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Abstract

Computational Algebraic Statistics is a new mathematics-based scien-
tific discipline that is combined of three disciplines of Computing, Algebra
and Statistics. This review introduces integrating powerful techniques of
- among other things- Polynomial Algebra, Algebraic Geometry, Group
Theory and Computational Statistics in this new field of Computational
Algebraic Statistics (in brief CAS). CAS currently plays an essential and
powerful role in some importantly applicable fields growing very fast
in recent years, from science to engineering, such as: statistical quality
control, process engineering, computational biology, complex biological
networks, life sciences, data analytics and finance studies.

Furthermore, by combining the theory of algebraic geometry with
graph theory, we point out connections between integer linear program-
ming (ILP), mathematical modeling in traffic engineering, logistics man-
agement and transportation science.

These methods and algorithms are based on elegant ideas from some
active fields of mathematics and statistics, and their useful applications
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can be potentially found in various scientific and technological sectors.

Introduction

Computer Algebra - a briefly mixed name of computing and algebra, as a part of
both fields of computational mathematics and scientific computing, also called
symbolic computation or algebraic computation, is a scientific area developed
around 1970s that refers to the study and development of algorithms and soft-
ware for manipulating mathematical expressions and other mathematical ob-
jects. Though it is a sub-field of scientific computing, while naming symbolic
computation we emphasize exact computation with expressions containing vari-
ables that have no given value and are manipulated as symbols [11]. The core
machinery, which makes all computations algebraically feasible and computa-
tionally tractable is the Groebner Basis method (see Appendix A in Section 4)
being invented 1965, by Bruno Buchberger, an Austrian mathematician.

Recently, around the year 2000 Algebraic Statistics [3] was briefly named
for the study of the algebraic structures underlying statistical inference and
modeling. We could simply think the algebraic structures consist of linear
algebra, commutative algebra, algebraic combinatorics, and the most impor-
tant subject is algebraic geometry. Saying statistical inference we mean, in
the broadest sense, any meaningful reasoning on samples of a population that
could be made by using mathematical tools. The mathematical area named
Computational Algebraic Statistics - CAS, therefore essentially is a newly sci-
entific domain being intertwined from three subjects of computing, algebra and
statistics.

There are two major parts in this review, in both parts algebraic struc-
tures play a vital role. At first, the computer algebra based approach is used
for Pure Mathematics in Section 1 and furthermore, for Operations Research
in Section 3. Secondly, Section 2 shows how the algebraic statistics based
approach is employed in Quality Engineering, more specifically in Industrial
Manufacturing.

The major aim of this writing is to express that, although each field has
distinct strength, solving complex problems in various domains nowadays basi-
cally requires a multi-dimensional view and integrated thinking, but joyful and
worthy to do.

Why study Computational Algebraic Statistics (CAS)?

We aim to understand statistical problems by looking through algebraic glasses;
hope the study might explain unusual phenomena being observed but we could
not produce elucidated explanations. Furthermore, the process could lead to
purely mathematical problems, and possibly lead us to a unifying framework for
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discussing and exploring new connections to active research fields of computa-
tional biology, finance, and reliability of complex systems. The key philosophy
of using CAS is two folds: focusing on the modeling and representation phase,
of either of objects of interest or complex data sets; and artfully putting heavy
and a bit boring computational tasks to computer-based algorithms.

Related Literature

Briefly speaking, CAS appears in or is intimately used in the below themes
that use algebraic geometry, Groebner bases, quantifier elimination ... as major
tools:

• Exact hypothesis tests of conditional independence (Diaconis, 1998 [14]);

• Experiment designs (G. Pistone and H. Wynn, [18, 20]; Nguyen, 2005
[37]);

• Geometric intersection in automobile industry, (A. Morgan, 2009 [2]);

• Reliability theory and engineering (Ron Kenett, 2014 [39]);

• Computational biology, e.g. biological multiple sequence alignments, and
Phylogenetics (Pachter and Sturmfels, 2005 [25], Olson et al. [35]);

• Life sciences: in health care alone, computer algebra has been used
in work that bears on cancer, public health issues (which include risk
analysis, survival analysis, drug testing, epidemiology), clinical medicine
(specifically medical imaging), population and evolutionary genetics, bio-
engineering (including computer vision and ergonomic design), biochem-
ical kinetics ... kindly see Barnett, 2002 [34] for a full survey;

• Algebraic biology- goes beyond key themes of CAS- a new way of applying
algebraic computation and statistical inference to the study of biological
problems, especially molecular structures in general; see more in [7].

Currently active researches are included in two major schools:

The European School of Algebraic Statistics created by G. Pistone and
H. P. Wynn in their pioneering paper titled Generalised confounding with
Groebner bases in Biometrika, 1996 [18], and then the work have been
concretely shaped in 2000–2001 respectively [see [19] and [20]].

Their innovative ideas are elegant and precise formulations of complex
questions in Statistics, in particular in Designs of Statistical Experiments.
With those formulations, efficient algebraic techniques are used to obtain
solutions (predictions or quantitative inferences ...), and then powerful
computer algebra systems are employed to speed up the computation.



108 A survey on computational algebraic statistics and its applications

The United States School of Algebraic Statistics. Almost the same time,
Diaconis and Sturmfels in [14] firstly proposed an algebraic approach for
classical sampling problems. Bernd Sturmfels at Berkeley and a group of
multidisciplinary scientists studying Statistics and Computational Biol-
ogy with the various algebraic tools in other emerging areas apparently.

The problems they have concerned mostly are life sciences-related ques-
tions including biologically sequence alignments, key mechanisms of com-
plex biology networks [Lior Pachter and Bernd Sturmfels, 2005 [25]].

Most recent applications using CAS presented in this work include:

1. Pure Mathematics: Weyl algebras, non-commutative algebras in general
(Nguyen, 1998 [36])

2. Statistical Quality Control : Factorial Designs in industrial manufacturing
(Nguyen, 2005 [37], Kenett, 2014 [39], Pistone [20])

3. Operations Research: Optimal Vehicle Routing in logistics planning.

The remaining parts are shown as follows. Firstly, the well known Dixmier
conjecture on Weyl algebras (being related to the Jacobean conjecture) is for-
mulated in Section 1, coupling with a solution of using computer algebra to
disprove it. Looking to quality engineering, Section 2 discusses major method-
ologies proposed by the European school of algebraic statisticians. As an illus-
tration, we sketch an industry-oriented problem that can be handled by CAS.
In Section 3 we consider a problem of finding optimal routes in manufacturing
with a balance of source and sink. Last but not least, mathematical treat-
ments for the discussed applications are reviewed in Appendix A- about the
Groebner basis methodology, a computational machinery being essential for
handling multivariate polynomial systems; and in Appendix B on basic facts
of permutation group.

1 Testing conjectures on a Weyl algebra

We discuss about two conjectures both formulated on Weyl algebra (the al-
gebra of polynomial differential operators), namely Jacques Dixmier’s conjec-
ture (1968) and Nguyen Huu Anh’s conjecture (1997). The first one, raised by
Jacques Dixmier, is the conjecture that whether every algebra endomorphism of
the first Weyl algebra over a characteristic zero field is an automorphism. Some
authors (Tsuchimoto in 2005, Belov-Kanel and Kontsevich in 2007) showed that
the Dixmier conjecture is stably equivalent to the well known Jacobian conjec-
ture, whereby the Jacobian conjecture itself is ranked number 16 in Stephen
Smale’s list of Mathematical Problems for the 21st Century, see [22].
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1.1 Jacques Dixmier and Nguyen Huu Anh conjectures

Our contribution: In 1997 the first author tried to find a counter-example
for the Dixmier conjecture for smallest valid parameters, and it turned out that
Dixmier conjecture is still valid for that case, see details in Section 1.2. Years
later, in 2008 Hoang V. Dinh [17] extended searching for a counter-example
for a next pair of valid parameters, but the stubborn Dixmier conjecture still
resists to failing!

1.1.1 Weyl algebra An and its canonical representation

Weyl algebra An(k) or just An over a field k is an algebra being determined by
2n generators p1, q1, · · · , pn, qn such that the following conditions are hold:

• the Lie product [pi, qi] = piqi − qipi = 1, for i = 1, 2, · · · , n; and

• [pi, qj ] = [pi, pj ] = [qi, pj ] = 0 if i 6= j.

The canonical representation of An: Let E = k[X1, X2, · · · , Xn] be a vector
space defined on the field k and n variates X1, X2, · · · , Xn. Denote by Pi =
∂

∂Xi
the partial differential morphism with respect to Xi, and Qi the multi-

plicative morphism by Xi, then clearly Pi, Qi ∈ End(E)- the set of all endo-
morphisms on the space E. Moreover, we easily see that they satisfy constraints

[Pi, Qi] = 1, and [Pi, Qj ] = [Pi, Pj ] = [Qi, Qj ] = 0, for all i 6= j.

For instance, the fact that [Pi, Qi] = 1 (the identity on E) is true because

[Pi, Qi](f) = (
∂

∂Xi
Xi −Xi

∂

∂Xi
)(f) = (

∂

∂Xi
)(Xif)−Xi (

∂

∂Xi
)(f)

= f +Xi(
∂

∂Xi
)(f)−Xi (

∂

∂Xi
)(f) = f.

Therefore, there exists an morphism ρ fromAn to End(E) so that ρ(pi) = Pi,
ρ(qi) = Qi,∀i. As a result, elements pi11 q

j1
1 · · · pinn qjnn make a basis of An as a

vector space, and ρ is an injection. We write

An = k

[
X1, X2, · · · , Xn,

∂

∂X1
, · · · , ∂

∂Xn

]
with

[Xi,
∂

∂Xj
] = δij (the Knonecker notation).

0Hermann KH. Weyl (1885 - 1955) was a German mathematician, theoretical physicist
and philosopher; one of the most influential mathematicians of the 20th century, and an
important member of the Institute for Advanced Study during its early years.
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The representation ρ of the algebra An in End(E) is called the canonical
representation of An. When n = 1 we write p1 = p, q1 = q, the Weyl algebra
A1 is determined by two generators p, q where the Lie product [p, q] = 1.

The algebra A1 plays an important role in harmonic analysis over unimodule
Lie groups having integrable square representation. Jacques Dixmier (1968)
investigated the algebraic representation of A1 and related the theory with the
automorphism group Aut(A1) of A1.

1.1.2 The Dixmier conjecture

From now on, for convenience we write x, y instead of p, q, so, as discussed above
we can identify A1 = A1(k) with the non-commutative polynomial ring kD[x, y]
(D means the Lie bracket) in which the Lie product [x, y] = xy− yx = 1. Let
τ : A1 −→ A1 be an injective morphism. Then{

τ(x) = P, τ(y) = Q,

[P,Q] = [τ(x), τ(y)] = τ([x, y]) = τ(1) = 1 . . . (α)

P,Q obviously are polynomials in the non-commutative ring kD[x, y], with
degrees p = deg(P ), q = deg(Q), and {P, Q} generates τ(A1). Furthermore
it is a basis of τ(A1) (i.e. {P i Qj} is a basis of τ(A1) as a vector space).
As a result, the injective morphism τ can be determined by two generators
P, Q ∈ A1 such that [P, Q] = 1. Note that P = P (x, y), Q = Q(x, y)
are non-commutative polynomials with respect to two variates x, y satisfying
[x, y] = xy − yx = 1.

