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Abstract

Terms and formulas are expressed in a first-order language which are

used to describe properties of algebraic systems consisting a non-empty

set together with a sequence of operations and a sequence of relations on

this set. In this paper we study on linear terms of type (n) for a natu-

ral number n > 1, this leads to define the definition of linear formulas

of type ((n), (m)) for natural numbers n, m > 1. To construct clone of

linear terms and clone of linear formulas we give a new concept of the

partial superposition operation of linear terms and the partial superpo-

sition operation of linear formulas, respectively. Moreover, we show that

both of them are satisfied the superassociative law and the extension of

a many-sorted mapping, which maps a generating system to clone, is an

endomorphism.

1 Introduction

The concept of clone is one of the principal algebraic concepts especially a
clone can be regarded to category theory. In 1963, Bill Lawvere introduced
the concept of algebraic theory what is nowadays known as a Lawvere theory,
which can be thought of as a category theoretical abstraction of clones (see [12]
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for more details). Nowadays, the clone is widely accepted in this area. Some
basic examples are :

(i) The set O(A) of all (finitary) operations on A together with the usual
composition and projections on A, called the clone of operations.

(ii) Given a topological space (X, τ ), all continuous operations on X form a
clone, called the clone of (X, τ ). See [14] for a recent information in this
area.

(iii) Given a partially ordered set (A,≤), all operations on A monotone in
each variable with respect to ≤ form a clone, called the clone of partial
order.

One of direct research in clone theory is the clone of terms which plays
important role in universal algebra and computer science. To define terms one
needs variables and operation symbols. Let (fi)i∈I be a sequence of operation
symbols, when fi is ni-ary and ni ∈ N

+ := N \ {0} is a natural number.
We denote by X := {x1, . . . , xn, . . .} is a countably infinite set of symbols
called variables and for each n ≥ 1 let Xn := {x1, . . . , xn}. The sequence of
τ := (ni)i∈I is called a type. Then an n-ary term of type τ is defined inductively
as follows:

(i) Every variable xj ∈ Xn is an n-ary term of type τ .

(ii) If t1, . . . , tni are n-ary terms of type τ and fi is an ni-ary operation
symbol, then fi(t1, . . . , tni) is an n-ary term of type τ .

Let Wτ (Xn) be the set of all n-ary terms of type τ which contains x1, . . . , xn

and is closed under finite application of (ii) and let Wτ (X) :=
⋃

n∈N+ Wτ (Xn)
be the set of all terms of type τ .

Now, we recall the concept of superposition operation. For each m, n ∈ N
+

the superposition operation Sn
m : Wτ (Xn) ×Wτ (Xm)n → Wτ (Xm) is a many-

sorted mapping defined by

(i) Sn
m(xj , t1, . . . , tni ) := tj , if xj , 1 ≤ j ≤ n is a variable from Xn.

(ii) Sn
m(fi(s1, . . . , sni ), t1, . . . , tni) := fi(S

n
m(s1, t1, . . . , tni), . . . , S

n
m(sni , t1, . . . , tni)).

Then the many-sorted algebra can be defined by

cloneτ= ((Wτ (Xn))n∈N+ , (Sn
m)n,m∈N+ , (xi)i≤n∈N+),
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which is called the clone of all terms of type τ .

Here, we would like to extend all above concepts to algebraic system and
thus we now recall some basic definitions. Let I, J be indexed sets and let
(fi)i∈I , (γj)j∈J be sequences of operation symbols and relation symbols, re-
spectively. Let τ := (ni)i∈I and τ ′ := (nj)j∈J where fi has the arity ni for
every i ∈ I and γj has the arity nj for every j ∈ J . The pair (τ, τ ′) is called
the type of an algebraic system.

Definition 1.1. ([13]) An algebraic system of type (τ, τ ′) is a triple
A := (A; (fAi )i∈I , (γAj )j∈J) consisting of a non-empty set A, a sequence (fAi )i∈I

of operations on A where fAi is ni-ary for i ∈ I and a sequence (γAj )j∈J of
relations on A where γAj is nj -ary for j ∈ J .

Not all of the terms in the second-order language will used to express prop-
erties of algebraic system. The one is called formulas, first introduced by A.I.
Mal’cev in 1973 [13]. For approach to formulas see also [13], and we recall the
definition of formula which is defined by K. Denecke and D. Phusanga in 2008.

Definition 1.2. ([6]) Let n ∈ N
+. An n-ary quantifier free formula of type

(τ, τ ′) (for simply, formula) is defined in the following way:

(i) If t1, t2 are n-ary terms of type τ , then the equation t1 ≈ t2 is an n-ary
quantifier free formula of type (τ, τ ′).

(ii) If j ∈ J and t1, . . . , tnj are n-ary terms of type τ and γj is an nj-ary
relation symbol, then γj(t1, . . . , tnj) is an n-ary quantifier free formula of
type (τ, τ ′).

