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Abstract

In this paper we give a note on the relation of the positivity of polyno-
mial matrices and their homogenizations on basic closed semi-algebraic
sets. Base on this relation, we extend Putinar-Vasilescu’s Positivstel-
lensatz, in particular, Reznick’s Positivstellensatz, and Dickinson-Povh’s
Positivstellensatz to (not necessarily homogeneous) polynomial matrices.
This is a continuation of the work [C.-T. Lê, Some Positivstellensätze for
polynomial matrices, Positivity 19 (3) (2015), 513-528].

1 Introduction

For a subset G of the ring R[X] := R[X1, · · · , Xn] of polynomials in n variables
X1, · · · , Xn with real coefficients, the set

KG := {x ∈ R
n|g(x) ≥ 0 for all g ∈ G}

is called a basic closed semi-algebraic set in R
n.

A Positivstellensatz basically represents polynomials that are positive (or
non-negative) on basic closed semi-algebraic sets. Positivstellensätze have
many important applications, e.g. to solve the moment problems and the
polynomial optimization problems. Shor ([19], 1987) introduced the idea of
applying a convex optimization technique to minimize an unconstrained multi-
variate polynomial. Nesterov ([12], 2000) exploited the duality of moment cones
and cones of non-negative polynomials in a convex optimization framework. A
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milestone in minimizing multivariate polynomials was given by Lasserre ([9],
2001), who realized to apply recent real algebraic results by Putinar [14] to
construct a sequence of semidefinite program relaxations whose optima con-
verge to the optimum of a polynomial optimization problem. For more details
about applications of Positivstellensätze in these areas, the reader may find in
the survey of M. Laurent and references therein ([10], 2009).

Pólya’s Positivstellensatz [13] represents polynomials which are positive on
the non-negative orthant R

n
+. Putinar and Vasilescu ([15], 1999) described

polynomials that are positive on basic closed semi-algebraic sets in R
n \ {0}.

In particular, when the closed semi-algebraic set is the whole space R
n, they

obtained again Reznick’s Positivstellensatz. Recently, P. Dickinson and J. Povh
([4], 2015) obtained a Postivstellensatz which can be seen as a combination of
Pólya’s and Putinar-Vasilescu’s Positivstellensätze, and gave some applications
of their results.

Positivstellensätze for polynomial matrices, i.e. matrices with entries be-
long to the polynomial ring R[X], have attracted the interest of many people
in recent years. We can tell here the works of V.A. Jakubovi ([7], 1970) rep-
resented a univariable polynomial matrix which is positive definite on R as
a sum of two hermitian squares; D. Gondard and P. Ribenboim ([5], 1974)
gave a matrix version for Artin’s theorem on the Hilbert’s seventeenth prob-
lem; C.W.J. Hol and C.W. Scherer ([6], 2006), among others, extended Polya’s
and Putinar’s Positivstellensätze for polynomial matrices; K. Schmüdgen ([18],
2009) introduced some basic concepts and first ideas for noncommutative real
algebraic geometry; J. Cimpri ([2], 2012) introduced also real algebraic geom-
etry for matrices over commutative rings, in which, he proved a matrix ver-
sion for Krivine-Stengle’s Positivstellensatz; I. Klep and M. Schweighofer ([8],
2010) represented polynomial matrices that are positive definite (resp. not
negative semidefinite) on basic closed semi-algebraic sets whose corresponding
quadratic modules are Archimedean, obtained again Putinar’s Positivstellen-
satz for polynomial matrices; J. Cimpri and A. Zalar ([3], 2013) studied mo-
ment problems for operator polynomials, in particular, they obtained a matrix
version of Schmüdgen’s Positivstellensatz,... In particular, the work of C.-T.
Lê ([11], 2015) introduced matrix versions for Positivstellensätze of Krivine-
Stengle, Schweighofer, Scheiderer’s local-global principle, Scheiderer’s Hessian
criterion and Marshall’s boundary Hessian conditions.