Dixmier made his well known conjecture in 1968 as follows: Every injec-
tive morphism τ from the Weyl algebra A1 to itself is an isomorphism.

A solution of the Dixmier conjecture - although only touching the algebra
A1- could meaningfully help studying the automorphism group Aut(An) of the
general algebra An, a problem closely related to the enveloping algebra of a
Heisenberg group. Up to the 1996 there was no proof of correctness of this con-
jecture, hence we tried to find a counter-example. A possible counter-example
is just one specific injective morphism τ such that τ(A1) ⊂ A1, meaning it is
not surjective. Equivalently, tt means a pair of P,Q that do not generate A1,
or just “x, y can not be represented as polynomials of P and Q”!

The automorphism group Aut(k[x, y]) of k[x, y]: Assume that the ground field
k is algebraically closed with characteristic 0, let commutative polynomials

f = f(x, y), g = g(x, y) ∈ k[x, y]

0The discrete Heisenberg group is just a certain group of 3× 3 upper triangular matrices,
but the continuous one arises in the description of one-dimensional quantum mechanical
systems, especially in the context of the Stonevon Neumann theorem.
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in two variables x, y. Denote by θ : k[x, y] −→ k[x, y] a polynomial morphism
such that θ(x) = f, θ(y) = g, that means θ is determined by the pair of f, g.
Put J(f, g) := ∂(f, g) the Jacobian matrix of θ, then the determinant of J(f, g)

D(θ) := det(J(f, g)) = ∂(f, g)/∂(x, y) =
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
(1)

is a polynomial with degree deg(D(θ)) = deg(f) + deg(g)− 2 over k.
If θ is isomorphism then there exists the inverse θ−1 and we have

D(θ ◦ θ−1) = D(θ).D(θ−1) = D(Id) = 1.

Therefore D(θ) is an invertible element in k[x, y].
Now if we call Aut(k[x, y]) the group of all isomorphisms of k[x, y], then by

the above reasoning this group is defined by such pairs of polynomials f, g.

1.1.3 Nguyen Huu Anh’s conjecture

In the process of disproving the Dixmier conjecture, Nguyen Huu Anh proposed
in 1997 a stronger conjecture, formulated as follows.

Given two polynomials P, Q ∈ A(k) = kD[x, y], with degrees p, q,
p ≥ 2 or q ≥ 2, gcd(p, q) < min(p, q), and also [P, Q] = c, c ∈ k; where k
is an algebraically closed field.

There exists a polynomial u = u(x, y) ∈ A(k) with degree d =
gcd(p, q) and two univariate polynomials F,G with respect to u such
that {

P (x, y) = F (u(x, y)) and

Q(x, y) = G(u(x, y)).

Theorem 1.1. If Nguyen Huu Anh’s conjecture would true then the Dixmier
conjecture is true as well.

We need the lemma below for proving this theorem.

Lemma 1.1. Let f = f(x, y), g = g(x, y) be commutative polynomials in
k[x, y]. If f is homogeneous with degree p ≥ 1, g is homogeneous with degree
q ≥ 1, and moreover, the determinant D(f, g) := det(J(f, g)) ≡ 0 then there
exists a homogeneous polynomial u0 ∈ k[x, y] of degree d = gcd(p, q) so that

f = c1 u
p/d
0 , g = c2 u

q/d
0 .

Proof. (Theorem 1.1) Denote by τ an arbitrary injection from A1 to itself. We
prove that τ is surjective, by induction on max{p, q}, where p, q the degrees of
generating polynomials P,Q of τ . It means we check P,Q generate A1, with
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the above assumption (α) that τ(x) = P, τ(y) = Q, and [P,Q] = 1.

Case of p = q = 1: P , Q have degree 1, so we write P = ax+by, Q = cx+dy
with D(τ) = ad− bc = [P,Q] = 1 6= 0 (see Equation 1). Hence, x, y are repre-
sented as polynomials of degree 1 of P,Q, so P,Q generate the algebra A1.

Case of p > 1 or q > 1: Obviously p+ q ≥ 3. We must have p ≥ 1 or q ≥ 2.
Suppose gcd(p, q) < min(p, q). Since [P,Q] = 1 and assumptions of Anh’s

conjecture are satisfied we imply that there exists a polynomial u(x, y) ∈ A1(k)
such that {

P (x, y) = F (u) and

Q(x, y) = G(u),

as a result [P,Q] = [F (u), G(u)] = 0 (contradiction)! Therefore, we must have
gcd(p, q) = min(p, q), and can take p < q, then p is a divisor of q, and so
d = gcd(p, q) = p, p/d = 1. Now let fp, gq be respectively the homogeneous
components of degree p and q of polynomials P,Q. Then, as Equation 1 sug-
gests, polynomial

E = det(J(fp, gq)) = ∂(fp, gq)/∂(x, y)

is the homogeneous components of highest degree p + q − 2 of polynomial
D(τ) = [P,Q] = 1 6= 0. Because p+ q ≥ 3 or p+ q − 2 ≥ 1, besides D(τ) 6= 0
so we get E = 0. The pair of fp, gq fulfills Lemma 1.1, so we can firstly find a
homogeneous polynomial u0 ∈ k[x, y] of degree d = gcd(p, q).

Secondly we employ the concept of commutative graded algebra on the
algebraically closed field k (see Man Nguyen 1997, [36, Part C, Chapter 3]), to
finally reduce polynomials fp, gq further to

fp = u
p/d
0 mod deg ≤ p− 1 = u0 mod deg ≤ p− 1,

gq = u
q/d
0 mod deg ≤ q − 1.

With this result, we write the polynomial

Q∗ := Q− P q/p = (gq + . . .)− (fp + . . .)q/p = (gq + . . .)− (u0 + . . .)q/p

= (u
q/d
0 + . . .)− uq/d0 + . . .

consequently deg(Q− P q/p) = deg(Q∗) < deg(Q) = q, and so

1 = [P,Q] = [P,Q∗ + P q/p] = [P,Q∗].

Because of deg(Q∗) < deg(Q) we see that

max(deg(P ),deg(Q∗)) < max(deg(P ),deg(Q)) = q.

Besides, [P,Q∗] = 1, hence by inductive assumption, the pair of P,Q∗ generates
the Weyl algebra A1. Finally, since Q = Q∗+P q/p and P,Q∗ generates A1, we
conclude P,Q generates A1 as well! �
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1.2 Finding counter-examples of the two conjectures

1.2.1 Reduce finding a counter-example to a polynomial problem

We now design efficiently computational procedures allowing us to deal with
computation on multi-layer Lie brackets, specifically to define non-commutative
multiplication between x, y so that [x, y] = 1. These ensure transforming k[x, y]
to the non-commutative ring kD[x, y], viewed as the Weyl algebra A1(k). To
the first conjecture, by algebraic transformations, non-trival cases lead us to
searching for a counter-example that fulfills:

I. Degrees p = deg(P ) > 1 or q = deg(Q) > 1 (so p + q ≥ 3), [P, Q] = 1 and
P,Q do not generate A1;

II. p, q satisfy one of the two conditions a) gcd(p, q) = min(p, q), or
b) gcd(p, q) < min(p, q) [p is not a divisor of q and q is not a divisor of
p].

It turns out that if a counter-example P,Q would exist in II.a) case then there
exists a pair of P1, Q1 in II.b) case, kindly see [36, Chapter 3] for details. Hence,
finding a counter-example is reduced to solving the following problem:

Find two polynomials P,Q ∈ A(k) = kD[x, y] with degrees p, q (p ≥ 2
or q ≥ 2), k is an algebraically closed field, such that gcd(p, q) <
min(p, q), and satisfying [P, Q] = c, c ∈ k.

Dixmier proved his famous conjecture correct for the case of gcd(p, q) = 1
in 1966. No one checks the case of gcd(p, q) = 2, and the computational load
is huge for the case of gcd(p, q) = 4. Therefore from 1996, we have tried the
case of gcd(p, q) = 3 for which the smallest degrees are p = 6 and q = 9.

1.2.2 Computational setting for the two conjectures

Our key identities for computation are, firstly the non-commutative product of
a monomial f = a xm.yn with a polynomial g =

∑
ij bijx

i.yj , that is

f.g = a xm.yn−1[g.y − diffx(g)];

and secondly the recursive formula below:

[xm, yn] = m.n. xm−1 yn−1 −m
[ n−1∑

0

[xm−1, yk] .yn−k−1
]
. (2)

The Lie product [P, Q] is a nonlinear polynomial with degree 6 + 9− 2 = 13,
hence the condition [P, Q] = c, c ∈ k gives us a system of nonlinear polynomial
equations with 14 + 13 + · · · 2 + 1 = 105 equations in terms of 83 unknowns (28
unknowns from P and 55 unknowns from Q).
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Using the concept of commutative graded algebra (see [36, Part C, Chapter
3]), when the ground field k is algebraically closed, we can algebraically simplify
patterns of polynomials P,Q further to

P = u30 + P1, deg(P1) ≤ 5, (3)

Q = u20 +Q1, deg(Q1) ≤ 8, (4)

where u0 is a homogeneous polynomial of degree d = gcd(p, q) = gcd(6, 9) = 3.
When homogeneous polynomials appear in computation we need to know

what is the non-commutative yn.xm and the non-commutative product of xi. yn

with xm. yj . Again by induction, when n > m we got

yn. xm =
∑
k

(−1)k.CkmA
n
n x

m−kyn−k (5)

and
xi.yn. xm.yj =

∑
k

(−1)k.CkmA
n
n x

i+m−kyj+n−k. (6)

Then if set i + n = p, j + m = q and call f = c xi.yn be the monomial with
highest degree in the homogeneous polynomial of degree p of P , call g = d xm.yj

be the monomial with highest degree in the homogeneous polynomial of degree
q of Q, then the Lie bracket

[f, g] = cd [xi.yn, xm.yj ] = cd (xi.yn. xm .yj − xm.yj . xi .yn)

gives rise the fact deg([f, g]) ≤ p+ q − 2.

• These formulas, in general allow us to find a suitable homogeneous poly-
nomial Pi of degree i ≤ p of P and a suitable homogeneous polynomial
Qj of degree j ≤ q of Q to build up a right partial system of nonlinear
equations of the whole system [P,Q] = c. This constraint of

deg(Pi, Qj) ≤ i+ j − 2 (7)

is crucially necessary for step-wise truncating the huge system [P,Q] = c.
Specifically, when i = 6, j = 9 (max degree monomials of P,Q to start
with) we know the max degree of the Lie product [P,Q] is i+ j− 2 = 13,
as seen above.

• The major idea of our step-wise truncating algorithm is exploiting Con-
dition (7) at each truncation. We firstly start with P6, the homogeneous
polynomial of degree 6 of P and Q9, the homogeneous polynomial of de-
gree 9 of Q, compute the Lie [P6, Q9] and add to [P,Q]; secondly at any
iteration k form Pi and Qj , generate [Pi, Qj ] in order to append to the
system [P,Q] = c mod deg < k (β); and finally extract coefficients and
find a Groebner basis of (β). Kindly see details in [ManNguyen, [36]].
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1.3 Summary

By exploiting the power of certain computer algebra systems (such as Maple
[16], Mathematical [45], the specialized polynomial system Singular [43] or the
package GAP [specializing in Group, Algorithm and Programming, [23]]) by
which solutions of nonlinear polynomial equations are effectively computed, we
obtained the following conclusions.

