.13. (Length estimate for curves in large circumballs.) Let γ be
a curve contained in a closed ball of radius R < π

2
√

K
in an RK space, where

K < 0, with total curvature κ. If R > R0 then �(γ) ≤ S̃(R, κ). Moreover, the
upper bound S̃(R, κ) is achieved by ΛR,κ in a closed disk of radius R in SK if
κ ≤ κ0 and, with n = nκ, by the following polysegment(s) in SK if κ > κ0:

(i) Πn
R,κ if κn−1 < κ < κn,

(ii) Πn
R,κ if κ = κn and n = 1 or 2,

(iii) Πn
R,κ and Πn

R,κ if κ = κn and 2 < n < n̂,

(iv) Πn
R,κ and Πn−1

R,κ if κ = κn and n ≥ n̂,

(v) Πn
R,κ if κn < κ < κn,

(vi) Πn
R,κ if κ = κn and n < n̂ − 1.

Proof. The arguments in the last paragraph of the proof of Theorem 2.4
also apply here. Thus, it suffices to verify the assertions for bisegments and
DR-admissible polysegments in SK . We carry through that by pinpointing
maximizers for each value of κ.

For κ ≤ κ0 = 2τ̂∞, Propositions 3.4, 3.5, 3.6 and 3.7 give the supremum
of curvelength in P̃(R, κ) and comparison of it with the length of the isosceles
bisegment ΛR,κ, which is proved to be the longest among bisegments in DR,
affirms that �(ΛR,κ) is the overall maximum.

Now suppose κ > κ0. We then note that the six listed alternatives are
exhaustive. It is easy to check that in this case if γ is a bisegment in DR then
γ is overruled by a DR-admissible bisegment and hence maximizers must be
those of P̃(R, κ) as asserted by Theorem 3.8. Earlier discussions conclude that
maximizers of P̃(R, κ) correspond to the points where the line k = κ cuts the
graphs k = k̃n(t) and the graphs k = K̃n(t). (See the paragraph preceding
Lemma 3.9.) With reference to the properties of K̃n’s and k̃n’s depicted in
Figure 4, the result is readily verified for κ ≤ κ2. We therefore assume for the
rest of the proof that κ > κ2. For any positive integer m, let us denote by ηm
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the Ñ -type maximizing candidate Πm
R,κ when it exists, and similarly by σm the

Ẽ-type candidate Πm
R,κ.

Let n = nκ. For (i), suppose that κn−1 < κ < κn. Then necessarily,
2 < n < n̂ and hence ηn exists. If no Ẽ-type candidates exist, we are done.
Suppose otherwise. Since κ < κm for all m ≥ n, we have �(σn) < �(ηn)
by Lemma 3.12 (i) and �(σm) < �(σn) for all other existing σm by Lemma
3.12 (ii), rendering ηn as the only maximizer as well. As for (iii), let us assume
that κ = κn and 2 < n < n̂. Then we have at least ηn and σn as candidates,
both of the same length. If σm is another candidate then m > n and again
κ < κm and hence �(σm) < �(σn) by Lemma 3.12 (ii), so that the result follows.
The other cases can be carried out in a similar manner. �

Let us make a final note here that the relation between n̂ and the integer
N in Theorem 1.1(ii) is indeed N = 
n̂�.
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