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Abstract

In this paper, we prove new fixed point theorems for single valued
and multivalued mappings in complete metric type spaces.

1 Introduction and Preliminaries

It is well known that the classical Banach fixed point principle plays an im-

portant role in applied mathematics. For instance, it is used to determine

existence and uniqueness of solutions of differential and integral equations. In

1993 another axiom for semimetric spaces, which is weaker then the striangle

inequality, was put forth by Czerwik [6] with a view of generalizing the Banach

contraction mapping theorem.

Definition 1.1 ([6]). Let X be a nonempty set. A mapping d : X × X →
[0; +∞) is called a b-metric on X if

(d1) d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) � 2[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then (X, d) is called a b-metric space.
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In 1998 Czerwik [7] generalized this notion where the constant 2 was re-

placed by a constant s ≥ 1, also with the name b- metric. After that, in 2010

Khamsi and Hussain [8] reintroduced the notion of a b-metric under the name

metric type.

Definition 1.2 ([8]). Let X be a nonempty set. A mapping D : X × X →
[0; +∞) is called a metric type on X if

(D1) D(x, y) = 0 if and only if x = y;

(D2) D(x, y) = D(y, x) for all x, y ∈ X;

(D3) D(x, y) � K[D(x, z)+D(z, y)] for all x, y, z ∈ X and for some constant

K > 0.

Then (X, D, K) is called a metric type space.

Definition 1.3 ([8]). Let (X, D, K) be a metric type space and let {xn} be a

sequence of points of X. We say that

(i) {xn} is convergent to x ∈ X if lim
n→∞D(xn, x) = 0.

(ii) {xn} is Cauchy sequence if lim
n,m→∞D(xn, xm) = 0.

(iii) (X, D, K) is complete if every Cauchy sequence of elements of X is

convergent in X.

Subsequenly, many authors have studied fixed point theorems for metric

type spaces, see for instance [1], [3], [4], [5], [6], [7], [8], [9]. In this paper

we first prove some fixed point theorems for single valued and multivalued

mappings in complete metric type spaces, and give several examples.

2 Fixed point theorem for a single valued map-

ping

In this section, we present two fixed point theorems for single valued mappings.

Theorem 2.1. Let (X, D, K) is a complete metric type spaces and T be a

single valued mapping from X to itself. Suppose there exists α > 0 such that

D(Tx, Ty) ≤
[ D(x, Ty) + D(Tx, y) + D(x, y)
(K + 1)D(x, Tx) + KD(y, Ty) + α

]
.D(x, y),

for all x, y ∈ X. Then
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(1) T has at least one fixed point x̄ ∈ X;

(2) for any x ∈ X, the sequence {Tnx} converges to a fixed point;

(3) if x̄, ȳ ∈ X are two distinct fixed points, then

D(x̄, ȳ) ≥ α

3
.

Proof. Let x0 ∈ X be a fixed. Consider sequence {xn} by xn+1 = Txn for all

n ≥ 0. Set Dn = D(xn, xn+1) for all n ≥ 0. Then we deduce

Dn = D(Txn−1, Txn)

≤
[D(xn−1, Txn) + D(Txn−1, xn) + D(xn−1, xn)

(K + 1)D(xn−1, Txn−1) + KD(xn, Txn) + α

]
.D(xn−1, xn)

=
[ D(xn−1, xn+1) + D(xn−1, xn)
(K + 1)D(xn−1, xn) + KD(xn , xn+1) + α

]
.D(xn−1, xn)

≤
[ (K + 1)D(xn−1, xn) + KD(xn, xn+1)
(K + 1)D(xn−1, xn) + KD(xn , xn+1) + α

]
.D(xn−1, xn)

=
[ (K + 1)Dn−1 + KDn

(K + 1)Dn−1 + KDn + α

]
.Dn−1 for all n ≥ 1.

Set

cn =
(K + 1)Dn−1 + KDn

(K + 1)Dn−1 + KDn + α
for all n ≥ 1.

Then 0 ≤ cn < 1 and Dn ≤ cnDn−1 for all n ≥ 1. It follows that

Dn ≤ Dn−1 and Dn ≤ cncn−1...c1D0 for all n ≥ 1.

By the function f(t) = t
t+α

is increasing on [0, +∞), cn ≤ cn−1 for all n ≥ 2.

Therefore

cncn−1...c1 ≤ cn
1 → 0 as n → ∞.

Hence

lim
n→∞ cncn−1...c1 = lim

n→∞Dn = 0.