Jacques Dixmier’s conjecture

Polynomials P,Q with degrees p = 6, q = 9 satisfying [P, Q] = c always
imply c = 0. It means there is no counter-example for Dixmier’s conjecture
in the case of deg(P ) = 6 and deg(Q) = 9, see [Man Nguyen [36]]. The
latest work in 2008 by Hoang V. Dinh [17] strongly confirmed that Dixmier’s
conjecture is true for polynomials P,Q with degrees p = 6, q = 9 satisfying
the condition [P, Q] = c, c ∈ k, where k is an algebraically closed field. With
other parameters as p = 8, q = 12 no further work have been found, to the best
of our knowledge.

Nguyen Huu Anh’s conjecture

However, Hoang Van Dinh [17] found a counter-example for Nguyen Huu Anh’s
conjecture for all possible options of the homogeneous polynomial u0 of degree
gcd(p, q), given in Equation 3. The argument is based on seeking for the triple
of [F,G, u] such that P (x, y) = F (u(x, y)) and Q(x, y) = G(u(x, y)), where
the pair of P,Q already satisfy Dixmier’s conjecture, i.e. [P, Q] = 0.

If for such pair of P,Q, there is a triple of [F,G, u] then Nguyen Huu Anh’s
conjecture is incorrect. Polynomials P,Q, u are u = x3 + y2, P = u2 + 2x, and
Q = u3 + 3ux + 3y. What we must do to make sure that P,Q, u build up a
counter-example is just checking [P,Q] = 0 (see [17, Part 3, Chapter 4]).

Our first conjecture

• Dixmier conjecture is still valid for gcd(p, q) = 3 < min(p, q), as pa-
rameters p = 9, q = 12; or gcd(p, q) = 4 < min(p, q), as parameters
p = 8, q = 12?

• For the general case of gcd(p, q) < min(p, q) new concepts (such as slope of
generators) should be proposed before we prove/disprove this conjecture.
E.g., if the case of p = 8, q = 12 would be true, then we may think that
Dixmier conjecture is true for any case with the slope s = p/q is constant,
such as the cases of (p, q) = (6, 9), (8, 12) give p/q = 6/9 = 8/12 = 2/3.

We have illustrated how useful the computer algebra approach is when solv-
ing theoretic problems of pure mathematics in the last part. In the subsequent
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sections, we switch to more practical sciences and engineering in which various
data sets are available and algebraic thinking still plays an essential role.

2 Constructing designs for quality control

Quality is a broad concept, often it refers to a grade of excellence, literally
means consistently meeting standards appropriate for a specific product or
service. There are another two key views, saying quality is fitness for use
[by Joseph M. Juran, a pioneer in Total Quality Management ], and quality
is inversely proportional to variability [by Douglas Montgomery, Arizona
University]. Thus, if we follow the last definition, then quality improvement - in
various industries and services- is just the reduction of variability in processes
and products.

2.1 Statistical Quality Control - Overview and Methodology

Statistical Quality Control (SQC) - and Quality Engineering, its broader domain-
among other things means to mathematically design goods/products from which
we could monitor and control quality characteristics of those products before
actually manufacture them in factories. SQC also means using the prototypes
of products (being mathematically designed beforehand) to conduct life test-
ing from which we are able to measure responses, collect numerical data, then
analyze and control theirs quality characteristics before actual mass manu-
facturing them on assembly lines. The first phase uses designed experiments
(DOE or Experimental Designs) - a sequence of trials or tests performed under
controlled conditions which produces measurable outcomes; and in the second
phase we could employ various popular control charts (as Shewhart types),
Six-Sigma methodology and DMAIC (Define, Measure, Analyze, Improve, and
Control) process. At least two major reasons for studying are:

1. Industry and service sectors always need cutting-edge ideas/outcomes
[the richer countries the higher demand of quality R & D].

2. The problem comes down to a matter of cost: conducting R & D activities
costs money; but this spending is worthy to make in a pre-production
phase (i.e. offline production- meaning not implemented on assembly
lines yet) of industrial manufacturing, or broader in the new 4.0 science
and technology revolution.

The concept of “Organization’s quality” with the focus on management was
proposed since the 1980s. The company-wide quality approach emphasizes

0Joseph Moses Juran (1904 2008) was a Romanian-born American engineer and manage-
ment consultant. He was an evangelist for quality and quality management.
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on i) Competence such as knowledge, skills, experience and qualifications; ii)
Hard elements such as job management, adequate processes and performance
criteria; and iii) Soft elements, such as personnel integrity, confidence, organi-
zational culture, and team spirit. The quality of the outputs is at risk if
any of these aspects is deficient in any way.

Regarding specifically Quality Engineering, Malcolm Bridge, a former
U.S. Secretary of Commerce, said in the article Designing for productivity
(Design News, Vol. 38. No. 13., 1982) about few most practical demands
for a competitive economy that (i) for top managers, the challenge is to create
an organizational environment that fosters creativity, productivity and quality
consciousness; that (ii) 40 percent of all costs in getting a product to the mar-
ketplace are in the design cycle; and last but not least, (iii) top management
must better emphasize prevention than correction.

Prevention means conducting statistically designed experiments in the de-
sign cycle or off-line manufacturing. More general we have discussed Joseph
Juran’s Total Quality Management (TQM) methodology above, and we view
DOE belongs to this broader category.

Total Quality Management (TQM) and Statistical Process Control

In Total Quality Management we are interested in the following activities.

a/ Quality Planning : the development of strategic activities designed to im-
prove the quality of a product. The planning will include both statistical
methods and management activities.

b/ Quality Assurance: a system of activities whose purpose is to provide an
assurance that the overall quality control is in fact being done effectively.
It includes the regulation of

the quality of raw materials, assemblies, products and components;

the services related to production; and

the processes of management and inspection.

c/ Quality Control : a few concepts broadly accepted nowadays, including

1. the operational techniques, activities and their uses sustaining a
quality of product or service that will satisfy given needs,

0The U.S. Congress established in 1987 the Malcolm Baldrige National Quality
Award (MBNQA), an award to raise awareness of quality management and recognize U.S.
companies that have implemented successful quality management systems. Awards are pre-
sented annually by the President of the United States to organizations that demonstrate
quality and performance excellence, in six categories: manufacturing, service, small business,
education, healthcare and nonprofit.
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2. the application of statistical principles and techniques in all stages
of design, production, maintenance and service, directed toward the
economic satisfaction of demand [by Deming (1971)].

d/ Quality Improvement : the improvement process, measures of process ef-
fectiveness, employs methods of DOE (Design of Experiments, also called
Experimental Designs)...

e/ Statistical Process Control - SPC: can be considered as SQC applied to a
process, or to a product resulting from a process. SPC is the totality of all
process activities directed at improving process consistency through de-
tecting changes in measured characteristics, identifying causes of changes,
and preventing recurrence of those causes.

Large firms have applied major principles of SQC in manufacturing high-
tech products, for instance in dairy industry at Campina - Thailand ([10],
originally a Dutch dairy firm), in telecommunication at Samsung [40], AT &
T, or in automobile sector at GE, Ford, Toyota, Audi or BMW [46].

2.2 Experimental Designs with Computer Algebra in SQC

The study of computer algebra in Quality Engineering historically began from
the European Algebraic Statisticians, focused in Experimental Designs, and its
core topic is Factorial Experimental Design-FED or Factorial Design.

We first recall some key terms of Factorial Design. In SQC, when causes of
a response (or components of a product) all receive only discrete values (choices
or levels) then those causes are said to be factors. Factorial designs is a very
useful solution for our industrial manufacturing problems. We use regression
models to capture relationships between random variables into a response of
interest, determine the magnitude of the relationships between variables in that
response, and make predictions based on those statistical models.

Both SQC and SPC intensively use factorial designs and various regressions
to eliminate uncertainty of product’s quality; see specific industries currently
employing SPC, at [24] and [41].

2.2.1 What really are factorial designing experiments and why them?

Formally, for a natural number d > 1, we fix d finite sets Q1, Q2, . . . , Qd called
factors. The elements of a factor are called its levels. The (full) factorial
design (also factorial experiment design- FED) with respect to these factors is
the Cartesian product D = Q1 × Q2 × . . . × Qd. FED help us in doing the
followings: perform experiments to evaluate the effects the factors that could
have on the characteristics of interest, and discover possible relationship among
the factors, called factor interactions which could affect the characteristics.
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Mathematically, the main aim of using FED (and similar structures of Ex-
perimental Designs) is to identify an unknown function

φ : D → Q,

a mathematical model of a quantity of interest (favor, usefulness, best-buy,
quality ...) which has to be computed or optimized. When a firm’s budget
is limited, practically the firm’s manager must accept using a subset F of D
when investigating properties of a new product or service.

Definition 2.1. A fractional design or fraction F of D is a subset consisting
of elements of D (possibly with multiplicities). Put ri := |Qi| be the number
of levels of the ith factor. We say that F is symmetric if r1 = r2 = · · · = rd,
otherwise F is mixed.

Moreover, F is said to be strength t orthogonal array (OA) or t-balanced
if, for each choice of t coordinates (columns) from F , each combination of
coordinate values from those columns occurs equally often; here t is a natural
number. If some of ri are identical we can group them in distinct level si and
write OA(N ; sa11 · · · s

ak
k ; t) where a1 + a2 + . . .+ ak = d and N is the runsize.

The structure of orthogonal array even has more useful properties in statis-
tical optimization and industrial statistics. Specifically, strength 3 OAs permit
estimation of all the main effects of the experimental factors free from con-
founding with two-factor interactions. Strength 4 OAs furthermore, allow us
to theoretically separate all two-factor interactions during the analysis of data
obtained from experimentation. We want to find such designs, investigate it in
practice, specifically interested in:

a) Constructing and/or designing: to learn how to construct those experi-
ments, given the scope of expected commodities and the parameters of
components;

(b) Exploring and selecting: to investigate some design characteristics (pro-
posed by researchers) to choose good designs. For instance, in factorial
designs we learn how to detect interactions between factors; if they exist,
calculate how strongly they could affect on outcomes; finally

(c) Implementing, analyzing & consulting: study how to use (i.e., conduct
experiments in applications, measure outcomes, analyze data obtained,
and consult clients what they should do).

The goal is to use these new understanding to improve product, to answer
questions such as:

1. What are the key factors in a process?

2. At what settings would the process deliver acceptable performance?
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3. What are the main interaction effects in the process?

4. What settings would bring about less variation in the output?

2.2.2 Important steps in designing experiments for R & D

1. State objective: write a mission statement for the project; as in household
furniture production;

2. Choose response: it is about consultation, have to ask clients what they
want know, or ask yourself; focus on the nominal-the-best responses;

3. Perform pre-experiment data analysis?

4. Choose factors and levels: you have to use flowchart to represent the
process or system, use cause-effect diagram to list the potential factors
that may impact the response;

5. Select experimental plan (if available, otherwise have to compute?)

6. Perform the experiment (in lab or in real industrial settings)

7. Analyze the data

8. Draw conclusions and make recommendations.

Experimental Deigns in general, fractional designs in specific, and other data
analytics tools are intensively employed in the above steps, except Step 6.