The main aim of this paper is to extend Putinar-Vasilescu’s and Dickinson-
Povh’s Positivstellensätze to polynomial matrices. The paper is organized as
follows. In section 2 we introduce some basic concepts and results in Real
algebraic geometry for matrices. Moreover, we also give in this section a relation
between the positivity of polynomial matrices and their homogenizations on the
corresponding basic closed semi-algebraic sets. The main results of the paper is
presented in Section 3, in which we give a matrix version for Putinar-Vasilescu’s
Positivstellensatz and Dickinson-Povh’s Positivstellensatz.



T. Hòa-B̀ınh Du. 173

2 Preliminaries

2.1 Some basic concepts and results in Real algebraic ge-
ometry for matrices

In this section we shall recall some basis concepts and facts in Real al-
gebraic geometry for matrices over commutative rings which are proposed by
Schmüdgen ([16], [17], [18]) and Cimpri ([1], [2]). See also in [11].

For t ∈ N
∗, let Mt(R) denote the ring of t× t matrices with entries from a

commutative unital ring R. Denote by St(R) the subring of Mt(R) consisting
of all symmetric matrices. A subset M of St(R) is called a quadratic module if

It ∈ M, M + M ⊆ M, ATMA ⊆ M, ∀A ∈ Mt(R).

The smallest quadratic module which contains a given subset G of St(R) will
be denoted by MG. It is clear that

MG = {
∑
i,j

AT
ijGiAij |Gi ∈ G ∪ {In}, Aij ∈ Mt(R)}.

In particular, a subset M ⊆ R is a quadratic module if 1 ∈ M, M + M ⊆ M,
and a2M ⊆ M for all a ∈ R. The smallest quadratic module of R which
contains a given subset G ⊆ R will be denoted by MG, and it consists of all
finite sums of the form

∑
i,j a2

ijgi, gi ∈ G, aij ∈ R.
A subset T of St(R) is called a preordering if T is a quadratic module in

Mt(R) and the set T ∩ (R · It) is closed under multiplication. The smallest
preordering which contains a given subset G of St(R) will be denoted by TG.

For every subset G of St(R),

TG = MG∪(
∏ G′·It),

where
∏

G′ is the set of all finite product of elements from the set G′ :=
{vTGv|G ∈ G, v ∈ Rt}.

In particular, a subset T ⊆ R is a preordering if T +T ⊆ T, T ·T ⊆ T, a2 ∈ T
for every a ∈ R. The smallest preordering of R which contains a given subset
G ⊆ R will be denoted by TG. It is clear that

TG = {
∑

σ=(σ1,··· ,σm)∈{0,1}m

sσgσ1
1 · · ·gσm

m |m ∈ N, gi ∈ G, sσ ∈
∑

R2},

where
∑

R2 is the set of all sums of squares of finite elements from R.
In the case G = ∅,

∑
t R := M∅ = T∅ is the set of all finite sums of elements

of the form ATA, where A ∈ Mt(R), and which is the smallest quadratic
module in Mt(R).
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For a quadratic module M in R, denote

M t := {
∑

i

miAT
i Ai|mi ∈ M, Ai ∈ Mt(R)}.

Then M t is the smallest quadratic module in Mt(R) whose intersection with
R · It is equal to M · It ([2, Proposition 3]).

In the following we consider R to be the ring R[X] := R[X1, · · · , Xn] of
polynomials in n variables X1, · · · , Xn with real coefficients. Then each element
A ∈ Mt(R[X]) is a matrix whose entries are polynomials from R[X], called
a polynomial matrix. Each element A ∈ Mt(R[X]) is also called a matrix
polynomial, because it can be viewed as a polynomial in X1, · · · , Xn whose
entries from Mt(R). Namely, we can write A as

A =
d∑

|α|=0

AαXα,

where α = (α1, · · · , αn) ∈ N
n, |α| := α1 + · · · + αn, Xα := Xα1

1 · · ·Xαn
n ,

Aα ∈ Mt(R), d is the maximum over all degree of entries of A. To unify
notation, throughout the paper each element of Mt(R[X]) is called a polynomial
matrix.

For any polynomial matrix A ∈ Mt(R[X]) and for any subset K ⊆ R
n, by

A � 0 on K means that for any x ∈ K, the matrix A(x) is positive semidefinite,
i.e. for every v ∈ R

t, vTA(x)v ≥ 0. Similarly, by A 	 0 on K means that for
any x ∈ K, the matrix A(x) is positive definite, i.e. for every v ∈ R

t \ {0},
vTA(x)v > 0.