On the other hand, for all n, p ≥ 1, we have

D(xn, xn+p) ≤ KD(xn, xn+1) + K2D(xn+1, xn+2) + ... + KpD(xn+p−1, xn+p)

= KDn + K2Dn+1 + ... + KpDn+p−1

≤ Kcncn−1...c1D0 + K2cn+1cn...c1D0 + ... + Kpcn+p−1cn+p−2...c1D0

= (K + K2cn+1 + ... + Kpcn+p−1cn+p−2...cn+1)cncn−1...c1D0

≤ (K + K2 + ... + Kp)cncn−1...c1D0 → 0 as n → ∞.
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Thus

lim
n→∞D(xn, xn+p) = 0 for all p ≥ 1.

This shows that {xn} be a Cauchy sequence in X. Since X is complete, {xn}
converges to some point x̄ ∈ X. We claim that x̄ is a fixed point of T . Note

that

D(xn+1, T x̄) = D(Txn , T x̄)

≤
[ D(xn, T x̄) + D(Txn, x̄) + D(xn, x̄)
(K + 1)D(xn, Txn) + KD(x̄, T x̄) + α

]
.D(xn, x̄)

=
[ D(xn, T x̄) + D(xn, x̄) + D(xn+1, x̄)
(K + 1)D(xn, xn+1) + KD(x̄, T x̄) + α

]
.D(xn, x̄)

≤
[ (K + 1)D(xn, x̄) + KD(x̄, T x̄) + D(xn+1, x̄)

(K + 1)D(xn, xn+1) + KD(x̄, T x̄) + α

]
.D(xn, x̄) → 0

as n → ∞. We get

lim
n→∞xn+1 = T x̄.

Hence, T x̄ = x̄ holds, thus, x̄ is a fixed point of T . If ȳ is a fixed point of T

with x̄ �= ȳ, then

D(x̄, ȳ) = D(T x̄, T ȳ)

≤
[ D(x̄, T ȳ) + D(T x̄, ȳ) + D(x̄, ȳ)
(K + 1)D(x̄, T x̄) + KD(ȳ, T ȳ) + α

]
.D(x̄, ȳ)

=
3D2(x̄, ȳ)

α
.

This implies

D(x̄, ȳ) ≥ α

3
.

�

Example 2.2. Let X = {0, 1, 2} and let D : X × X → [0, +∞) by

D(0, 0) = D(1, 1) = D(2, 2) = 0,

D(0, 1) = D(1, 0) = 1,

D(0, 2) = D(2, 0) = 2,

D(1, 2) = D(2, 1) = 4.
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Then (X, D, K = 4) is a complete metric type space.

Let T : X → X by T0 = 0, T1 = 1 and T2 = 0. For α = 3, we have

1 = D(T0, T1) ≤
[D(0, T1) + D(T0, 1) + D(0, 1)

5D(0, T0) + 4D(1, T1) + 3
]
.D(0, 1)

= 1,

and

1 = D(T1, T2) ≤
[D(1, T2) + D(T1, 2) + D(1, 2)

5D(1, T1) + 4D(2, T2) + 3
]
.D(1, 2)

=
36
11

.

Therefore T satisfies all the conditions of Theorem 2.1 for α = 3. Also, T has

two distinct fixed points {0, 1} and

D(0, 1) = 1 ≥ α

3
= 1.

Remark 2.1. Note that in Theorem 2.1 the ration

M(x, y) :=
D(x, Ty) + D(Tx, y) + D(x, y)

(K + 1)D(x, Tx) + KD(y, Ty) + α

might be greater or less than 1. In Example 2.2, we have M(x, y) ≤ 1 for all x, y ∈
X. The following example shows that M(x, y) > 1 for all x �= y ∈ X.

Example 2.3. Let X = {0, 1, 2} and let D : X × X → [0, +∞) by

D(0, 0) = D(1, 1) = D(2, 2) = 0,

D(0, 1) = D(1, 0) =
1
2
,

D(0, 2) = D(2, 0) = 1,

D(1, 2) = D(2, 1) = 2.

Then (X, D, K = 4
3) is a complete metric type space.

Let T : X → X by T0 = 0, T1 = 1 and T2 = 2. For α = 1, we have

D(0, T1) + D(T0, 1) + D(0, 1)
(4
3 + 1)D(0, T0) + 4

3D(1, T1) + 1
=

3
2
,
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D(1, T2) + D(T1, 2) + D(1, 2)
(4
3

+ 1)D(1, T1) + 4
3
D(2, T2) + 1

= 6,

D(0, T2) + D(T0, 2) + D(0, 2)
(4
3 + 1)D(0, T0) + 4

3D(2, T2) + 1
= 3.