2.3 Illustration of theses procedural steps

We illustratively consider a particular fractional design here and a cost optimal
problem in furniture industry, with 8 factors of interest. Let N be the number
of experimental runs in the experiment; each run will be assigned to a particular
combination of factor levels. Let M := 6 · 42 · 25 denote the number of possible
level combinations of the factors A,B,C,D,E, F,G and H.

The goal: we study only one response Y , the wood furniture hardness.

Various targets: we distinguish three terms of main effects, two-factor inter-
actions, and higher-order interactions.

The method: To maximize the hardness of new products, we study the com-
bined influence of the factors using linear regression models. If we study
only the main effects then such a linear model takes the form

Y = θ0 +

5∑
i=1

θAia
i +

3∑
j=1

θBj b
j +

3∑
l=1

θClc
l + θDd+ θEe+ . . .+ θHh+ ε,
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where ε is a random error term, a = 0, 1, 2, 3, 4, 5; b, c = 0, 1, 2, 3; besides
d, e, f, g, h = 0 or 1, and the parameters θ∗ are the regression coefficients.

In a dreamed situation we need a budget to carry out M := 6 ·42 ·25 = 3072
experiments, to estimate all effects on the quality (hardness of furniture). But if
scale down our study to measuring only main effects and a few two-interactions
then a design with 96 runs (experiments) would be suitable for practical usages.
If we want to know all two-interactions and main effects we need at least

1 +

8∑
i=1

(ri − 1) +

8∑
i, j=1
i<j

(ri − 1)(rj − 1) = 121 runs.

Few essential questions are raised now: Why 96 runs? Would any suitable
design with type 6 ·42 ·25 given in Table 1 does exist for our purpose?

Table 1: A workable factorial plan with type 6 · 42 · 25
Level

Factor Description ri 0 1 2 3 4 5
(A) wood 6 pine oak birch chestnut poplar walnut
(B) glue 4 a (least) b c d (most)
(C) moisture 4 10% 20% 30% 40%

content
(D) process time 2 1 h 2h
(E) pretreatment 2 no yes
(F) indenting 2 no yes

of wood
(G) pressure 2 1 pas 10 pas
(H) hardening 2 no yes

condition

A clearly immediate answer then is: No, in general! You have to find them,
the so-called orthogonal arrays of strength t ≥ 3, or a t-balanced fraction.
Industrialists say that such designs must be firstly determined by its runsize
N , via the divisibility and the Rao bound [38]. Generally the Rao bound gives
an lower bound on the runsize N in terms of the factor’s levels r1 > r2 . . . > rd.
When t = 2, N is bounded below by N ≥ 1+

∑d
1 (ri−1) = 1+5+2.3+5 = 17.

When t is odd, in general we have

N ≥ r1
(t−1)/2∑
j=0

∑
|K|=j,K⊂{2,...,d}

∏
i∈K

(ri − 1).

If t = 3, and use the design type 6·42·25 thenN ≥ 6[2.(4−1)+5.(2−1)] = 66,
coupling with divisibility give us the runsize N = 96. Our problem now is that
the existence of an OA(96; 6 · 42 · 25; 3) is still in questionable!
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We will present two distinct mathematical approaches for computing such
designs in the next two parts, about using computational algebraic geometry
in Section 2.4 and non-abelian group computation in Section 2.5. Kindly see
full treaments in [Man Nguyen, 2005 [37]] and [Man Nguyen, 2011 [28]].

2.4 Computer-algebraic construction of mixed orthogonal arrays

Linear-algebraic method for design construction

Suppose F ⊆ D be a fraction with d factors, considered D ⊂ Fd.
We represent the factors Q1, . . . , Qd by variables x1, . . . , xd.

• Let J = I(F ) and let V = P/J . Then

E = Est(F ) = {h1, . . . , hµ}

is a set of monomials such that E = {h1, . . . , hd} is a basis for P/J as a
F-vector space.

• Let M = xα = xα1
1 xα2

2 . . . xαdd , the M ’s left action induces an endomor-
phism of V .

• Let LM be the matrix of this action with respect to the basis E.

The matrices Lx1
, . . . , Lxd are called the elementary multiplication matrices.

Key results for the existence of designs

Theorem 2.1. Suppose that F has no repeated runs. The characteristic poly-
nomial of LM is ∏

p=(p1,...,pd)∈F

(X − pα1
1 pα2

2 · · · p
αd
d ).

The trace of LM is
∑
p∈F p

α1
1 pα2

2 · · · p
αd
d . We observe that:

• If F is a 1-balanced fraction, the size of F must be a multiple of the
number of levels of each of the factors which form F .

• If F is a 2-balanced fraction, then the size of F must be a multiple of the
products of each pair of levels, and so on for any strength t > 2.

To appreciate the beauty and power of computer algebra we recall here a
proof of the theorem.

Proof. Suppose F have N runs, and denote p = (p1, . . . , pd) for a run in F .
The vanishing ideal of p is

I(p) =
〈
{x1 − p1, . . . , xd − pd}

〉
. (8)
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The vanishing ideal of the fraction F is

I(F ) =
⋂
p∈F

I(p).

The Chinese Remainder Theorem for ideals (see [42, Corollary 2.2]) gives us
the decomposition:

P/ I(F ) =
⊕
p∈F

P/ I(p). (9)

Consider a run p = (p1, . . . , pd) as a variety. Each P/ I(p) is isomorphic to
F [p] = F (see [20, Definition 19], e.g. for the definition of F [p]), so P/ I(p) is
a 1-dimensional sub-algebra of the quotient algebra P/ I(F ). Hence, P/ I(F ) is
isomorphic to the algebra Fd.

From Equation (8), since xi − pi ∈ I(p), so we have xαii = pαii in P/ I(p), for
all i = 1, . . . , d. As a result, for each v ∈ P/ I(p):

(xαii − p
αi
i ) v = 0, so Lαixi (v) = Lxiαi (v) = xαii .v = pαii v, for i = 1, . . . , d,

that means v is an eigenvector of the matrix Lαixi = (Lxi)
αi with eigenvalue

pαii . Hence pi is an eigenvalue of the matrix Lxi (i = 1, 2, · · · , d). If we choose
a term M = xα1

1 xα2
2 . . . xαdd , then the left multiplication matrix by M is given

by

LM = Lx1
α1 ...x

αd
d

= Lα1
x1
. . . Lαdxd , and LM (v) = pα1

1 pα2
2 · · · p

αd
d v.

Therefore, F consists of all vectors p = (p1, . . . , pd) where v is some common
eigenvector with eigenvalue pi with respect to the matrix Lxi . We conclude that
v is an eigenvector of LM with eigenvalue pα1

1 pα2
2 · · · p

αd
d . In other words, the N

subalgebras P/ I(p) are N eigenspaces for LM , with corresponding eigenvalues
pα1
1 pα2

2 · · · p
αd
d for each run p = (p1, . . . , pd). As a result, since LM is an N×N

matrix, the theorem is now proved. �

Corollary 2.1 (Using key result for a necessary condition).

Let F be a t-balanced fraction of a design D in Fd. Assume that factor xi
has levels 0, 1, . . . , ri − 1.

(a) If t ≥ 1 and αi ∈ {0, 1, . . . , ri − 1}, then the matrix Lxiαi has trace

N

ri

ri−1∑
l=0

lαi .

In particular, Lxi has trace |F |(ri − 1)/2.
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(b) If t ≥ 2, αi ∈ {0, 1, . . . , ri− 1} and αj ∈ {0, 1, . . . , rj − 1}, then Lxiαixjαj
has trace

N

ri rj

ri−1∑
l=0

lαi
rj−1∑
m=0

mαj .

Proof. (See [29, Section 6]). For each factor i, the number λi = |F |/ri must be
a positive integer. The fraction F can be decomposed into λi blocks F1, . . . , Fλi ,
each block has ri runs such that their ith coordinates are 0, 1, . . . ri−1. Hence,
Item (a) is proved, due to the fact

∑
p∈Fl

pαii =

ri−1∑
m=0

mαi , for every l = 1, . . . , λi.

By considering the designs combined by each pair of two factors i, j as a full
design, applying a similar argument, we get (b). �

Our second conjecture

Let F be a fraction of a full design D in Fd. Assume that factor xi has levels
0, 1, . . . , ri − 1.

For any natural t ≥ 2, take parameters

αi ∈ {0, 1, . . . , ri − 1}, αj ∈ {0, 1, . . . , rj − 1}, etc,

and assume that

• the matrix Lxiαi has trace

N

ri

ri−1∑
l=0

lαi ,

• the matrix Lxiαixjαj has trace

N

ri rj

ri−1∑
l=0

lαi
rj−1∑
m=0

mαj ,

• the matrix Lxiαixjαjxkαk has trace

N

ri rj rk

ri−1∑
l=0

lαi
rj−1∑
m=0

mαj

rk−1∑
h=0

hαk , ...

then F would be a t-balanced fraction. In other words the size |F | would be a
multiple of the products of each pair of levels, |F | would also be a multiple of
the products of each triple of levels, and so on.
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2.5 Computational Group Theory for mixed orthogonal array

It is not immediately obvious how to define isomorphisms of a factorial design,
given in Definition 2.1. In fact, there is more than one sensible definition that
could be made. We give the definition that is most useful for our purposes in
this section. The following notations will be used through out this section.

• Let N be a positive integer and T := r1 · r2 · · · rd be a design type, as
Definition 2.1; equivalently we could group ai factors with the same si
levels in T := sa11 · s

a2
2 · · · samm , si 6= sj when i 6= j. Denote by OA(N ;T )

the set of all OAs with given type T and run size N .

• Set U := {(i, j, x) | i = 1, . . . , N, j = 1, . . . , d, x ∈ Qj}, and call it
the underlying set of OA(N ;T ). In other words, U consists of all pos-
sible triples of a row i, a column j, and an entry Fij for any matrix
F ∈ OA(N ;T ). The k-th column index set Jk ⊆ Nd := {1, 2, · · · , d}
precisely consists of column indices of factors having sk levels, for each
k = 1, ...,m.

2.5.1 Fraction transformations (or isomorphism) of arrays

We now define group actions (see Appendix B for basic concepts) on the set U :

• The row permutation group is R := SymN . It acts via φR : R→ Sym(U)
defined by

(i, j, x)φR(r) = (ir, j, x).

• The column permutation group is C :=
∏m
k=1 Ck where Ck := Sym(Jk).

It acts via φC : C → Sym(U) defined by

(i, j, x)φC(c) = (i, jc, x).

• The level permutation group is L :=
∏d
j=1 Lj , here Lj = Symrj . This

acts via φL : L→ Sym(U) defined by

(i, j, x)φL(l) = (i, j, xlj ),

where lj is the projection of l onto Lj .

Definition 2.2. The full group G of fraction transformations of U is defined
as

G := φR(R) φC(C) φL(L) ≤ Sym(U). (10)

Hence, we can now identify G with the wreath product R× (C nL) where

C n L =

m∏
k=1

Symsk
oCk.
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Corollary 2.2. We get the followings.

• The full group or the permutation group acting on the space OA(N ;T )
is

G = R× (C n L). (11)

• As a result, the order of G can be calculated from OA parameters, as

|G| = N ! a1! · · · am! (s1!)a1 · · · (sm!)am .

The next concept plays a crucial role in the remaining parts.

Definition 2.3. Let F and F ′ be in OA(N ;T ).

• An isomorphism from F to F ′ is g ∈ G such that F g = F ′.