(iii) If F is an n-ary quantifier free formula of type (τ, τ ′), then ¬F is an n-ary
quantifier free formula of type (τ, τ ′).

(iv) If F1 and F2 are n-ary quantifier free formulas of type (τ, τ ′), then F1∨F2

is an n-ary quantifier free formula of type (τ, τ ′).

Let F(τ,τ′)(Wτ (Xn)) be the set of all n-ary quantifier free formulas of type (τ, τ ′)
and let F(τ,τ′)(Wτ (X)) :=

⋃
n∈N+ F(τ,τ′)(Wτ (Xn)) be the set of all quantifier

free formulas of type (τ, τ ′).
In 2012, M. Couceiro and E. Lehtonen [3] introduced the new concept of a

term in which each variable occurs at most once which called a linear term (see
also [2]). A linear term is a generalization of a linear expression over a vector
space (see e.g.[5]). For a definition of n-ary linear terms, they replace (ii) in
the definition of terms by slightly different condition.
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Definition 1.3. ([3]) An n-ary linear term of type τ is defined in the following
inductive way:

(i) Every xi ∈ Xn is an n-ary linear term of type τ .

(ii) If t1, . . . , tni are n-ary linear terms of type τ with var(tl) ∩ var(tk) =
∅ for all 1 ≤ l < k ≤ ni and fi is an ni-ary operation symbol, then
fi(t1, . . . , tni) is an n-ary linear term of type τ .

Let W lin
τ (Xn) be the set of all n-ary linear terms of type τ and let W lin

τ (X) :=
⋃

n∈N
W lin

τ (Xn) be the set of all linear terms of type τ .
Motivated and inspired by the result mentioned above, we restrictly inter-

ested in linear terms of type (n) for a natural number n > 1, i.e., we have only
one n-ary operation symbol. In this paper we consider an algebraic system
of type ((n), (m)), i.e., we have only one n-ary operation symbol and m-ary
relation symbol, say f and γ, respectively. We define the new definition of
linear formulas of type ((n), (m)) for natural numbers n,m > 1. Our aim, is to
construct the many-sorted algebra in the same situation of cloneτ , we define
the partial many-sorted superposition Slin p

q and form the sequence of set of
p-ary linear terms of type (n) for all p ∈ N

+ together with this operation and
projections. Furthermore, the superposition of linear formulas Rlin p

q is defined
and we construct the clone of linear formulas. To describe some properties
of these clones, the theorem of superassociative law and freely generated by a
generating system are investigated.

2 Linear Terms of Type (n) and Quantifier Free

Linear Formulas of Type ((n), (m))

Let var(t) be the set of all variables occurring in the term t and let var(F ) be
the set of all variables occurring in the formula F .

In this section, we first defined the definition of a linear term and a quantifier
free linear formula of type ((n), (m)) as follows :

Definition 2.1. Let n, p ∈ N
+ with p ≥ n. A p-ary linear term of type (n) is

defined in the following inductive way:

(i) Every xi ∈ Xp is a p-ary linear term of type (n).

(ii) If t1, . . . , tn are p-ary linear terms of type (n) with var(tl)∩var(tk) = ∅ for
all 1 ≤ l < k ≤ n and f is an n-ary operation symbol, then f(t1, . . . , tn)
is a p-ary linear term of type (n).
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Let W lin
(n)(Xp) be the set of all p-ary linear terms of type (n) and let W lin

(n)(X) :=
⋃

p∈N+ W lin
(n)(Xp) be the set of all linear terms of type (n).

Remark 2.2. Indeed, if we assume that f(t1, . . . , tn) ∈ W lin
(n)(Xp) and p < n,

then some variables in Xp must occur more than one time in f(t1 , . . . , tn),
which is impossible. Hence, we also set this condition into Definition 2.1.

Example 2.3. Let (n) = (2) be the type with a binary operation symbol f
and X2 = {x1, x2}. Then x1, x2, f(x1, x2), f(x2, x1) are examples of binary
linear terms of type (2).

Let X4 = {x1, x2, x3, x4}. Then x1, x2, x3, x4, f(x1, x2), f(x2, x1),
f(x4, f(x3, x2)), f(f(x1 , x2), f(x4, x3)) are examples of quaternary linear terms
of type (2). The example shows that every p-ary linear term of type (n) is a
p′-ary linear term of type (n) for p′ ≥ p.

Definition 2.4. Let m, n, p ∈ N
+ with p ≥ m. A p-ary quantifier free linear

formula of type ((n), (m)) (for simply, linear formula) is defined as follows :

(i) If s, t are p-ary linear terms of type (n) and var(s)∩ var(t) = ∅, then the
equation s ≈ t is a p-ary quantifier free linear formula of type ((n), (m)).

(ii) If t1, . . . , tm are p-ary linear terms of type (n) with var(tl)∩var(tk) = ∅ for
all 1 ≤ l < k ≤ m and γ is an m-ary relation symbol, then γ(t1, . . . , tm)
is a p-ary quantifier free linear formula of type ((n), (m)).