We associate to every subset G ⊆ St(R[X]) the basic closed semi-algebraic
set

KG := {x ∈ R
n|G(x)� 0, ∀G ∈ G}.

In particular, for a subset G of R[X],

KG = {x ∈ R
n|g(x) ≥ 0, ∀g ∈ G}.

The following result of Cimpri ([2]) shows that the set KG can be determined
by scalars, i.e. by polynomials in R[X].

Lemma 2.1.1 ([2, Proposition 5]). Let G ⊆ St(R[X]). Then there exists a
subset G of R[X] with the following properties:

(1) KG = KG ;

(2) (MG)t ⊆ MG ;

(3) (TG)t ⊆ TG.
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Moreover, if G is finite then G can be chosen to be finite.

It is well-known that every symmetric scalar matrix A ∈ St(R) can be diag-
onalized by an orthogonal matrix O ∈ Mt(R). For a polynomial matrix A in
St(R[X]), it is in general no longer true, because the matrix O may have ratio-
nal entries (quotients of two polynomials in R[X]). However, Schmüdgen ([18],
2009) showed that every symmetric polynomial matrix can be diagonalized by
an invertible matrix in Mt(R[X]) with a quotient by a non-zero polynomial in
R[X]. Moreover, in some special cases (e.g. that symmetric polynomial is in
standard form), that invertible matrix can be chosen to be lower triangular.

Lemma 2.1.2 ([18, Corollary 9]). Let A ∈ St(R[X]). Then there exist non-
zero polynomials b, dj ∈ R[X], j = 1, · · · , r, r ≤ n, and matrices X+, X− ∈
Mt(R[X]) such that

X+X− = X−X+ = bIt, b2A = X+DXT
+, D = X−AXT

−,

where D is the t × t diagonal matrix D(d1, · · · , dr).

Remark 2.1.3. With A, D as above, for any subset K ⊆ R
n, if A 	 0 (resp.

A � 0) on K then D 	 0 (resp. D � 0) on K.

2.2 Positivity of polynomial matrices and their homoge-
nizations

A polynomial f ∈ R[X] is said to be homogeneous of degree d if
f(λX1 , ..., λXn) = λdf(X1 , ..., Xn),

for every λ �= 0. Note that each nonzero polynomial f ∈ R[X] of degree d can
be decomposed, in a unique way, as

f = f0 + f1 + · · ·+ fd,

where fi denotes the homogeneous component of degree i of f , for i = 1, ..., d.
Moreover, given a polynomial f ∈ R[X] of degree d, we can get a homogeneous
polynomial f̃ ∈ R[X0, X1, · · · , Xn] of degree d by the following way:

f̃(X0, X1, ..., Xn) :=

{
Xd

0 f
(

X1
X0

, ..., Xn

X0

)
if X0 �= 0

fd(X1 , ..., Xn) if X0 = 0,

where X0 is a new variable. The polynomial f̃ is called the homogenization of
f . It is easy to see that

f̃(1, X1, ..., Xn) = f(X1 , ..., Xn) and f̃(0, X1, ..., Xn) = fd(X1, · · · , Xn).
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For any polynomial matrix F = (fij) ∈ Mt(R[X]) which is of degree d, denote
by Fd = ((fij)d) the homogeneous part of degree d of F. The polynomial matrix
F̃ = (f̃ij) is called the homogenization of the matrix polynomial F.

The following result gives a relation of positivity of f and f̃ on the core-
sponding basic closed semi-algebraic sets.

Lemma 2.2.1. Let G = {g1, · · · , gm} ⊆ R[X1, · · · , Xn] and f ∈ R[X1, · · · , Xn].
Let f̃ , g̃1, · · · , g̃m ∈ R[X0, · · · , Xn] be the homogenization of the polynomi-
als f, g1, · · · , gm ∈ R[X1, · · · , Xn], respectively, with deg(f) = 2d, deg(gi) =
2di, ∀i = 1, · · · , m. Denote d′ := max{di, i = 1, · · · , m}, G̃ := {g̃1, · · · , g̃m},
and

(KG)2d′ = {x ∈ R
n|(gi)2d′ ≥ 0, ∀i = 1, · · ·m}.