Hence M(x, y) > 1 for all x �= y ∈ X. On the other hand, we have

1
2

= D(T0, T1) ≤ M(0, 1).D(0, 1) =
3
4
,

2 = D(T1, T2) ≤ M(1, 2).D(1, 2) = 12,

1 = D(T0, T2) ≤ M(0, 2).D(0, 2) = 3.

Therefore T satisfies all the conditions of Theorem 2.1 for α = 1. Also, T has

three distinct fixed points {0, 1, 2} and

D(x̄, ȳ) ≥ α

3
=

1
3

for all x̄ �= ȳ ∈ X.

Theorem 2.4. Let (X, D, K) is a complete metric type space and T be a single

valued mapping from X to itself. Suppose there exists α > 0 such that

D(Tx, Ty) ≤
[D(x, Ty) + D(Tx, y) + D(x, Tx) + D(y, Ty) + D(x, y)

(K + 2)D(x, Tx) + (K + 1)D(y, Ty) + α

]
.D(x, y),

for all x, y ∈ X. Then

(1) T has at least one fixed point x̄ ∈ X;

(2) for any x ∈ X, the sequence {Tnx} converges to a fixed point;

(3) if x̄, ȳ ∈ X are two distinct fixed points, then

D(x̄, ȳ) ≥ α

3
.

Proof. Let x0 ∈ X be a fixed. Consider sequence {xn} by xn+1 = Txn for all

n ≥ 0. Set Dn = D(xn, xn+1) for all n ≥ 0. Then we have

Dn = D(Txn−1, Txn)

≤
[ (K + 2)D(xn−1, xn) + (K + 1)D(xn, xn+1)
(K + 2)D(xn−1, xn) + (K + 1)D(xn, xn+1) + α

]
.D(xn−1, xn)

=
[ (K + 2)Dn−1 + (K + 1)Dn

(K + 2)Dn−1 + (K + 1)Dn + α

]
.Dn−1 for all n ≥ 1.
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We put

cn =
(K + 2)Dn−1 + (K + 1)Dn

(K + 2)Dn−1 + (K + 1)Dn + α
for all n ≥ 1.

Then 0 ≤ cn < 1 and Dn ≤ cnDn−1 for all n ≥ 1. By using an argument

similar to that of the proof of Theorem 2.1, we have completes the proof.

�

Remark 2.2. Since

M(x, y) ≤ D(x, Ty) + D(Tx, y) + D(x, Tx) + D(y, Ty) + D(x, y)
(K + 2)D(x, Tx) + (K + 1)D(y, Ty) + α

,

for all x, y ∈ X and α > 0, where M(x, y) = D(x,Ty)+D(Tx,y)+D(x,y)
(K+1)D(x,Tx)+KD(y,Ty)+α , then

Theorem 2.4 implies Theorem 2.1.

3 Fixed point theorem for a multivalued map-

ping

Let (X, D, K) be an metric type space. Then for each x ∈ X and r > 0, the

set

BD(x, r) := {y ∈ X : D(x, y) < r}

denotes the open r- ball at x with respect to D. Note that a subset U is open

in (X, D, K) if and only if for each x ∈ U , there exists rx > 0 such that

BD(x, rx) ⊂ U.

The topology TD on X is the family consisting of all open subsets in (X, D, K).

For a sequence {xn} in (X, D, K),

lim
n→∞xn = x ∈ X if and only if lim

n→∞D(xn, x) = 0.

Then the convergence on (X, D, K) induces the sequential topology T on X in

the sense of An, Tuyen and Dung [2]. It is well-known that the topology TD

and the sequential topology T on a metric type space (X, D, K) are coincident

(see, Proposition 3.3 in [2]). Then lim
n→∞xn = x in (X, D, K) if and only if

lim
n→∞xn = x in (X, T ).
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In the next, every metric type space (X, D, K) is always understood to

be a topological space with the sequential topology T . A subset F is closed

in (X, D, K) if X\F is open in (X, D, K). A subset A in metric type space

(X, D, K) is said to be bounded if A is contained in some ball BD(x, r) of

(X, D, K).

Now, let CB(X) be the collection of all nonempty bounded closed subsets

of X. Let T : X → CB(X) be a multivalued mapping on X. Let H be the

Hausdorff metric on CB(X) induced by D, that is,

H(A, B) := max{sup
x∈B

d(x, A); sup
x∈A

d(x, B)},

where A, B ∈ CB(X) and d(x, A) := infy∈A D(x, y). Donote

δ(x, A) := sup
y∈A

D(x, y).