(iii) If F is a p-ary quantifier free linear formula of type ((n), (m)), then ¬F
is a p-ary quantifier free linear formula of type ((n), (m)).

(iv) If F1 and F2 are p-ary quantifier free linear formulas of type ((n), (m))
and var(F1) ∩ var(F2) = ∅, then F1 ∨ F2 is a p-ary quantifier free linear
formula of type ((n), (m)).

Let F lin
((n),(m))(W

lin
(n)(Xp)) be the set of all p-ary quantifier free linear formulas

of type ((n), (m)) and let F lin
((n),(m))(W

lin
(n)(X)) :=

⋃
p∈N+ F lin

((n),(m))(W
lin
(n)(Xp))

be the set of all quantifier free linear formulas of type ((n), (m)).

Remark 2.5. The linear formulas defined by (i) and (ii) are called atomic
linear formulas.

Example 2.6. Let ((n), (m)) = ((2), (2)) be a type, i.e., we have one binary
operation symbol f and one binary relation symbol γ and let X2 = {x1, x2}.
Then the binary atomic linear formulas of type ((2), (2)) are x1 ≈ x2, x2 ≈
x1, γ(x1, x2), γ(x2, x1). Moreover, we obtained all other linear formulas of type
((2), (2)) from binary atomic linear formulas of type ((2), (2)) by using the
connectives ¬ and ∨.
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3 Superposition of Linear Terms of type (n) and

Clone of Linear Terms

In this section, we give the concept of superposition of linear term of type (n),
this leads to form the many-sorted algebra which is called the clone of linear
terms.

Definition 3.1. Let p, q ∈ N
+ with p ≤ q, t ∈ W lin

(n)(Xp) and s1, . . . , sp ∈
W lin

(n)(Xq) with var(sl) ∩ var(sk) = ∅ for all 1 ≤ l < k ≤ p. Then we define a
superposition operation of linear terms

Slin p
q : W lin

(n)(Xp) × (W lin
(n)(Xq))p �→W lin

(n)(Xq)

inductively by the following steps :

(i) If t = xi for 1 ≤ i ≤ p, then Slin p
q(xi, s1, . . . , sp) := si.

(ii) If t = f(t1 , . . . , tp), then
Slin p

q(f(t1 , . . . , tp), s1, . . . , sp) :=
f(Slin p

q(t1, s1, . . . , sp), . . . , Slin p
q(tp, s1, . . . , sp)).

Example 3.2. Let τ = (3) be a type, i.e., we have only one ternary operation
symbol, say f . If we consider the superposition

Slin 5
7 : W lin

(3) (X5) × (W lin
(3) (X7))5 �→W lin

(3) (X7).

Then we have

(1) Slin 5
7(x4, x1, x6, x7, f(x3, x5, x2), x4) = f(x3, x5, x2).

(2) Slin 5
7(f(x2, x4, f(x5, x3, x1)), x3, f(x7, x5, x6), x1, x4, x2)
= f(Slin 5

7(x2, x3, f(x7, x5, x6), x1, x4, x2),
Slin 5

7(x4, x3, f(x7, x5, x6), x1, x4, x2),
Slin 5

7(f(x5, x3, x1), x3, f(x7, x5, x6), x1, x4, x2))
= f(f(x7 , x5, x6), x4, f(x2, x1, x3)).

Remark 3.3. 1. The condition s1, . . . , sp ∈W lin
(n)(Xq) with var(sl)∩var(sk) =

∅ for all 1 ≤ l < k ≤ p in Definition 3.1 is necessary. Otherwise, the resulting
term is not linear, as an example we let (n) = (2) with a binary operation
symbol f . Then Slin 2

2(f(x2 , x1), x2, f(x1, x2)) = f(f(x1 , x2), x2) is not a lin-
ear term, although x2 and f(x1 , x2) are linear. Therefore, we must put this
necessary condition.
2. According to the condition in Definition 3.1, we must set p ≤ q. Because if
p > q and s1, . . . , sp ∈W lin

(n)(Xq), this means that there exist variables occuring
more than once which is a contradiction.
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On the set W lin
(n)(Xp) of all p-ary linear terms of type (n), we establish

the many-sorted algebra of type (p + 1, . . . , 0, . . . , 0), by using the (p + 1)-
ary superposition operation Slin p

q as we already defined in Definition 3.1 and
adding the variables x1, . . . , xp as nullary operations, say projections. Then we
obtain the many-sorted algebra

LinClone(n) := ((W lin
(n)(Xp))p∈N+ ; (Slin p

q)p≤q,p,q∈N+ , (xi)i≤p,i∈N+),

which is called the clone of linear terms of type (n).
Next, some properties of LinClone(n) will be presented.