Note that (gi)2d′ = 0 if d′ > di. Then f̃ > 0 on KG̃ \ {0} if and only if f > 0
on KG and f2d > 0 on (KG)2d′ \ {0}.

Proof. Assume that f̃ > 0 on KG̃\{0}. Then for each x ∈ KG, we have (1, x) ∈
KG̃ \ {0}. It follows that f(x) = f̃(1, x) > 0, i.e. f > 0 on KG. Moreover, for
each x ∈ (KG)2d′ \ {0} we have (0, x) ∈ KG̃ \ {0}. So f2d(x) = f̃(0, x) > 0, i.e.
f2d > 0 on (KG)2d′ \ {0}.

Conversely, assume f > 0 on KG and f2d > 0 on (KG)2d′ \ {0}. For each
(x0, x) ∈ KG̃ \ {0}, we have g̃i(x0, x) ≥ 0 for all i = 1, · · · , m. If x0 = 0, since
(x0, x) �= (0, 0), we have x �= 0. Then, for every i = 1, · · · , m,

(gi)2d′(x) = g̃i(0, x) ≥ 0, i.e. x ∈ (KG)2d′ \ {0}.

It follows that f̃(0, x) = f2d(x) > 0. If x0 �= 0, by definition we have g̃i(x0, x) =
x2di

0 gi

(
x
x0

)
≥ 0. Since x0 �= 0 we have gi

(
x
x0

)
≥ 0, ∀ 1 ≤ i ≤ m, i.e.

x

x0
∈ KG.

It follows from the hypothesis that f
(

x
x0

)
> 0. Hence

f̃(x0, x) = x2d
0 f

(
x

x0

)
> 0,

i.e. f̃ > 0 on KG̃ \ {0}. The proof is complete. � By the
same argument we get the same conclusion for the positivity of the polynomial
f and its homogenization on the intersection of a basic closed semi-algebraic
set in R

n with the positive cone

R
n
+ = {x = (x1, .., xn) ∈ R

n|xi ≥ 0, i = 1, ..., n}.

Lemma 2.2.2. With the notation as in Lemma 2.2.1, f̃ > 0 on R
n+1
+ ∩KG̃\{0}

if and only if f > 0 on R
n
+ ∩ KG and f2d > 0 on R

n
+ ∩ (KG)2d′ \ {0}.
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Now we introduce similar results for polynomial matrices. Let

G = {G1, · · · , Gm} ⊆ St(R[X]) and F ∈ St(R[X]).

Assume deg(F) = 2d, deg(Gi) = 2di, i = 1, ..., m. Denote d′ := max{di|i =
1, · · · , m}, and

(KG)2d′ := {x ∈ R
n|(Gi)2d′(x) � 0, ∀i = 1, · · · , m}.

Let F̃, G̃1, · · · , G̃m be respectively the homogenization of the polynomial ma-
trices F, G1, · · · , Gm. Denote G̃ = {G̃1, · · · , G̃m}, and

KG̃ = {(x0, x) ∈ R
n+1|G̃i(x0, x) � 0, ∀i = 1, · · · , m}.

Then, by the same argument given in the proof of Lemma 2.2.1, we obtain the
following results.

Lemma 2.2.3. F̃ 	 0 on KG̃ \ {0} if and only if F 	 0 on KG and F2d 	 0
on (KG)2d′ \ {0}.

Lemma 2.2.4. F̃ 	 0 on R
n+1
+ ∩ KG̃ \ {0} if and only if F 	 0 on R

n
+ ∩ KG

and F2d 	 0 on R
n
+ ∩ (KG)2d′ \ {0}.

3 Putinar-Vasilescu’s and Dickinson-Povh’s Pos-

itivstellensätze for polynomial matrices

3.1 Putinar-Vasilescu’s Positivstellensatz for polynomial
matrices

Let us first recall Putinar-Vasilescu’s Positivstellensatz for homogeneous
polynomials.