• The automorphism group of an orthogonal array F ∈ OA(N ;T ) is the
normalizer of F in the group G, i.e., Aut(F ) := {g ∈ G | F g = F}.

• Any subgroup A ≤ Aut(F ) is called a group of automorphisms of F .

We next formulate necessary algebraic conditions for extending a known
orthogonal design F = OA(N ; r1 · · · rd; t) of strength t by a factor X to get a
new design [F |X] with the same strength.

2.5.2 An integer linear approach solves the extension problem

Assume t = 3, given an orthogonal array F = OA(N ; r1 · · · rd; 3) with columns
S1, . . . , Sd, Si has ri levels (i = 1, . . . , d).

An s-level factor X is orthogonal to a pair of factors (Si, Sj) of F , written
X ⊥ [Si, Sj ], if the frequency of all tuples (a, b, x) ∈ [Si, Sj , X] is N/(rirjs).
Extending F by X means constructing an OA(N ; r1 · · · rd · s; 3), denoted by
[F |X]. By the definition of OAs, [F |X] exists if and only if X is orthogonal
to any pair of columns of F . We can find a set P of necessary constraints
for the existence of array [F |X] in terms of polynomials in the coordinate
indeterminates of X, by the following rules.

(a) Calculate frequencies of 3-tuples, and locate positions of symbol pairs of
(Si, Sj).

(b) Set the sums of coordinate indeterminates of X (corresponding to these
positions) equal to the product of those frequencies with the constant

0 + 1 + 2 + . . . + s − 1 = s(s−1)
2 . The number of equations of P then is∑d

i 6=j rirj , since each pair of (Si, Sj) can be coded by a new factor with
ri rj levels. If s = 2, the constraints P are in fact the sufficient conditions
for the existence of X.
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For instance, let F = OA(16; 4 · 22; 3) = [S1|S2|S3] be a full design. By
transformation rule (b), the sums of coordinates of X corresponding to the Y
symbols and the Z symbols must equal a multiple of the appropriate frequen-
cies. That means:

X ⊥ [S1, S2]⇔ X ⊥ Y ⇔ x1+x2 = x3+x4 = . . . = x15+x16 = λ·(0+1) = 1, . . . ,

and X ⊥ [S2, S3]⇔ X ⊥ Z ⇔ x1 +x5 +x9 +x13 = . . . = x4 +x8 +x12 +x16 =
µ · (0 + 1) = 2. One solution of P is given in the last row of the matrix below:

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3


T

.

Generally, the set P of linear constraints with integer coefficients is de-
scribed by the matrix equation AX = b, in which A ∈ Matm1,N(N),

X = (x1, . . . , xN ) ∈ {0, 1, . . . , s− 1}N ⊆ NN (12)

is a vector of unknowns, b ∈ Nm1 , and m1 :=
∑d
i6=j rirj = |P |. Since each

orthogonal array is isomorphic to an array having the first row zero, we let
x1 = 0 throughout. By Gaussian elimination, we get the reduced system

M X = c, (13)

where M ∈ Matm,N (Z), the set of all m×N (m ≤ m1) matrices with integral
entries, c ∈ Zm, and the vector of unknowns X = (0, x2, . . . , xN ) ∈ ZN .

The extension K := [F |X] = OA(N ; r1 · · · rd·s; t) clearly depends on solving
the integer linear system (13) M.X = c in terms of X = (xj) ∈ { 0, 1, . . . , s −
1 }N for j = 1, . . . , N . This approach is useful if a few constraints, structures
or pruning techniques would be found and used to delete out some (not all)
isomorphic vectors in each isomorphic class, and we then retain isomorph-free
vectors. From that point, the search for all isomorph-free designs becomes
feasible.

2.5.3 The row permutation group of F for computing X in [F |X]

Fix an array F ∈ OA(N ;T ; t), recall that Aut(F ) := {g ∈ G | F g = F}, with
G is the full group of isomorphisms, see Eq. (10). We first define the row
permutation group of a fractional design F .

Let g ∈ Aut(F ). Then g induces a permutation g1 in the full group GK of
K, see Formula (11). Let gR be the row permutation component of g, then gR
is also the row permutation component of g1. Due to Definition 2.3, we have

Theorem 2.2. For g ∈ Aut(F ), g induces g1 ∈ GK and generates the image
Kg1 which is isomorphic to K.



128 A survey on computational algebraic statistics and its applications

Proof. Formula (10) says any permutation g acting on F has the decomposition
g = gR gC gS where gC and gS are the column and symbol permutations acting
on F , respectively. Besides, the row permutation gR induces a row permutation
g1 ∈ GK , we furthermore have

Kg1 = [F |X]g1 = [F g|XgR ] = [F |XgR ] (14)

since g already fixes F , and only gR acts on the column X by moving its
coordinates. As a result, Kg1 = [F |XgR ] is isomorphic to K := [F |X]. �

Definition 2.4. Let H := Row(Aut(F )) be the group of all row permutations
gR extracted from the group Aut(F ). We call H the row permutation group of
F .

The direct product of H and τ is very useful for pruning later on, given by

σ := H × τ, (15)

where τ := Syms, the symbol permutation group acting on the X’s coordinates.

2.5.4 Row permutation subgroups for pruning solution spaces

It is now obvious that, by recursion, the process of building X can be brought
back to strength 1 derived designs. We can effectively prune Z(P ) from those
smallest sub-designs by finding some subgroups of H = Row(Aut(F )) acting
on strength 1 derived designs. Those subgroups, discussed in next parts, must
have the property that they act separately on the row-index sets corresponding
to the derived designs.

Fix IN := [1, 2, . . . , N ] the row-index list of F , and recall that r1 ≥ r2 ≥ . . . ≥
rd. We explicitly distinguish the list IN with {1, 2, . . . , N} in this section. Then
H acts naturally on X’ indices. Furthermore, we employ the following.

Definition 2.5. We say a row permutation gR ∈ H acts fixed-point free, or
globally on X if it moves every index. Otherwise, if the moved points of gR
form a proper subset J of {1, . . . , N}, i.e., it fixes point-wise the complement
‘list’ of J in IN , we say gR acts locally at that subset.

The first step is to localize the formation of a vector X of the form (12) by
taking the derived designs of strength t − 1. We get the r1 derived designs
F1, . . . , Fr1 , each of which is an OA(r−11 N ; r2 · · · rd; t−1). Clearly, if a solution
vector X exists, then it is formed by r1 sub-vectors ui of length N

r1
:

X = [u1;u2; . . . ;ur1 ], where ui =

(
x (i−1)N

r1
+1
, . . . , x iN

r1

)
. (16)

Denote by Vi the set of all sub-vectors ui which can be added to the ith derived
design Fi to form an OA(r−11 N ; r2 · · · rd · s; t− 1). Let V = V1×V2× . . .×Vr1 .
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We propose a simple scheme, Algorithm 1 to find all non isomorphic solution
vectors X ∈ V . Algorithm 1 can be mathematically realized in 3 steps as
follows.

Algorithm 1 Find all non isomorphic vectors X in [F |X]

EXTEND-ONE-FACTOR(F )

Input F is a strength t design;

Output All non-isomorphic extensions of F to [F |X]

a/ Find all candidate sub-vectors ui ∈ Vi, i = 1, . . . , r1, using associated
permutation subgroups

b/ Discard (prune) them as many as possible by using subgroups of H

c/ Plug those uis together, then compute the representatives of the σ =
H × τ -orbits in V , the solution space Z(P ) of P .

a) Forming permutation subgroups of the derived designs
Remind that we viewed F ∈ OA(N ; r1 · r2 · · · rd; 3) as an N ×d-matrix with

the [l, j]-entry is written as F [l, j]. For each derived design Fi w. r. t. the first
column of F , the row-index set of Fi, denoted by RowInd(Fi) for 1 ≤ i ≤ r1,
is defined as

RowInd(Fi) :=
{
l ∈ {1, 2, . . . , N} : F [l, 1] = i− 1

}
.

Define the stabilizer in H of Fi by

NH(Fi) := Normalizer
(
H,RowInd(Fi)

)
=
{
h ∈ H : RowInd(Fi)

h = RowInd(Fi)
}
.

(17)

In this way, we find r1 subgroups of H corresponding to the derived designs Fi.
But it can happen that RowInd(Fl)

h 6= RowInd(Fl) for some h ∈ NH(Fi) and
1 ≤ l 6= i ≤ r1. To make sure that the row permutations act independently on
the Fi, we define the group of row permutations acting locally on each Fi as:

L(Fi) := Centralizer
(
NH(Fi), J(Fi)

)
, (18)

where J(Fi) := IN \RowInd(Fi) is the sublist of IN consisting of elements not
in RowInd(Fi).

The group Li := L(Fi) acts locally at RowInd(Fi), i.e. it acts on the row-
indices of Fi and fixes pointwise any row-index outside Fi.
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Definition 2.6. These subgroups Li - of the group H = Row(Aut(F )) - are
called the row permutation subgroups associated with strength 2 derived de-
signs.

These subgroups can be determined further as follows.
For an integer m = 1, 2, . . . , t− 1 and for j = 1, 2, . . .m, denote by

Fi1,...,im := OA

(
N

r1r2 · · · rm
; rm+1 · · · rd; t−m

)
(19)

the derived designs of F taken with respect to symbols i1, . . . , im, where symbol
ij in column j and ij = 1, . . . , rj . Define the row-index set of Fi1,...,im by

RowInd(Fi1,...,im) :=

m⋂
j=1

{
l ∈ {1, 2, . . . , N} : F [l, j] = ij − 1

}
. (20)

Let J(Fi1,...,im) := IN \ RowInd(Fi1,...,im). Generalizing (17) and (18) gives:

NH(Fi1,...,im) := Normalizer
(
H,RowInd(Fi1,...,im)

)
,

L(Fi1,...,im) := Centralizer
(
NH(Fi1,...,im), J(Fi)

)
, for 1 ≤ ij ≤ rj .

b) Using permutation subgroups of the derived designs

Definition 2.7. L(Fi1,...,im) is called the subgroup associated with the derived
design Fi1,...,im . We say L(Fi1,...,im) acts locally on the derived design Fi1,...,im ,
and write Li1,...im := L(Fi1,...,im), for 1 ≤ ij ≤ rj, j = 1, 2, . . .m, if no ambi-
guity occurs.

For t = 3, we compute these subgroups for m = 1 and m = 2. If m = 1, we
have s1 subgroups L(Fi) acting locally on strength 2 derived designs; and if
m = 2, then s1 s2 subgroups L(Fi,j) acting locally on strength 1 designs.

We now show how to use the subgroups Li1,...,im . Recall that Z(P ) is the set
of all natural solutions X. From Eq. (14) in Theorem 2.2, Kg is an isomorphic
array of K = [F |X], hence the vector Xg can be pruned from Z(P ), for any
solution X and any permutation g ∈ Aut(F ).

We use the following notations in the remaining parts. For a fixed m-tuple
of symbols i1, . . . , im, let Vi1,...,im be the set of solutions of fraction

Fi1,...,im = OA((r1r2 · · · rm)−1N ; rm+1 · · · rd; t−m), for 1 ≤ m ≤ t− 1.