Theorem 3.4. The many sorted algebra LinClone(n) satisfies the following
equations :

(LC1) Slin p
q(Slin r

p(t, t1, . . . , tr), s1, . . . , sp)
= Slin r

q(t, Slin p
q(t1, s1, . . . , sp), . . . , Slin p

q(tr , s1, . . . , sp)),

(LC2) Slin p
q(xi, t1, . . . , tp) = ti for 1 ≤ i ≤ p,

(LC3) Slin p
p(t, x1, . . . , xp) = t,

where p, q, r ∈ N
+ with r ≤ p ≤ q, t ∈ W lin

(n)(Xr), t1, . . . , tr ∈ W lin
(n)(Xp),

var(tl) ∩ var(tk) = ∅ for all 1 ≤ l < k ≤ r and s1, . . . , sp ∈ W lin
(n)(Xq),

var(sl) ∩ var(sk) = ∅ for all 1 ≤ l < k ≤ p.

Proof. (LC1) We give a proof by induction on the complexity of a linear term
t.
If t = xi for all 1 ≤ i ≤ r, then
Slin p

q(Slin r
p(xi, t1, . . . , tr), s1, . . . , sp)

= Slin p
q(ti, s1, . . . , sp)

= Slin r
q(xi, S

lin p
q(t1, s1, . . . , sp), . . . , Slin p

q(tr , s1, . . . , sp)).
If t = f(u1, . . . , ur) and assume that (LC1) satisfied for u1, . . . , ur. Then
Slin p

q(S
lin r

p(f(u1, . . . , ur), t1, . . . , tr), s1, . . . , sp)
= Slin p

q(f(Slin r
p(u1, t1, . . . , tr), . . . , Slin r

p(ur, t1, . . . , tr)), s1, . . . , sp)
= f(Slin p

q(Slin r
p(u1, t1, . . . , tp), s1, . . . , sp), . . . ,

Slin p
q(S

lin r
p(ur, t1, . . . , tr), s1, . . . , sp))

= f(Slin r
q(u1, S

lin p
q(t1, s1, . . . , sp), . . . , Slin p

q(tr, s1, . . . , sp)), . . . ,
Slin r

q(ur , S
lin p

q(t1, s1, . . . , sn), . . . , Slin p
q(tr, s1, . . . , sp)))

= Slin r
q(f(u1, . . . , ur), Slin p

q(t1, s1, . . . , sp), . . . , Slin p
q(tr , s1, . . . , sp)).

(LC2) is satisfied by the definition of Slin p
q .

(LC3) We give a proof by induction on the complexity of a linear term t. If
t = xi ; 1 ≤ i ≤ p, then Slin p

p(xi, x1, . . . , xp) = xi. If t = f(t1, . . . , tp) and we
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inductively assume that Slin p
p(ti, x1, . . . , xp) = ti ; 1 ≤ i ≤ p, then

Slin p
p(f(t1, . . . , tp), x1, . . . , xp)
= f(Slin p

p(t1, x1, . . . , xp), . . . , Slin p
p(tp, x1, . . . , xp))

= f(t1, . . . , tp).

An algebra is said to be free with respect to itself if it has a generating
system and each mapping from the generating system into the universe of the
algebra can be extended to an endomorphism.

We show that the many-sorted algebra LinClone(n) involves this property.
To get our result, let Fp = {f(x1, . . . , xp) | p ∈ N

+} of so-called ”the set of
fundamental terms” and we need the following lemmas.

Lemma 3.5. The many sorted algebra LinClone(n) is generated by (Fp)p∈N+ .

Proof. Let τ = (n) be a fixed type with a natural number n > 1. To show
this, we prove that (W lin

(n)(Xp))p∈N+ is generated by (Fp)p∈N+ by induction
on the complexity of a linear term t. Let p ∈ N

+ and t = xi ∈ Xp. Since
every variable is the projection containing in the type of LinClone(n), we
may consider a variable xi is an operation symbol and so f(x1 , . . . , xp) =
xi(x1, . . . , xp) = xi for all i = 1, . . . , p. Next, let q ∈ N

+ where q ≥ n, and
assume that t1, . . . , tn ∈ W lin

(n)(Xq) are generated and t = f(t1 , . . . , tn). By
assumption, we get var(tl) ∩ var(tk) = ∅ for all 1 ≤ l < k ≤ n and thus
Slin n

q (f(x1, . . . , xn), t1, . . . , tn) = f(t1 , . . . , tn). This shows that f(t1, . . . , tn)
is generated. Therefore (Fp)p∈N+ is a generating system of LinClone(n).

Let (ϕp)p∈N+ : (Fp)p∈N+ → (W lin
(n)(Xp))p∈N+ . The next aim, is to prove

that this mapping can be extended to an endomorphism of LinClone(n). To
show this, we define (ϕp)p∈N+ : (W lin

(n)(Xp))p∈N+ → (W lin
(n)(Xp))p∈N+ as follows:

(1) ϕp(xi) := xi for 1 ≤ i ≤ p.