Theorem 3.1.1 ([15, Theorem 4.2]). Let f, g1, · · · , gm ∈ R[X] be homoge-
neous polynomials of even degree and assume that f > 0 on KG \ {0}, where
G = {g1, · · · , gm}. Then there exists an integer r ≥ 0 such that

(X2
1 + · · ·+ X2

n)rf ∈ MG.

As a corollary of this theorem and Lemma 2.2.1, we obtain the following
Putinar-Vasilescu’s Positivstellensatz for arbitrary polynomials.

Corollary 3.1.2. Let G = {g1, · · · , gm} ⊆ R[X] and f ∈ R[X]. Assume
deg(f) = 2d, deg(gi) = 2di, i = 1, ..., m. Denote d′ := max{di|i = 1, · · · , m}. If
f > 0 on KG and f2d > 0 on (KG)2d′ \ {0}, then there exists an integer r ≥ 0
such that

(1 + X2
1 + · · ·+ X2

n)rf ∈ MG.
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Proof. By Lemma 2.2.1 we have f̃ > 0 on KG̃ \ {0}, where G̃ = {g̃1, · · · , g̃m}.
Applying Theorem 3.1.1 for the homogeneous polynomial f̃ ∈ R[X0, X1, · · · , Xn],
we have

(X2
0 + X2

1 + · · ·+ X2
n)rf̃ ∈ MG̃,

for some r ∈ N. Replacing X0 = 1, observing that

g̃i(1, X1, · · · , Xn) = gi(X1, · · · , Xn) for all i = 1, · · · , m,

we obtain the required result. � Now we give a matrix version of
Putinar-Vasilescu’s Positivstellensatz.

Theorem 3.1.3. Let G = {G1, · · · , Gm} ⊆ St(R[X]) and F ∈ St(R[X]).
Suppose deg(F) = 2d, deg(Gi) = 2di, i = 1, ..., m. Denote d′ := max{di|i =
1, · · · , m}. Assume that F 	 0 on KG and F2d 	 0 on (KG)2d′ \ {0}. Then
there exists a non-negative integer r, a finite subset G ⊆ R[X] and

(i) a matrix X ∈ Mt(R[X]) such that
(1 + X2

1 + · · ·+ X2
n)rXFXT ∈ (MG)t ⊆ MG;

(ii) a non-zero polynomial b ∈ R[X] such that
b2(1 + X2

1 + · · ·+ X2
n)rF ∈ (MG)t ⊆ MG.

Proof. Firstly, we assume that F = D(d1, · · · , dr), r ≤ t is a diagonal polyno-
mial matrix. Then F̃ = D(d̃1, · · · , d̃r). It follows from the hypothesis of F
and Lemma 2.2.3 that F̃ 	 0 on KG̃ \ {0}, where G̃ = {G̃1, · · · , G̃m}. This
implies r = t and d̃i > 0 on KG̃ \ {0} for every i = 1, · · · , t. Then it follows
from Lemma 2.1.1 that there exists a finite subset of homogeneous polyno-
mials G̃ = {g̃1, g̃2, · · · , g̃k} ⊆ R[X0, X] such that KG̃ = KG̃ , (MG̃)t ⊆ MG̃ .
Put G = {g1, · · · , gk}, where gj(X1, · · · , Xn) = g̃j(1, X1, · · · , Xn) for every
j = 1, · · · , k. It follows from Theorem 3.1.1 that for each i = 1, · · · , t, there
exists an integer ri ≥ 0 such that

(1 + X2
1 + · · ·+ X2

n)ridi ∈ MG.
Let r = max{ri, i = 1, · · · , t}. Then for every i = 1, · · · , t, we have

(1 + X2
1 + · · ·+ X2

n)rdi ∈ MG.
Therefore (1 + X2

1 + · · ·+ X2
n)rD ∈ (MG)t. This implies that

(1 + X2
1 + · · ·+ X2

n)rD ∈ (MG)t ⊆ MG .
In the general case of F ∈ St(R[X]), it follows from Lemma 2.1.2 that

there exist non-zero polynomials b, dj ∈ R[X], j = 1, · · · , r, r ≤ t, and matrices
X+, X− ∈ Mt(R[X]) such that