Theorem 3.1. Let (X, D, K) is a complete metric type space and let T : X →
CB(X) be an multivalued mapping. Suppose there exists α > 0 such that

H(Tx, Ty) ≤
[ d(x, Ty) + d(Tx, y) + D(x, y)
(K + 1)δ(x, Tx) + Kδ(y, Ty) + α

]
.D(x, y),

for all x, y ∈ X. Then

(1) T has at least one fixed point x̄ ∈ X;

(2) if x̄, ȳ ∈ X are two fixed points, then

D(x̄, ȳ) ≥
√

α

3
H(T x̄, T ȳ).

Proof. Let x0 ∈ X and choose x1 ∈ Tx0.

Step 1. If H(Tx0, Tx1) = 0 then Tx0 = Tx1. Thus, x1 is a fixed point of T .

If H(Tx0, Tx1) > 0, then for each h1 > 1, there exists x2 ∈ Tx1 such that

D(x1, x2) < h1H(Tx0, Tx1).

Step 2. Similarly, if H(Tx1, Tx2) = 0 then Tx1 = Tx2. Thus, x2 is a fixed

point of T . If H(Tx1, Tx2) > 0, then for each h2 > 1, there exists x3 ∈ Tx2

such that

D(x2, x3) < h2H(Tx1, Tx2).
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...

Step n. Continuing in this manner, if H(Txn−1, Txn) = 0 then Txn−1 = Txn.

Thus, xn is a fixed point of T . If H(Txn−1, Txn) > 0 then for each hn > 1,

there exists xn+1 ∈ Txn such that

D(xn, xn+1) < hnH(Txn−1, Txn).

We have

H(Txn−1, T xn) ≤ [ d(xn−1, T xn) + d(Txn−1, xn) + D(xn−1, xn)

(K + 1)δ(xn−1, T xn−1) + Kδ(xn, T xn) + α

]
.D(xn−1, xn)

=
[ d(xn−1, T xn) + D(xn−1, xn)

(K + 1)δ(xn−1, T xn−1) + Kδ(xn, T xn) + α

]
.D(xn−1, xn).

On the other hand, for some yn ∈ T (xn), we have
d(xn−1,Txn)+D(xn−1,xn)

(K+1)δ(xn−1,Txn−1)+Kδ(xn,Txn)+α
≤ D(xn−1,yn)+D(xn−1,xn)

(K+1)D(xn−1,xn)+KD(xn,yn)+α

≤ (K+1)D(xn−1,xn)+KD(xn,yn)
(K+1)D(xn−1,xn)+KD(xn,yn)+α .

Hence

H(Txn−1, Txn) ≤
[ (K + 1)D(xn−1, xn) + KD(xn, yn)
(K + 1)D(xn−1, xn) + KD(xn , yn) + α

]
.D(xn−1, xn).

Set

cn =
(K + 1)D(xn−1, xn) + KD(xn, yn)

(K + 1)D(xn−1, xn) + KD(xn, yn) + α
.

Then 0 < cn < 1 and

Dn < hncnDn−1, where Dn = D(xn, xn+1), Dn−1 = D(xn−1, xn).

We choose hn = 1√
cn

. Then we have

Dn <
√

cnDn−1.

This implies

Dn <
√

cncn−1...c1D0.

By using an argument similar to that of the proof of Theorem 2.1, there exists
x̄ ∈ X such that lim

n→∞xn = x̄. Now, we show that x̄ is a fixed point of T .
Indeed, we have

d(x̄, T x̄) ≤ KD(xn+1, x̄) + KH(Txn, T x̄)

≤ KD(xn+1, x̄) + K
[ d(xn, T x̄) + d(Txn, x̄) + D(xn, x̄)

(K + 1)δ(xn, T xn) + Kδ(x̄, T x̄) + α

]
.D(xn, x̄)

≤ KD(xn+1, x̄) + K
[ 2D(xn, x̄) + d(x̄, T x̄) + D(xn+1, x̄)

(K + 1)D(xn, xn+1) + Kδ(x̄, T x̄) + α

]
.D(xn, x̄).
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On taking limit on both sides of above inequality, we have d(x̄, T x̄) = 0. It

means that x̄ ∈ T x̄. Now, if ȳ is a fixed point of T , then we have

H(T x̄, T ȳ) ≤
[ d(x̄, T ȳ) + d(T x̄, ȳ) + D(x̄, ȳ)
(K + 1)δ(x̄, T x̄) + Kδ(y, T ȳ) + α

]
.D(x̄, ȳ)

≤
[D(x̄, ȳ) + D(x̄, ȳ) + D(x̄, ȳ)

α

]
.D(x̄, ȳ)

This implies

D(x̄, ȳ) ≥
√

α

3
H(T x̄, T ȳ).

�

Example 3.2. Let X = {0, 1, 2} and let D : X × X → [0, +∞) by

D(x, y) =
{

0, if x = y ∈ X,
2, if x �= y ∈ X.