(2) ϕq(f(t1 , . . . , tn)) := Slin n
q (ϕn(f(x1, . . . , xn)), ϕq(t1), . . . , ϕq(tn)).

Lemma 3.6. For each many-sorted mapping ϕp with p ∈ N
+ and any linear

term t, we have var(ϕp(t)) ⊆ var(t).

Proof. We give a proof on the complexity of a linear term t. If t = xi is
a variable, then var(ϕp(xi)) = var(xi) = {xi}. If t = f(t1 , . . . , tn) and we
inductively assume that var(ϕp(ti)) ⊆ var(ti) for i = 1, . . . , n. Then
var(ϕp(f(t1, . . . , tn)))
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= var(Slin n
q (ϕn(f(x1 , . . . , xn)), ϕq(t1), . . . , ϕq(tn)))

⊆
n⋃

i=1
var(ϕq(ti))

⊆
n⋃

i=1

var(ti)

= var(f(t1 , . . . , tn)).

Lemma 3.7. For any linear term t = f(t1, . . . , tn) and any many-sorted map-
ping ϕp with p ∈ N

+ we get var(ϕp(tl))∩var(ϕp(tk)) = ∅ for all 1 ≤ l < k ≤ n.

Proof. By assumption, we have var(tl)∩ var(tk) = ∅ for all 1 ≤ l < k ≤ n, and
by Lemma 3.6 we obtain that var(ϕp(tl))∩var(ϕp(tk)) ⊆ var(tl)∩var(tk) = ∅.
This implies that var(ϕp(tl)) ∩ var(ϕp(tk)) = ∅ for all 1 ≤ l < k ≤ n.

As a result of Lemma 3.5 and 3.7, we obtain the following thorem.

Theorem 3.8. The many-sorted algebra LinClone(n) is free with respect to
itself.

Proof. From Lemma 3.5, (Fp)p∈N+ is a generating system of LinClone(n).
Next, we prove that the many-sorted mapping which maps generating sys-
tems to LinClone(n) can be extended to an endomorphism. That is, we show
by induction on complexity of a linear term t that ϕq(Slin p

q(t, t1, . . . , tp)) =
Slin p

q(ϕp(t), ϕq(t1), . . . , ϕq(tp)). According to the definition of superposition
of linear term, we see that t1, . . . , tp ∈ W lin

(n)(Xq) and var(tl) ∩ var(tk) = ∅ for
all 1 ≤ l < k ≤ p. It follows from Lemma 3.7 that var(ϕqtl) ∩ var(ϕqtk) = ∅
for all 1 ≤ l < k ≤ p. If t = xi for i = 1, . . . , p, then ϕq(S

lin p
q(xi, t1, . . . , tp)) =

ϕq(ti) = Slin p
q(xi, ϕq(t1), . . . , ϕq(tp)) = Slin p

q(ϕp(xi), ϕq(t1), . . . , ϕq(tp)). If
t = f(s1 , . . . , sp) and we inductively assume that ϕq(Slin p

q(si, t1, . . . , tp)) =
Slin p

q(ϕp(si), ϕq(t1), . . . , ϕq(tp)) for all i = 1, . . . , p and thus by the result of
Theorem 3.4 and Lemma 3.7, we have that
ϕq(Slin p

q(f(s1, . . . , sp), t1, . . . , tp))

= ϕq(f(Slin p
q (s1, t1, . . . , tp), . . . , Slin p

q(sp , t1, . . . , tp)))

= Slin p
q(ϕn(f(x1, . . . , xn)), ϕq(Slin p

q (s1, t1, . . . , tp)), . . . , ϕq(Slin p
q(sp, t1, . . . , tp)))

= Slin p
q(ϕn(f(x1, . . . , xn)), Slin p

q(ϕp(s1), ϕq(t1), . . . , ϕq(tp)), . . . ,

Slin p
q(ϕp(sp), ϕq(t1), . . . , ϕq(tp))))

= Slin p
q(Slin n

p (ϕn(f(x1, . . . , xn)), ϕq(s1), . . . , ϕq(sp)), ϕq(t1), . . . , ϕq(tp))

= Slin p
q(ϕp(f(s1, . . . , sp)), ϕq(t1), . . . , ϕq(tp)).

This shows that the extension of ϕp is an endomorphism. Therefore LinClone(n)
is free with respect to itself.
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4 Superposition of Linear Formulas of type

((n), (m)) and Clone of Linear Formulas

In this section, we extend the definition of superposition of linear terms of
type (n) to quantifier free linear formulas by substituting variables occurring
in a quantifier free linear formula by linear terms, then we obtain quantifier
free linear formulas. We describe this by the following operations Rlin p

q when
p, q > 1.