X+X− = X−X+ = bIt, b
2F = X+DX+

T , D = X−FX−T , (3.1)

where D = D(d1, · · · , dr). By assumption, F 	 0 on KG , hence by Remark
2.1.3 we have D 	 0 on KG . Similarly, since F2d 	 0 on (KG)2d′ \ {0} we have
also Dm 	 0 on (KG)2d′ \ {0} where m is the degree of the polynomial matrix
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D. By the first step of the proof, there exists a non-negative integer r such
that (1 + X2

1 + · · ·+ X2
n)rD ∈ (MG)n ⊆ MG. Then (3.1) yields

(i) (1 + X2
1 + · · ·+ X2

n)rX−FX−T ∈ (MG)t ⊆ MG ;
(ii) b2(1 + X2

1 + · · ·+ X2
n)rF = (1 + X2

1 + · · ·+ X2
n)rX+DXT

+ ∈ (MG)t ⊆ MG .
This completes the proof. � By setting G = ∅, we obtain the following
consequence which is a matrix version of Reznick’s Positivstellensatz (cf. [15,
Corollary 4.3]).

Corollary 3.1.4. Let F ∈ St(R[X]) be a symmetric polynomial matrix of
degree 2d. Assume F 	 0 on R

n and F2d 	 0 on R
n \ {0}. Then there exists

a non-negative integer r and

(i) a polynomial matrix X ∈ Mt(R[X]) such that
(1 + X2

1 + · · ·+ X2
n)rXFXT ∈

∑
t R[X];

(ii) a non-zero polynomial b ∈ R[X] such that
b2(1 + X2

1 + · · ·+ X2
n)rF ∈

∑
t R[X].

3.2 Dickinson-Povh’s Positivstellensatz for polynomial ma-
trices

The Dickinson-Povh’s Positivstellensatz for homogeneous polynomials is
stated as follows.

Theorem 3.2.1 ([4, Theorem 3.5]). Let f, g1, · · · , gm ∈ R[X] be homoge-
neous polynomials of even degree. Denote G = {g1, · · · , gm}. If f > 0 on
R

n
+ ∩ KG \ {0}, then there exist a non-negative integer r and homogeneous

polynomials h1, · · · , hm whose coefficients are positive such that

(X1 + · · ·+ Xn)rf =
m∑

i=1

gihi.

By Lemma 2.2.2, we obtain the following result which is a non-homogeneous
version of Dickinson-Povh’s Positivstellensatz.

Corollary 3.2.2. Let G = {g1, · · · , gm} ⊆ R[X] and f ∈ R[X]. Suppose
that deg(f) = 2d, deg(gi) = 2di, ∀i = 1, · · · , m. Denote d′ := max{di|i =
1, · · · , m}. Assume f > 0 on R

n
+ ∩ KG and f2d > 0 on R

n
+ ∩ (KG)2d′ \ {0}.

Then there exist a non-negative integer r and polynomials h1, · · · , hm ∈ R[X]
whose coefficients are non-negative such that

(1 + X1 + · · ·+ Xn)rf =
m∑

i=1

gihi.



180 A note on Positivstellensätze for matrix polynomials

Proof. It follows from Lemma 2.2.2 that f̃ > 0 on R
n+1
+ ∩ KG̃ \ {0}, where

G̃ = {g̃1, · · · , g̃m}. It follows from Theorem 3.2.1 that there exist a non-
negative integer r and homogeneous polynomials h̃1, · · · , h̃m whose coefficients
are positive such that

(X0 + X1 + · · ·+ Xn)r f̃ =
m∑

i=1

g̃ih̃i.

Replacing X0 = 1 we get the expected result, with

hi(X1, · · · , Xn) := h̃i(1, X1, · · · , Xn), for all i = 1, · · · , n.

�
Now we give a matrix version of Dickinson-Povh’s Positivstellensatz.