Then (X, D, K = 1) is a complete metric type space.

Let T : X → CB(X) by T0 = {0}, T1 = {1} and T2 = {1, 2}. For α = 2,

we have

H(T0, T1) = H(T0, T2) = H(T1, T2) = 2,

and
[ d(0, T 1) + d(T 0,1) + D(0,1)

2δ(0,T 0) + δ(1, T 1) + 2

]
.D(0,1) =

[ D(0,1) + D(0,1) + D(0,1)

2δ(0,0) + δ(1,1) + 2

]
.D(0,1) = 6,

[ d(0, T 2) + d(T 0,2) + D(0,2)

2δ(0,T 0) + δ(2, T 2) + 2

]
.D(0,2) =

[ D(0,1) + D(0,2) + D(0,2)

2δ(0,0) + δ(2,{1,2}) + 2

]
.D(0,2) = 3,

[ d(1, T 2) + d(T 1,2) + D(1,2)

2δ(1,T 1) + δ(2, T 2) + 2

]
.D(1,2) =

[ D(1,1) + D(1,2) + D(1,2)

2δ(1,1) + δ(2,{1}) + 2

]
.D(1,2) = 2.

Hence

H(T0, T1) ≤
[d(0, T1) + d(T0, 1) + D(0, 1)

2δ(0, T0) + δ(1, T1) + 2
]
.D(0, 1),

H(T0, T2) ≤
[d(0, T2) + d(T0, 2) + D(0, 2)

2δ(0, T0) + δ(2, T2) + 2
]
.D(0, 2),

H(T1, T2) ≤
[d(1, T2) + d(2, T1) + D(1, 2)

2δ(1, T1) + δ(2, T2) + 2
]
.D(1, 2).

Therefore T satisfies all the conditions of Theorem 3.1 for α = 2. Also, T has

three distinct fixed points {0, 1, 2} and

D(x̄, ȳ) ≥
√

2
3
H(T x̄, T ȳ) for all x̄, ȳ ∈ {0, 1, 2}.
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Theorem 3.3. Let (X, D, K) is a complete metric type space and let T : X →
CB(X) be an multivalued mapping. Suppose there exists α > 0 such that

H(Tx, Ty) ≤
[d(x, Ty) + d(Tx, y) + d(x, Tx) + d(y, Ty) + D(x, y)

(K + 2)δ(x, Tx) + (K + 1)δ(y, Ty) + α

]
.D(x, y),

for all x, y ∈ X. Then

(1) T has at least one fixed point x̄ ∈ X;

(2) if x̄, ȳ ∈ X are two fixed points, then

D(x̄, ȳ) ≥
√

α

3
H(T x̄, T ȳ).

Proof. Let x0 ∈ X. By using an argument similar to that of the proof of

Theorem 3.1, for each n ≥ 1, there exists x1, x2, x3, ..., xn with xn ∈ Txn−1 for

all n ≥ 1. If H(Txn−1, Txn) = 0 then Txn−1 = Txn. Thus, xn is a fixed point

of T . If H(Txn−1, Txn) > 0 then for each hn > 1, there exists xn+1 ∈ Txn

such that

D(xn, xn+1) < hnH(Txn−1, Txn).

Then for some yn ∈ T (xn), we have

H(Txn−1, Txn) ≤
[ (K + 2)D(xn−1, xn) + (K + 1)D(xn, yn)
(K + 2)D(xn−1, xn) + (K + 1)D(xn, yn) + α

]
.D(xn−1, xn).

Set

cn =
(K + 2)D(xn−1, xn) + (K + 1)D(xn, yn)

(K + 2)D(xn−1, xn) + (K + 1)D(xn, yn) + α
.

Then 0 < cn < 1 and

Dn < hncnDn−1, where Dn = D(xn, xn+1), Dn−1 = D(xn−1, xn).

By using an argument similar to that of the proof of Theorem 3.1, we have

completes the proof. �

Remark 3.1. If T is a single map, then Theorem 3.1 reduces to Theorem 2.1

and Theorem 3.3 reduces to Theorem 2.4
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