For any sub-vector u ∈ Vi1,...,im , from (20) and (16), let

I(u) := RowInd(Fi1,...,im); J(u) := IN \ I(u); and

Z(u) :=
{

(xj) : j ∈ J(u) and ∃X ∈ Z(P ) s.t. X[I(u)] = u
}
,
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here X[I(u)] := (xi : i ∈ I(u)). For instance, if m = 1 and u ∈ V1 then

Z(u) =
{

[u2; . . . ;ur1 ] : X = [u;u2; . . . ;ur1 ] ∈ Z(P )
}
.

Theorem 2.3 (Key theorem). For any pair of sub-vectors u, v ∈ Vi1,...,im , if
v = ugR for some row permutation gR ∈ Li1,...,im , we have Z(u) = Z(v).

We prove this key theorem in the next two claims. In Lemma 2.1, without loss
of generality, it suffices to give the proof for the first strength 2 derived array.
Theorem 2.4 then shows the induction step.

Lemma 2.1 (Case m = 1).
Let u1 and v1 be two arbitrary sub-solutions in V1, ie, they form strength 2

OAs [F1|u1] and [F1|v1] of the form OA(r−11 N ; r2 · · · rd · s; 2). Let

ZX(u1) =
{

[u2; . . . ;ur1 ] : X = [u1;u2; . . . ;ur1 ] ∈ Z(P )
}
,

ZY (v1) =
{

[v2; . . . ; vr1 ] : Y = [v1; v2; . . . ; vr1 ] ∈ Z(P )
}
.

Suppose that there exists a nontrivial subgroup, say L(F1), and if v1 = uh1 for
some h ∈ L1, we have ZX(u1) = ZY (v1).

Proof. See Appendix C in Section 4. �

As a result, we can wipe out all solutions Y = [v1; v2; . . . ; vr1 ] ∈ Z(P ) if
v1 ∈ uL1

1 , the L1- orbit of u1 in V1. In other words, if we get V1 6= ∅, then it
suffices to find the first sub-vector of vector X by selecting |V1|/|L1| representa-
tives u1 from the L1- orbits in V1. Furthermore, the above proof is independent
of the original choice of derived design. Hence it can be done simultaneously
at all solution sets V1, V2, . . . , Vr1 , using the subgroups L1, . . . , Lr1 .

We call this procedure, that results from Main Theorem 2.3, the local prun-
ing process using strength 2 derived designs. Next, if t ≥ 3 we extend the proof
of Lemma 2.1 to cases 2 ≤ m ≤ t− 1.

Theorem 2.4 (Case m > 1.). For any pair of sub-vectors u, v ∈ Vi1,i2 , if
v = ugR for some gR ∈ Li1,i2 , we have Z(u) = Z(v).

Proof. See [Man Nguyen, [31, 37]. �

c) Operations on derived designs- An agent-based localization
The above-proposed localizing idea can be enhanced further when we con-

sider each derived design as an agent that receives data from its lower strength
derived designs, make some appropriate operations, then pass the result to its
parent design. Specifically, notice that strength 1 and strength t designs require
special operations. To be precise, at the global scale of strength t design, it
suffices to find only the representatives of the H × τ -orbits [see Formula (15)]
in the solution space Z(P ) of P .
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We now formalize our new agent-based localization. Recall from (19) that
the symbols i1, . . . , im (1 ≤ ij ≤ rj) indicate the derived design having symbol
ij in column j, for j = 1, . . . ,m.

From Definition 2.7, Li1,...,im are the subgroups associated with the derived
designs Fi1,...,im having strength t−m. When m = t−1, write Li1,...,it−1

for the
subgroup associated with the strength 1 derived design Fi1,...,it−1

. The agents
of derived designs can be described as follows.

At initial designs Fi1,...,it−1
(Initial step when m = t− 1):

Input: Fi1,...,it−1
;

Operation:

• form Vi1,...,it−1
, the set of all strength 1 vectors of length

(r1r2 · · · rt−1)−1N) being appended to Fi1,...,it−1 ,

• compute Li1,...,it−1 , and

• find the representatives of Li1,...,it−1 - orbits in the set Vi1,...,it−1 ;

Output: these representatives, ie, solutions of Fi1,...,it−1
.

At strength k derived designs (1 < k ≤ t− 1): let m := t− k, we have

Input: the vector solutions having length (r1r2 · · · rm · rm+1)−1N of
strength k − 1 sub-designs; and the subgroup Li1,...,im ;

Operation:

• form sub-vector solutions having length (r1r2 · · · rm)−1N) of
Fi1,...,im ,

• prune these solutions by Li1,...,im ;

Output: representatives of the Li1,...,im - orbits in the set Vi1,...,im .

At the (global) design F :

Input: the sub-vectors from strength t− 1 derived designs;

Operation: find the representatives of σ-orbits in the Cartesian product
V = V1 × V2 × . . . × Vr1 = {vectors X of length N} where Vi had
been already pruned by the subgroup Li (i = 1, 2, . . . ,m);

Output: Two steps

a/ (Isomorph-free test 1) returns solution vectors X which are non-
isomorphic up to σ = H × τ ,

b/ (Isomorph-free test 2) forms orthogonal arrays K = [F |X] of the
same strength t, then select only non-isomorphic arrays, by comput-
ing their canonical arrays.
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We brief ideas in Algorithm 2, Pruning-Uses-Symmetry(F , d).

Algorithm 2 Pruning uses subgroups of derived designs

Pruning-Uses-Symmetry(F , d)

Input F is a strength t design; d is the number of columns required

Output All non-isomorphic extensions of F

� STEP 1: Local pruning at strength k derived designs.

1a) Find sub-vectors of Fi1,...,im , for m := t− k, and k = 1, . . . , t− 1,

1b) prune these sub-vectors locally and simultaneously by using Li1,...,im ,

1c) concatenate these sub-vectors to get sub-vectors in Vi1,...,im−1 .

Comment: For t = 3, in Step 1), form subvectors ui,j ∈ Vi,j simultaneously at
the r1r2 sets Vi,j , then concatenate ui,j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2) to get ui ∈ Vi.

� STEP 2: Pruning at strength t design F .

2a) Select the representative vectors X from the σ = H × τ -orbits of V

Comment: Each vector in V is formed by sub-vectors found from Step 1

2b) append non-isomorphic vectors X to F to get strength t OAs [F |X],

2c) compute and store only their distinct canonical arrays,
(see Man Nguyen, [31, Section 2.2])

2d) get back non-isomorphic orthogonal arrays into a list Lf , return Lf .

� STEP 3: Repeating step.
If # current columns < d Call Pruning-Uses-Symmetry( f, d ) for f ∈ Lf
Else Return Lf EndIf

Example 2.1. Let U :=
[
[3, 1], [2, 3]

]
, F = OA(24; 3.23; 3),

F =

[
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1

]T
.

Aut(F ) has order 12288. Compute the group H = Row(Aut(F )) (from Def-
inition 2.4), and update H = Stabilizer(H, [1]), which is a permutation group
of size 768. The three strength 2 derived designs give 8, 8, and 16 candidates
respectively, so we must check 8.8.16 = |V | = 1024 cases.

The row permutation subgroups of the three strength 2 derived designs are
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L0 = [(), (7, 8), (5, 6), (5, 6)(7, 8), (3, 4), (3, 4)(7, 8), (3, 4)(5, 6), (3, 4)(5, 6)(7, 8)],

L1 = [()], and

L2 = [(), (23, 24), (21, 22), (21, 22)(23, 24), (19, 20), (19, 20)(23, 24), (19, 20)(21, 22),

(19, 20)(21, 22)(23, 24), (17, 18), (17, 18)(23, 24), (17, 18)(21, 22), (17, 18)(21, 22)(23, 24),

(17, 18)(19, 20), (17, 18)(19, 20)(23, 24), (17, 18)(19, 20)(21, 22), (17, 18)(19, 20)(21, 22)(23, 24)]

with corresponding orders 8,1,16. And the subspaces are pruned to 1,8, and 1
vectors respectively. That is we just check 8 cases.

New strength 3 OA obtained with the group-theoretic approach

Some unknown OAs that previous well-known methods failed to compute (e.g.
Man Nguyen [9, 15, 33]), found by our combined approach, are listed in Table 2.
We have used multiplicity notation for automorphism group orders. The (IS)
construction means employing the Integer linear formulation and Symmetries
of automorphism groups of OAs, fully developed in this Section 2.5.

Table 2: New strength 3 mixed OAs of sizes N ≤ 100.
N Type; Strength t # Size of the group Aut(F ) Methods
80 5 · 4 · 25; t = 3 ≥ 1 (IS)
80 5 · 4 · 26; t = 3 ≥ 5 22, 43 (IS)
96 6 · 42 · 25; t = 3 ≥ 1199 1411, 2370, 4250, 8137, 12, 1629 ,,

3 Finding best routes in logistics management

In sustainable economic development, besides of quality engineering (targeted
mostly to industries), effective urban transportation is another side of the story.
Urban traffic certainly is not just affected by households demands, but also
substantially influenced by transactional activities and logistics expenditures
of firms, both production and service. We describe a well-known logistical
transportation problem with a discrete optimization setting in this part, then
present few newly related results from which optimal solutions can be obtained.

3.1 A balanced source-sink transportation problem

Consider m assembly factories Ai and n warehouses Wj for some integral prod-
ucts (that is they are indivisible as car, air conditioner or trucks of these goods).
Suppose that both the Ai and Wj belong to the same cooperation. Operations
researchers would requite that the ith factory supplies daily ri products, the
jth warehouse need cj products, and furthermore, that the total supply must
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agree with the total demand. i.e. r1 + r2 + . . .+ rm = c1 + c2 + . . .+ cn, or

m∑
i=1

ri =

n∑
j=1

cj , (21)

for any given vector r ∈ Nm and c ∈ Nn. We aim to find a minimum cost
plan to transport goods from assembly factories to warehouses. Our problem
is mathematically formulated as follows.

Let W = (wij) ∈ Rm×n∗ be an m× n matrix of non-negative real numbers,
called cost matrix, representing the transportation costs. Fix vectors r ∈ Nm
and c ∈ Nn so that

∑m
i=1 ri =

∑n
j=1 cj . A transportation plan is a matrix

X = (xij) ∈ Nm×n∗ in which xij is the number of items to be brought from
factory Ai to warehouse Wj .

Problem 1. We need to find if there exists a matrix X ∈ Nm×n such that

n∑
j

xij = ri, for each i = 1, 2, . . . ,m,

m∑
i

xij = cj , for each j = 1, 2, . . . , n, and

〈W,X〉 =
∑
i,j

wijxij is minimized.

(22)

A much simpler companion problem, namely its LP-relaxation, is

Problem 2. To determine whether there exists a matrix X ∈ Rm×n∗ (where
R∗ = {x : x ∈ R ∧ x ≥ 0}) such that

∑n
j xij = ri,

∑m
i xij = cj for

each i = 1..m, j = 1..n, and 〈W,X〉 is minimized.

Problem 1 belongs to the NP-class of complexity, where the input size is
m.n, in general. However, the second one can be solved in polynomial time, as
we all know (e.g. see [13, 21]). We can prove the followings.

Theorem 3.1. Given vectors r = [r1, r2, . . . , rm] ∈ Nm, c = [c1, c2, . . . , cn] ∈ Nn,
such that

∑m
i=1 ri =

∑n
j=1 cj. If there exists a matrix X ∈ Rm×n∗ such that

〈W,X〉 =
∑
i,j

wijxij

is minimum, then there exists a matrix X ′ ∈ Nm×n such that

〈W,X ′〉 =
∑
i,j

wijx
′
ij = 〈W,X〉.
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This is somewhat similar to Matousek, [21, Theorem 3.2.1.], but our proof
- shown later in Section 3.2- is different and shorter. Furthermore we state

Theorem 3.2. If X ∈ Nm×n is a solution of Problem 1 then X has at most
m+ n− 1 nonzero elements.