Definition 4.1. Let p, q ∈ N
+ with p ≥ q, F ∈ F lin

((n),(m))(W
lin
(n)(Xp)) and

s1, . . . , sp ∈ W lin
(n)(Xq) with var(sl) ∩ var(sk) = ∅ for all 1 ≤ l < k ≤ p. Then

we define the superposition operation

Rlin p
q : F lin

((n),(m))(W
lin
(n)(Xp)) × (W lin

(n)(Xq)p �→ F lin
((n),(m))(W

lin
(n)(Xq))

by setting,

(i) If F has the form s ≈ t, then
Rlin p

q(s ≈ t, s1, . . . , sp) := Slin p
q(s, s1, . . . , sp) ≈ Slin p

q(t, s1, . . . , sp).

(ii) If F has the form γ(t1 , . . . , tp), then
Rlin p

q(γ(t1 , . . . , tp), s1, . . . , sp)
:= γ(Slin p

q(t1, s1, . . . , sp), . . . , Slin p
q(tp, s1, . . . , sp)).

(iii) If F ∈ F lin
((n),(m))(W

lin
(n)(Xp)) and assume that Rlin p

q(F, s1, . . . , sp) is al-
ready defined, then Rlin p

q(¬F, s1, . . . , sp) := ¬Rlin p
q(F, s1, . . . , sp).

(iv) If F1, F2 ∈ F lin
((n),(m))(W

lin
(n)(Xp)) and supposed that

Rlin p
q(Fl, s1, . . . , sp) is already defined for all l ∈ {1, 2}, then

Rlin p
q(F1∨F2, s1, . . . , sp) := Rlin p

q(F1, s1, . . . , sp)∨Rlin p
q(F2, s1, . . . , sp).

Example 4.2. Let ((n), (m)) = ((3), (2)) be a type with a ternary operation
symbol and a binary relation symbol, say f and γ, respectively. If we consider
the superposition

Rlin 4
6 : F lin

((3),(2))(W
lin
(3) (X4)) × (W lin

(3) (X6))4 �→ F lin
((3),(2))(W

lin
(3) (X6)).

Then we have

(1) Rlin 4
5(f(x2, x1, x4) ≈ x3, x1, x3, x6, x2)

= Slin 4
6(f(x2, x1, x4), x1, x3, x6, x2) ≈ Slin 4

6(x3, x1, x3, x6, x2)
= f(x3 , x1, x2) ≈ x6.

(2) Rlin 4
6(γ(x3, f(x4, x1, x2)), x1, x3, f(x4, x5, x6), x2)

= γ(f(x4 , x5, x6), f(x2, x1, x3)).
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(3) Rlin 4
6(¬(x1 ≈ x3), x1, x3, f(x4, x5, x6), x2)

= ¬Rlin 4
6(x1 ≈ x3, x1, x3, f(x4, x5, x6), x2)

= ¬(x1 ≈ f(x4, x5, x6)).

(4) Rlin 4
6(x1 ≈ x3 ∨ γ(x2 , x4), x1, x3, x6, x2)

= Rlin 4
6(x1 ≈ x3, x1, x3, x6, x2) ∨Rlin 4

6(γ(x2, x4), x1, x3, x6, x2)
= x1 ≈ x6 ∨ γ(x3, x2).

Now, we may consider the many-sorted algebra :

LinFormClone((n), (m)) := ((W lin
(n) (Xp))p∈N+ , (F lin

((n),(m))(W
lin
(n)(Xp)))p∈N+ ;

(Slin p
q)p≤q,p,q∈N+ , (Rlin p

q)p≤q,p,q∈N+ , (xi)i≤p,i∈N+),

which is called the clone of linear formula of type ((n), (m)).

Theorem 4.3. The many sorted algebra LinFormClone((n), (m)) satisfies the
following properties :

(LFC1) Rlin p
q(R

lin r
p(F, t1, . . . , tr), s1, . . . , sp)

= Rlin r
q(F, S

lin p
q(t1, s1, . . . , sp), . . . , Slin p

q(tr , s1, . . . , sp)),

(LFC2) Rlin p
p(F, x1, . . . , xp) = F ,

where p, q, r ∈ N
+ with r ≤ p ≤ q, F ∈ F lin

((n),(m))(W
lin
(n)(Xr)), t1, . . . , tr ∈

W lin
(n)(Xp), var(tl) ∩ var(tk) = ∅ for all 1 ≤ l < k ≤ r and s1, . . . , sp ∈

W lin
(n)(Xq), var(sl) ∩ var(sk) = ∅ for all 1 ≤ l < k ≤ p.

Proof. We can prove similar to the proof of Thorem 3.4 follow on the definition
of a linear formula.

Our next aim is to prove that LinFormClone((n), (m)) is free with respect
to itself. To do this, we introduce some notations which will be used throughout
this aim, we now let F ∗

p = F 2
p ∪ {γ(x1, . . . , xp) | p ∈ N

+}.
Lemma 4.4. (F ∗

p )p∈N+ is a generating system of LinFormClone((n), (m)).