Theorem 3.2.3. Let G = {G1, · · · , Gm} ⊆ St(R[X]) and F ∈ St(R[X]).
Suppose deg(F) = 2d, deg(Gi) = 2di, i = 1, ..., m. Denote d′ := max{di|i =
1, · · · , m}. If F 	 0 on R

n
+ ∩ KG and F2d 	 0 on R

n
+ ∩ (KG)2d′ \ {0}, then

there exist a non-negative integer r, a finite subset G = {g1, · · · , gk} ⊆ R[X]
and

(i) positive semidefinite matrices H1, · · · , Hk ∈ St(R[X]) and a matrix X ∈
Mt(R[X]) such that

(1 + X1 + · · ·+ Xn)rXFXT =
k∑

j=1

Hjgj;

(ii) positive semidefinite matrices H′
1, · · · , H′

k ∈ St(R[X]) and a non-zero
polynomial b ∈ R[X] such that

b2(1 + X1 + · · ·+ Xn)rF =
k∑

j=1

H′
jgj.

Proof. Firstly, we suppose that F = D(d1, · · · , dr), r ≤ t, deg(F ) = 2d. Then
F̃ = D(d̃1, · · · , d̃r). It follows from Lemma 2.2.4 that F̃ 	 0 on R

n+1
+ ∩KG̃\{0}.

Hence r = t and d̃i > 0 on R
n+1
+ ∩ KG̃ \ {0}, for every i = 1, · · · , t. Now

we get from Lemma 2.1.1 a finite subset of homogeneous polynomials G̃ =
{g̃1, g̃2, · · · , g̃k} ⊆ R[X0, X] such that KG̃ = KG̃ . It shows that d̃i > 0 on
R

n+1
+ ∩ KG̃ \ {0} for every i = 1, · · · , t. Then, by Theorem 3.2.1, for each

i = 1, · · · , t, there exist non-negative integers ri and homogeneous polynomials
h̃i1, · · · , h̃ik whose coefficients are non-negative and satisfy

(X0 + X1 + · · ·+ Xn)ri d̃i =
k∑

j=1
h̃ij g̃j.
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Let r = max{ri, i = 1, · · · , t}. Then for every i = 1, · · · , t, we have

(X0 + X1 + · · ·+ Xn)rd̃i =
k∑

j=1
h̃′

ij g̃j

for new homogeneous polynomials h̃′
ij. Consequently,

(X0 + X1 + · · ·+ Xn)rF̃ =
k∑

j=1

H̃j g̃j,

where H̃j = D(h̃′
1j, h̃′

2j, · · · , h̃′
tj) ∈ St(R[X0, X]) is a homogeneous polyno-

mial matrix whose coefficients are positive, for every j = 1, · · · , k. Setting
X0 = 1, we get

(1 + X1 + · · ·+ Xn)rF =
k∑

j=1

Hjgj ,

with F = F̃(1, X), Hj = H̃j(1, X), gj = g̃j(1, X), for every j = 1, · · · , k.
Now we consider the general case of F ∈ St(R[X]). Due to Lemma 2.1.2,

there exist non-zero polynomials b, dj ∈ R[X], j = 1, · · · , r, r ≤ t, and matrices
X+, X− ∈ Mt(R[X]) such that

X+X− = X−X+ = bIt, b
2F = X+DX+

T , D = X−FX−T , (3.2)

where D = D(d1, · · · , dr). Since F 	 0 on R
n
+ ∩ KG and F2d 	 0 on R

n
+ ∩

(KG)2d\{0}, this implies that D 	 0 on R
n
+∩KG and Ds 	 0 on R

n
+∩(KG)2d′ \

{0}, where deg(D) = s. Using the obtained result for diagonal polynomial
matrices in the first step, there exist an integer r ≥ 0, positive semidefinite
matrices H1, · · · , Hk ∈ R[X] such that

(1 + X1 + · · ·+ Xn)rD =
k∑

j=1

Hjgj.

Using the relations (3.2), we have

(i) (1 + X1 + · · ·+ Xn)rX−FX−T = (1 + X1 + · · ·+ Xn)rD =
k∑

j=1
Hjgj;

(ii) b2(1 + X1 + · · ·+ Xn)rF = X+ ((1 + X1 + · · ·+ Xn)rD)X+
T

= X+

k∑
j=1

HjgjX+
T =

k∑
j=1

H′
jgj,

where H′
j = X+HjX+

T ∈ Mt(R[X]), for every j = 1, · · · , k. As Hj is positive
semidefinite matrices, so is H′

j . This completes the proof. �
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