We will prove these theorems using graph theory, among other tools. Before
presenting proofs, let us introduce a few more useful concepts.

Definition 3.1. Let matrix X ∈ Rm×n∗ be an m × n matrix of non-negative
real numbers. A set T = {Xip,jp : Xip,jp 6∈ N} is called a k-cycle on X, denoted
T♦X, if it satisfies that |T | = k > 3 and that for all p = 1..k:

[ip = ip+1, jp+1 = jp+2] or [jp = jp+1, ip+1 = ip+2],

in which ik+1 = i1, ik+2 = i2, jk+1 = j1 and jk+2 = j2.

For instance, if X is a 7 × 5 matrix given as in Table 3 then a 6-cycle
T = {X3,3, X1,3, X1,5, X5,5, X5,1, X3,1}. Let X ∈ Rm×n∗ and we fix an order on
elements of T = {Xip,jp : Xip,jp > 0,∀p = 1..k}♦X, a k-cycle on X with all
positive entries. We define two subsets of T as follows:

Te = {T [p] : p ≡ 0 mod 2}, and To = {T [p] : p ≡ 1 mod 2}.

In the above example, it is obvious that Te = {X1,3, X5,5, X3,1} and To = T \Te.

Table 3: A 6-cycle T in a 7× 5 matrix X
1 2 1.1 → 1 → 1.2 ↓
2 2 3 ↑ 1 2 ↓
0.3 → → 4 1.3 ↑ 3 3 ↓
4 ↑ 3 2 0.4 4 ↓
0.4 ↑ 1 ← 2 ← 1 ← ←− 2.1
5 2 0.5 2 0.3
6 7 1 1 2

Now let X ∈ Rm×n∗ , T ♦X with a fixed order, and let ε > 0. We define two
matrices X+ε and X−ε in Rm×n as follows.

Definition 3.2. Matrices X+ε and X−ε are respectively determined by

X+ε
i,j = Xi,j , if Xi,j 6∈ T,

X+ε
i,j = Xi,j + ε, if Xi,j ∈ To, X+ε

i,j = Xi,j − ε, if Xi,j ∈ Te;

X−εi,j = Xi,j , if Xi,j 6∈ T,
X−εi,j = Xi,j − ε, if Xi,j ∈ To, X−εi,j = Xi,j + ε, if Xi,j ∈ Te.
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Definition 3.3. Let X ∈ Rm×n∗ , we associate with X a graph G(X) := (V,E)
where V = {A1, A2, . . . , Am, B1, B2, . . . , Bn} represents the row and column
indexes of X, and E = {AiBj : Xi,j 6∈ N} describes non-natural entries of X.

Using the cycle given in Table 3, we have:

Table 4: Matrix X+ε and X−ε.

X+ε =

1 2 1.1- ε 1 1.2 + ε
2 2 3 1 2
0.3 - ε 4 1.3 + ε 3 3
4 3 2 0.4 4
0.4 + ε 1 2 1 2.1- ε
5 2 0.5 2 0.3
6 7 1 1 2

X−ε =

1 2 1.1+ ε 1 1.2 - ε
2 2 3 1 2
0.3 + ε 4 1.3 - ε 3 3
4 3 2 0.4 4
0.4 - ε 1 2 1 2.1+ ε
5 2 0.5 2 0.3
6 7 1 1 2

With the above 7× 5 matrix X, its corresponding graph G(X) has 12 vertices,
drawn in Figure 1.

Lemma 3.1. If X ∈ Rm×n∗ has a cycle T then the abovedefined graph G(X)
also has a cycle TG that corresponds to T and the number of elements of T
equals the number of vertices of TG.

Lemma 3.2. If T is a cycle on X ∈ Rm×n∗ then T has an even number
of elements, and furthermore, the matrices X+ε, X−ε and X have the same
vectors of row sums and column sums.

Proof. T has an even number of elements since its companion cycle TG, being
in the bipartite graph G(X), has an even number of edges/vertices. The fact
that X+ε, X−ε have the same vectors of row sums and column sums as X’s
comes from their definitions. �

Lemma 3.3. If a graph G is connected and has no degree-one vertex then G
has a cycle.

Proof. If G = (V (G), E(G)) is connected and has no degree-one vertex, all
nodes have degree at least two, then the number of edges is at least |V (G)|, so
G is not a tree. Hence, G must contain a cycle. �
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The graph G(X) 

A1

A2

A3

A4

A5

A6

A7

B1

B2

B3

B4

B5

Figure 1: The associated graph G(X) of matrix X

3.2 Proving of theorems

Proof of Theorem 3.1

Proof. Suppose that there does not exist matrix X ′ ∈ Nm×n such that
〈W,X〉 = 〈W,X ′〉 (*). Then any X∗ ∈ Rm×n∗ that satisfies 〈W,X〉 = 〈W,X∗〉
must have at least an element X∗i,j at some row i and column j not being
integer. But the sums of entries in the row i and the column j are integers.
Hence, there are elements X∗i,k and X∗l,j , where 1 ≤ k ≤ n and 1 ≤ l ≤ m, also
not integers.

Thus G := G(X∗) or any its connected component must have no one-degree
vertex, so G(X∗) or any its connected component has a cycle (Lemma 3.2). Let
TG is a cycle of G(X∗) then there is a cycle T on X∗. We set ε := Tmin be the

minimum element of T , then X∗
−ε
, X∗

+ε ∈ Rm×n+ . and

〈W,X∗
−ε
〉 = 〈W,X∗〉 − α, 〈W,X∗

+ε

〉 = 〈W,X∗〉+ α,

with α = ε

(∑
X∗
i,j∈To

Wi,j −
∑
X∗
i,j∈Te

Wi,j

)
.

If α 6= 0 then 〈W,X∗〉 is not minimum, thus α = 0 and

〈W,X∗
−ε
〉 = 〈W,X∗〉 = 〈W,X∗

+ε

〉.

If ε = Tmin ∈ To then X∗
−ε

has a new element whose value is 0, thus
〈W,X∗−ε〉 = 〈W,X∗〉 and X∗

−ε
has non-integer elements less than those of X∗
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(conflict to (*)). Similarly, if Tmin ∈ Te, then (*) is also false. Therefore (*) is
always false, the theorem is proved. �

Proof of Theorem 3.2

To prove this theorem, we define a variation of the concept of cycle given
in Definition 3.1. More clearly, we replace the condition Xip,jp 6∈ N with
Xip,jp 6= 0.

Definition 3.4. Let X ∈ Rm×n∗ , a set T = {Xip,jp : Xip,jp 6= 0} is called a
nonzero-cycle on X, denoted T �X, if it satisfies that |T | = k > 3 and that for
all p = 1..k: [ip = ip+1, jp+1 = jp+2] or [jp = jp+1, ip+1 = ip+2], in which
ik+1 = i1, ik+2 = i2, jk+1 = j1 and jk+2 = j2.

Now for a given T = {Xip,jp : Xip,jp > 0,∀p = 1..k} � X, a nonzero-cycle on
X with all positive entries, we let

Te = {T [p] : p ≡ 0 mod 2}, and To = {T [p] : p ≡ 1 mod 2}.

Given a ε > 0, we define two matrices X+ε and X−ε in Rm×n by the same
formulas as introduced in Definition 3.2. Finally, we need the below.

Definition 3.5. Let X ∈ Rm×n∗ , we associate with X a graph H(X) := (V,E)
whose vertices and edges are:

• V = {A1, A2, A3, . . . , Am, B1, B2, B3, . . . , Bn} representing the row and
column indexes of X,

• E = {AiBj : Xi,j 6= 0} describing nonzero entries of X.

Proving Theorem 3.2. Suppose X ∈ Nm×n∗ is a solution of transportation prob-
lem which has the least number of nonzero elements and X has more than
m+ n− 1 elements nonzero (*).

So H(X) is a graph with m+n nodes and has more than m+n edges then
H(X) has a cycle (because H(X) can not be a tree or a set of trees). Let T be
a cycle of H(X) then there is a non-zero cycle T on X. Denote by Tmin the
minimum element of T . Let ε = Tmin then X−ε, X+ε ∈ Rm×n+ and

〈W,X−ε〉 = 〈W,X〉 − α, 〈W,X+ε〉 = 〈W,X〉+ α

with
α = ε(

∑
Xij∈To

Wij −
∑

Xij∈Te

Wij).

If α 6= 0 then 〈W,X〉 is not minimum, so α = 0 and

〈W,X−ε〉 = 〈W,X〉 = 〈W,X+ε〉.
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If Tmin ∈ To then X∗−ε has a new element which value is 0, thus

< W,X∗−ε >= 〈W,X〉

and X−ε has nonzero elements less than X (conflict to (*)). Similar, if Tmin ∈
Te, then (*) is also false. Hence (*) is always false, the theorem is proved.

�

3.3 Experimental computation results

A berry cannery manufacturer has 3 cannery and 4 warehouse

Figure 2: A typical balanced source-sink transportation scheme

As an illustration for Theorem 3.2, we consider a transportation plan of a berry
cannery with 3 canneries and 4 warehouses in Fig. 2. The cost of transporting
a unit (a truckload) from factory Ci to warehouse Wj is wij , e.g. w12 = 513...,
w32 = 682, w34 = 685. This plan obviously is balanced source-sink since the
total goods coming out from the sources equals the total goods entering the
sinks,

∑3
i=1 ri = r1 + r2 + r3 = 300 =

∑4
j=1 cj = c1 + c2 + c3 + c4.

Let xij be the number of truckloads being shipped from cannery Ci to
warehouse Wj , where i = 1, 2, 3; j = 1, 2, 3, 4. The ILP model of Problem 1 is

minimize Z = 〈W,X〉 =
∑3
i

∑4
j wij xij = 464 x11 + · · ·+ 388 x33 + 685 x34

subject to

a) Decision variable constraints: xij ∈ N
b) Cannery constraints:

∑4
j x1j = 75,

∑4
j x2j = 125,

∑4
j x3j = 100



N. V. M. Man 141

c) Warehouse (sink) constraints:

3∑
i

xi1 = 80,

3∑
i

xi2 = 65,

3∑
i

xi3 = 70,

3∑
i

xi4 = 85.

Using LINGO software we got the optimal cost Z = $152535 from the
solution of x12 = 20, x14 = 55, x21 = 80, x22 = 45, x33 = 70, x34 = 30, and
all other xij = 0. Clearly, there are exactly m+ n− 1 = 4 + 3− 1 = 6 nonzero
values. Few stronger and diverser constraints will be proposed in Section 4,
and see APPENDIX D on how to code our ILP problem.

4 Summary and Conclusion

What have been done through this short excursion? We have seen that the
algebraic language and statistical formulation are essential for addressing com-
plicated problems of reality, that quality engineering, statistical quality control
and logistics management are rich sources of CAS.