Proof. We first prove that (F lin
((n),(m))(W

lin
(n)(Xp)))p∈N+ is generated by the se-

quence (F ∗
p )p∈N+ . To do this, let s, t ∈ W lin

(n)(Xq), then s, t are generated by
(Fp)p∈N+ . Since the linear formulas of the form s ≈ t is the equation of linear
terms s and t, this implies that the linear formulas in this form are gener-
ated by (F 2

p )p∈N+ . Next, we let q ∈ N
+ where q ≥ m. By Theorm 3.5,

we obtained that t1, . . . , tm ∈ W lin
(n)(Xq) are generated. Let γ(t1, . . . , tm) ∈

F lin
((n),(m))(W

lin
(n) (Xq)), then var(tl) ∩ var(tk) = ∅ for all 1 ≤ l < k ≤ m,

and thus Rlin m
q (γ(x1 , . . . , xm), t1, . . . , tm) = γ(t1 , . . . , tm). This shows that
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γ(t1, . . . , tm) is generated. Now, we get atomic linear formulas which are gen-
erated by (F ∗

p )p∈N+ . By Definition 2.4, a linear formula obtained from atomic
linear formula by repeated application of the connectives ¬ and ∨, so that they
are generated. The result indicates that (F ∗

p )p∈N+ is a generating system of
LinFormClone((n), (m)).

Let (ψp)p∈N+ : (F ∗
p )p∈N+ → (F lin

((n),(m))(W
lin
(n)(Xp)))p∈N+ be a many-sorted

mapping which maps a generating system to linear formula of type ((m), (n)).
Let p1 : F 2

p → Fp be the first projection and that ψ′
p := p1(ψp|F 2

p ) is de-
fined by ψ′

p(f(x1, . . . , xp)) := p1(ψp(f(x1, . . . , xp), f(x1, . . . , xp))) where p1 :
W lin

(n)(Xp)2 →W lin
(n)(Xp).

Our next aim is to prove that(ψp)p∈N+ can be extended to an endomorphism
of LinFormClone((n), (m)). Then we define

(ψp)p∈N+ : (F lin
((n),(m))(W

lin
(n)(Xp)))p∈N+ → (F lin

((n),(m))(W
lin
(n)(Xp)))p∈N+

as follows:

(1) ψq(s ≈ t) := ψ′
q(s) ≈ ψ′

q(t).

(2) ψq(γ(t1 , . . . , tm)) := Rlin m
q (ψm(γ(x1, . . . , xm)), ψ′

q(t1), . . . , ψ′
q(tm)).

(3) ψq(¬F ) := ¬(ψq(F )).

(3) ψq(F1 ∨ F2) := ψq(F1) ∨ ψq(F2).

Lemma 4.5. For each many-sorted mapping ψp with p ∈ N
+ and any linear

formula F , we have var(ψp(F )) ⊆ var(F ).

Proof. We can prove this lemma by the definition of linear formulas and using
the same arguments as we use in Lemma 3.6. If F has the form s ≈ t, then
var(ψq(s ≈ t)) = var(ψ′

q(s) ≈ ψ′
q(t))

= var(ψ′
q(s)) ∪ var(ψ′

q(t))
⊆ var(s) ∪ var(t)
= var(s ≈ t).

If F has the form γ(t1 , . . . , tm), by the result of Lemma 3.6 we have var(ψ′
p(ti)) ⊆

var(ti) for all i = 1, . . . , m, and thus
var(ψp(γ(t1, . . . , tm))) = var(Rlin m

q (ψm(γ(x1, . . . , xm)), ψ′
q(t1), . . . , ψ′

q(tm)))

⊆
m⋃

i=1
var(ψ′

q(ti))

⊆
m⋃

i=1
var(ti)

= var(γ(t1, . . . , tm)).

If linear formula has the form ¬F , and var(ϕp(F )) is already defined, so that
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var(ψp(¬F )) = var(¬(ψp(F ))) = var(ψp(F )) ⊆ var(F ) = var(¬F ).
If linear formula has the form F1 ∨ F2 and var(ψp(F1)) and var(ψp(F2)) are
already defined. Then we get
var(ψp(F1 ∨ F2)) = var(ψp(F1) ∨ ψp(F2))

= var(ψp(F1)) ∪ var(ψp(F2))
⊆ var(F1) ∪ var(F2)
= var(F1 ∨ F2).

Lemma 4.6. For any many-sorted mapping ϕp with p ∈ N
+. Then the follow-

ing statement hold :

(1) If linear formula F := s ≈ t, then var(ψ′
p(s)) ∩ var(ψ′

p(t)) = ∅.

(2) If linear formula F := γ(t1 , . . . , tm), then var(ψ′
p(tl)) ∩ var(ψ′

p(tk)) = ∅
for all for all 1 ≤ l < k ≤ m.

(3) If linear formula F := F1 ∨ F2 , then var(ψp(F1)) ∩ var(ψp(F2)) = ∅.

Proof. These follow immediately from Lemma 4.5.

As a result of Lemma 4.4 and 4.6, we obtain the following theorem.

Theorem 4.7. The many-sorted algebra LinFormClone((n), (m)) is free with
respect to itself.

Proof. From Lemma 4.4, (F ∗
p )p∈N+ is a generating system of

LinFormClone((n), (m)). Next, we show that the extension of (ψ)p∈N+ is an
endomorphism. We show that

ψq(R
lin p

q(F, t1, . . . , tp)) = Rlin p
q(ψp(F ), ψ′

q(t1), . . . , ψ
′
q(tp)).

According to the definition of superposition of linear formulas, we know that
t1, . . . , tp ∈ W lin

(n)(Xq) and var(tl) ∩ var(tk) = ∅ for all 1 ≤ l < k ≤ p. It follow
from Lemma 3.6 that var(ψ′

q(tl)) ∩ var(ψ′
q(tk)) = ∅ for all 1 ≤ l < k ≤ p. If F

has the form s ≈ t, by Lemma 4.6, we have that
ψq(Rlin p

q(s ≈ t, t1, . . . , tp))
= ψq(S

lin p
q(s, t1, . . . , tp) ≈ Slin p

q(t, t1, . . . , tp))
= ψ′

q(S
lin p

q(s, t1, . . . , tp)) ≈ ψ′
q(S

lin p
q(t, t1, . . . , tp))

= Slin p
q(ψ′

p(s), ψ′
q(t1), . . . , ψ′

q(tp)) ≈ Slin p
q(ψ′

p(t), ψ′
q(t1), . . . , ψ′

q(tp))
= Rlin p

q(ψ′
p(s) ≈ ψ′

p(t), ψ′
q(t1), . . . , ψ′

q(tp))
= Rlin p

q(ψp(s ≈ t), ψ′
q(t1), . . . , ψ′

q(tp)).
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If F has the form γ(s1 , . . . , sp), and by Theorem 3.8, we have
ψ′

q(Slin p
q(sl, t1, . . . , tp)) = Slin p

q(ψ′
p(sl), ψ′

q(t1), . . . , ψ′
q(tp)) for all l = 1, . . . , p.

Then by Lemma 4.6, we get that ψq(Rlin p
q(γ(s1 , . . . , sp), t1, . . . , tp))

= ψq(γ(Slin p
q(s1, t1, . . . , tp), . . . , Slin p

q(sp, t1, . . . , tp)))

= Rlin m
q (ψm(γ(x1, . . . , xm)), ψ′

q(Slin p
q(s1, t1, . . . , tp)), . . . , ψ′

q(Slin p
q(sp, t1, . . . , tp)))

= Rlin m
q (ψm(γ(x1, . . . , xm)), Slin p

q(ψ′
p(s1), ψ

′
q(t1), . . . , ψ

′
q(tp)), . . . ,

Slin p
q(ψ′

p(sp), ψ′
q(t1), . . . , ψ

′
q(tp)))

= Rlin p
q(Rlin m

p (ψm(γ(x1, . . . , xm)), ψ′
p(s1), . . . , ψ′

p(sp)), ψ′
p(t1), . . . ψ

′
p(tp))

= Rlin p
q(ψp(γ(s1, . . . , sp)), ψ′

q(t1), . . . , ψ′
q(tp)).

If linear formula has the form ¬F and we assume that F satisfied already.
By Lemma 4.6, ψq(R

lin p
q(¬F, t1, . . . , tp))

= ψq(¬(Rlin p
q(F, t1, . . . , tp)))

= ¬(ψq(Rlin p
q(F, t1, . . . , tp)))

= ¬(Rlin p
q(ψp(F ), ψ′

q(t1), . . . , ψ′
q(tp)))

= Rlin p
q(¬(ψp(F )), ψ′

q(t1), . . . , ψ
′
q(tp))

= Rlin p
q(ψp(¬F ), ψ′

q(t1), . . . , ψ′
q(tp)).

If linear formula has the form F1 ∨ F2 and we assume that F1, F2 satisfied al-
ready. By Lemma 3.7 and 4.6, then we have that
ψq(Rlin p

q(F1 ∨ F2, t1, . . . , tp))
= ψq(Rlin p

q(F1, t1, . . . , tp) ∨Rlin p
q(F2, t1, . . . , tp))

= ψq(R
lin p

q(F1, t1, . . . , tp)) ∨ ψq(R
lin p

q(F2, t1, . . . , tp))
= Rlin p

q(ψp(F1), ψ′
q(t1), . . . , ψ′

q(tp)) ∨Rlin p
q(ψp(F2), ψ′

q(t1), . . . , ψ′
q(tp))

= Rlin p
q(ψp(F1) ∨ ψp(F2), ψ′

q(t1), . . . , ψ′
q(tp))

= Rlin p
q(ψp(F1 ∨ F2), ψ′

q(t1), . . . , ψ′
q(tp)).

This shows that ψq for all q ∈ N
+ is an endomorphism. Now, we can conclude

that LinFormClone((n), (m)) is free with respect to itself.
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