Two conjectures in the first two topics might be interesting open problems.
Moreover, would computer algebra be more useful in the third topic of logistics?
Besides of shipping cost optimality, we can think about integration of various
demands from both suppliers (sources) and customers (sinks) in a framework
named collaborative logistics. If the firm’s manager want to further improve
transportation plans, not only in terms of shipping cost but also load balancing
at both sources and sinks, then he can impose extra constraints like

at each source i = 1, · · · ,m : 0 ≤ xij ≤ kj bri/nc, ∀j = 1, · · · , n;

at each sink j = 1, · · · , n : 0 ≤ xij ≤ li bcj/mc, ∀i = 1, · · · ,m;

where balancing weights 0 < k1, k2, · · · , kn ≤ n, and 0 < l1, l2, · · · , lm ≤ m, to
avoid over-sending goods to warehouses j, and also disregard receiving goods
too often from big suppliers. The values of xij then are roots of polynomials
with degrees much more lower than the primary upper bounds ri and cj , or
better min(ri, cj). E.g, with m = 3, n = 4 suitable weights can be k1 = 1, k2 =
1, k3 = 0, k4 = 2, meaning the 3rd warehouse doesn’t receive goods from any
supplier. Additionally using such utility and/or load balancing constraints for
Model (22) of Problem 1 possibly is a promising move, not only to better
balance utilities or benefits of both parties (producers and customers), but
also to reduce the complexity and root domains (the limited values of decision
variables provide a much more reduced feasibility region comparing to our
original feasibility region).

What CAS topics can be investigated next? Few questions we may raise,
and this emerging approach might provide sound methodology for modeling
complex problems arising in sectors of finance, health-care, and geo-statistics
...[25].
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APPENDICES

APPENDIX A: Groebner basis methodology

We recall here the essential computational machinery of Groebner bases to
solve systems of polynomial equations appearing in Computational Algebraic
Statistics. The Groebner basis methodology basically is about computing
on multivariate polynomial systems. Let us firstly brief a few basic notation.

A short polynomial algebraic background

We start with a set of input polynomials F = {f1, . . . , fs} on a field of numbers
F [F = R, or C the complex numbers], with its algebraic closure denoted as F .
We distinguish the variables X := (X1, X2, X3, . . . , Xn) from the coordinates
x := (x1, x2, x3, . . . , xn). So we talk about the ring (over the field F)

F [X] := F [X1, X2, X3, . . . , Xn]

and denote the coordinates of a point x ∈ Fn by x = (x1, x2, x3, . . . , xn), in
general. An ideal in F [X] is a subset J ⊂ F [X] consists of 0 and closed
under the addition of its polynomials and the multiplication with an arbitrary
polynomial in F [X], we write J E F [X]. Furthermore,

• An ideal I ≤ F [X] is prime iff F ∈ I or G ∈ I whenever FG ∈ I.

• In the space An := F × F × · · · × F (n times), an algebraic set is the
set of zeros of an ideal J ≤ F [X] that is determined by a finite set of
polynomials f1, f2, f3, . . . , fs:

Z(J) = Z(f1, f2, f3, . . . , fs) := {p ∈ An : fi(p) = 0, ∀fi} =

s⋂
i=1

Z(fi).
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Hence, finding Z(J) is reduced to computing all Z(fi) for i = 1, 2, . . . , s.
The algebraic set Z(J) of a prime ideal J ≤ F [X] is named an affine variety,
denoted by X := Z(J). For example, let J = 〈F (X,Y, Z) := X2 +Y 2 +Z2− 1〉
(note that principal ideal generated by an irreducible polynomial F (X,Y, Z) ∈
F [X,Y, Z] is a prime ideal if F 6= C).

Quotient ring and Zero-dimensional systems

• We say f and g are congruent modulo J , written f ≡ g mod J if f−g ∈
J .

• Relation ≡J (congruent modulo J) is an equivalence relation on F [X].

• The quotient set F [X]/J (read F [X] modulo J), is the set of all equiv-
alence classes [f ] = {g : g − f ∈ J} with respect to relation ≡J :

F [X]/J := { [f ] : f ∈ F [X] }.

Lemma 4.1.

• The set F [X]/J is a commutative ring with two operation + and · being
determined by:

[f ] + [h] = [f + h]; and [f ] · [h] = [fh].

• Every ideal in F [X]/J is finitely generated.

• F [X]/J has a linear space structure, and also it is an algebra.

Definition 4.1. The ideal J is called zero-dimensional if it has a finite number
of solutions, that means |Z(J)| <∞.

What is a Groebner basis G of a polynomial ideal J?

The key idea of Groebner basis method is to transform the given set F =
{f1, . . . , fs} to a new set of output polynomials G = {g1, . . . , gm} so that
information about F can be understood more easily through inspection of G.
The computation of G from F uses Buchbergers Algorithm (1965).

This algorithmic method generalizes well-known algorithms:

• Gaussian Elimination (solving linear system in many variables)

• Euclidean Algorithm (computing gcd of two polynomials in one variate,
then finding root of nonlinear univariate polynomial systems), and

• Simplex Algorithm (finding global optimum from local optimums).
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Three associated questions are:

1. Can Gaussian elimination be extended to handle nonlinear systems?

2. Can Euclidean algorithm be generalized to factor multivariate polynomi-
als?

3. Can Simplex algorithm be utilized to a scale where we have more rules
to help us moving faster towards global optimum (in certain concerned
polyhedral)?

Essentially, the Gröbner basis method was created by combining the three
major techniques above.

Example 4.1 (Gaussian elimination). From the system
F = {2x+3y+4z = 5, 3x+4y+5z = 2} we get G = {x = z−14, y = 11−2z}.

Example 4.2 (Euclidean algorithm finds gcd of two polynomials). From the
system F = {f1, f2} where f1 = x4 − 12x3 + 49x2 − 78x+ 4,
f2 = x5 − 5x4 + 5x3 + 5x2 − 6x we get the gcd(f1, f2) = x2 − 3x+ 2.

How about the last component? – the Simplex algorithm

Example 4.3 (ATM Utilization). Consider minimizing a integer-valued linear
functional

Z = P +N +D +Q, where P + 5N + 10D + 25Q = 117 and P,N,D,Q ∈ N.

We also know that 5P (enny) = N(ickel), 10P = D(ecimal), 25P = Q(uarter),
so could encode these additive relations in a multiplicative way, by introducing
new variables p, n, d, q and constraints:

p5 = n, p10 = d, p25 = q or, in terms of polynomials

F := {p5 − n, p10 − d, p25 − q}.

Then a feasible point, in our feasible polyhedron H, is represented by the term
p17n10d5. Using F we move slowly in H, but if we use
G := F ∪ {some extra terms} like G := F ∪ {n2 − d, d2n− q, d3 − nq} then
the moving could be much faster to the global optimum (2, 1, 1, 4).

Properties of Gröbner basis

Property 1: Z(J) = ∅ ⇐⇒ 1 ∈ J .

Property 2: If G is a Gröbner basis of J , then Z(J) is finite iff for each variate
Xi, G consists of a polynomial in only that Xi.
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Example 4.4 (Experimenting in Maple soft).

We find roots of a system of polynomial equations via computing Gröbner basis
in Maple as follows.

f := x2 + y + z − 1; g := x+ y2 + z − 1;h := x+ y + z2 − 1; J := [f, g, h]
with(Groebner); G := Basis(J, plex(x, y, z)); # and get a basis

G := [z6 + 4 ∗ z3− 4 ∗ z4− z2, 2 ∗ z2 ∗ y+ z4− z2, y2− z2 + z− y, x+ y+ z2− 1];

# To check whether Z(J) = Z(G) is finite, and solve the system we use:
IsZeroDimensional(G);
true #i.e. the system has a finite number of solutions
solve(G, {x, z, y}); # The zero set Z(J) then is

{{y = 0, z = 0, x = 1}, {x = 0, y = 1, z = 0}, {z = 1, x = 0, y = 0},
{z = 1, x = 0, y = 0}, {x = RootOf(Z2 + 2Z − 1, label =L 1), y = x; z = x}}.

If we use Singular instead [43], the function RootOf() will returns up to
complex roots. Kindly see more in [Arjeh Cohen, [4]], [Alicia Dickenstein, [6]]
and [Sturmfels, [8]].

APPENDIX B: Permutation group

Given a set X, a permutation of X is a bijection from X to itself. We write
Sym(X) for the symmetric group on X, ie, the group of all permutations of X.
We denote SymN instead of Sym({1, 2, . . . , N}), for a natural number N . We
write elements of SymN in cycle notation, so the permutation p = (1, 2, 3)(4, 5)
is defined by 1p = 2, 2p = 3, 3p = 1, 4p = 5, 5p = 4. We say a group K acts on
a set X if we have a group homomorphism φ : K → Sym(X). We abbreviate
xφ(g) by xg. Let p ∈ SymN . The action of p on a subset B ⊆ {1, 2, . . . , N} is
given by Bp := {xp : x ∈ B}. The action of p on a list of length N is given by

[y1, y2, . . . , yN ]p := [y1p−1 , y2p−1 , . . . , yNp−1 ].

In other words, we compute the ith position of Y p by Y p[i] = yip−1 = Y [ip
−1

].

APPENDIX C: Proof of Lemma 2.1

Proof. Pick up a nontrivial permutation h in L(F1). Then it acts locally on
RowInd(F1). By symmetry, we only check that ZX(u1) ⊆ ZY (v1). We choose
any sub-vector

u∗ := [u2; . . . ;ur1 ] ∈ ZX(u1)

then X = [u1;u2; . . . ;ur1 ] is in Z(P ). We view h ∈ Aut(F ), so

Dh = [F |X]h =
[
Fh|Xh

]
=
[
F |Xh

]
=
[
F | [u1;u2; . . . ;ur1 ]h

]
=
[
F | [uh1 ;u2; . . . ;ur1 ]

]
=
[
F | [v1;u2; . . . ;ur1 ]

]
.

This implies that [v1;u2; . . . ;ur1 ] is a solution, hence u∗ ∈ ZY (v1). �



146 A survey on computational algebraic statistics and its applications

APPENDIX D: LINGO environtment for ILP

We used two structures
SETS: ... ENDSETS to set the name and denote all variables.
DATA: ... ENDDATA to put the value that we get from the question.

To express constraints we need LINGO commands below:

• @SUM : adds all the numbers or variables together.

• MIN =: finds the minimum value of the objective behind the equal sign.

• @FOR: gives specific condition to some variables or equations.

Here is the LINGO code for our problem with data given in Figure 2.
! LINGO code for a balanced source-sink plan in Logistics using ILP;

SETS:
Cannery: CanProduce, Output;
Warehouse: WarProduce, Allocation;
Links(Cannery,Warehouse): ShipCost, Ship;    ! W and X;
ENDSETS

DATA:
! the Canneries (source) output;
Cannery, Output=
C1 75
C2 125
C3 100;

! the Warehouses (sink) output;
Warehouse, Allocation=
W1 80
W2 65
W3 70
W4 85;

! the shipping cost per trucload as given in the ship cost matrix W;
ShipCost = 
464 513 654 867
352 416 690 791
995 682 388 685; 
ENDDATA 

! Minimize total cost Z;
MIN = @SUM(Links: ShipCost*Ship);

! the Canneries (source) constraints;
@FOR(Cannery(i):
 @SUM(Warehouse(j): Ship(i,j)) = Output(i)); 

! the Warehouses (sink) constraints;
@FOR(Warehouse(j): 
 @SUM(Cannery(i): Ship(i,j)) = Allocation(j));
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