A NOTE ON STRONGLY IFP SUBMODULES AND MODULES

Bunthita Chattae and N. V. Sanh*

Department of Mathematics Faculty of Science, Mahidol University Center of Excellence in Mathematics Bangkok 10400, Thailand e-mail: nguyen.san@mahidol.ac.th

Abstract

In this note we rename the structure of strongly IFP submodules and make some corrections on a paper of some authors in our group that was appeared recently.

1 Introduction

Throughout this paper, all rings are associative rings with identity and all modules are unitary right R-modules. Let R be a ring and M a right R-module. Denote $S = \operatorname{End}_R(M)$, the endomorphism ring of the module M. A submodule X of M is called a fully invariant submodule of M, if $f(X) \subset X$ for any $f \in S$. Especially, a right ideal of R is a fully invariant submodule of R_R if it is a two-sided ideal of R. The class of all fully invariant submodules of M is non-empty and closed under intersections and sums. A right R-module M is called a self-generator if it generates all its submodules. Following [10], a fully invariant proper submodule X of M is called a *prime submodule* of M if for any ideal I of $S = \operatorname{End}_R(M)$, and any fully invariant submodule U of M, $I(U) \subset X$ implies that either $I(M) \subset X$ or $U \subset X$. A fully invariant submodule X of M is called a *strongly prime submodule* of M if for any $\varphi \in S = \operatorname{End}_R(M)$ and $m \in M$, $\varphi(m) \in X$ implies that either $\varphi(M) \subset X$ or $m \in X$. The basic Theorem 2.1 in [10] shows that the class of prime submodules of a given module has some properties similar to that of prime ideals in an associative ring. Following this

^{*}Corresponding author

 $^{{\}bf Key \ words:} \ {\rm Strongly \ prime \ submodules, \ strongly \ IFP \ submodules.}$

²⁰¹⁰ AMS Mathematics classification: 16D60, 16N40, 16N60, 16N80.

theorem, a fully invariant proper submodule X of M is prime if and only if for any $\varphi \in S$ and $m \in M$, $\varphi Sm \subset X$ implies that $\varphi(M) \subset X$ or $m \in X$. Using this property, one can see that every strongly prime submodule is prime.

Following [18, Definition 2.1], a submodule X of a right R-module M is said to have *insertion factor property* (briefly, an IFP-submodule) if for any endomorphism φ of M and any element $m \in M$, if $\varphi(m) \in X$, then $\varphi Sm \subset X$. A right ideal I of R is an *IFP-right ideal* if it is an IFP-submodule of R_R , that is for any $a, b \in R$, if $ab \in I$, then $aRb \subset I$. A right R-module M is called an *IFP-module* if 0 is an IFP-submodule of M. A ring R is IFP if 0 is an IFP-ideal.

A fully invariant submodule X of a right R-module M is called a *semiprime* submodule if it is an intersection of prime submodules of M. A right R-module M is called a *semiprime module* if 0 is a semiprime submodule of M. Thus, the ring R is a *semiprime ring* if R_R is semiprime. By symmetry, the ring R is a semiprime ring if R_R is a semiprime left R-module.

Proposition 1.1. [1, Proposition 2.3] Let M be a right R-module which is a self-generator and X, a fully invariant submodule of M. Then X is a semiprime submodule if and only if whenever $f \in S$ with $fSf(M) \subset X$, then $f(M) \subset X$.

2 Strongly IFP-submodules and modules.

Definition 2.1. A fully invariant proper submodule X of M is called *strongly IFP* if for any $\psi \in S$ and $m \in M$, $\psi^2(m) \in X$ implies $\psi Sm \subset X$. A right *R*-module M is called a *strongly IFP-module* if 0 is a strongly IFP-submodule of M.

In [8], authors had a confusion in applying Proposition 1.1. In this result, we need the condition of self-generator and because of this, we could not call it *completely semiprime*. Moreover, authors did not define completely prime submodules. By the Proposition 2.3 below, we call such a submodule *strongly IFP*.

Remark 2.2. If M is a self-generator, then every strongly IFP-submodule is semiprime.

Proof. The proof can be found in [8, Remark 2.2].

Proposition 2.3. Let X be a strongly IFP submodule of M, and $S = \text{End}(M_R)$. Then,

- 1. X is an IFP-submodule of M,
- 2. if $\varphi, \psi \in S$ and $m \in M$ such that $\varphi \psi(m) \in X$, then $\psi \varphi(m) \in X$.

Proof. The proof can be found in [8] and we give here for the sake completeness.

(1.) Let $\varphi \in S$ and $m \in M$ such that $\varphi(m) \in X$. Since X is fully invariant, we get $\varphi^2(m) \in X$. By definition of strongly IFP submodules, we get $\varphi Sm \subset X$, proving that X is IFP.

(2.) Take any $\varphi, \psi \in S, m \in M$ with $\varphi\psi(m) \in X$. Since X is fully invariant, we get $(\psi\varphi\psi)^2(m) \in X$. By definition 2.1, we get $(\psi\varphi\psi)Sm \subset X$. Hence, $\psi\varphi\psi\varphi(m) \in X$ or $(\psi\varphi)^2(m) \in X$. Since X is strongly IFP, $\psi\varphi Sm \subset X$. This shows that $\psi\varphi(m) \in X$, proving our claim.

The following Proposition is a correction of [8, 2.10]. The condition that being finitely generated is needed.

Proposition 2.4. Let M be a right R-module and $S = \text{End}(M_R)$.

- (1) If X is a strongly IFP submodule of M, then I_X is a strongly IFP ideal of S.
- (2) Let P be a strongly IFP-ideal of S. If M is finitely generated and a selfgenerator, then X = P(M) is a strongly IFP submodule of M and $I_X = P$.

Proof. (1). Let $\varphi^2 \psi \in I_X$. Then $\varphi^2 \psi(M) \subset X$. This means for any $m \in M$ we have $\varphi^2 \psi(m) \in X$. Since X is strongly IFP, we get $\varphi S \psi(m) \subset X$. It follows that $\varphi S \psi(M) \subset X$, showing that $\varphi S \psi \subset I_X$.

(2). Let P be a strongly IFP ideal of S and put X = P(M). Since M is finitely generated, by [20, 18.4], we get $I_X = P$. Let $\varphi^2(m) \in X$ with $\varphi \in S$ and $m \in M$. Since M is a self-generator, $mR = \sum_{i \in I} \psi_i(M)$, where $\psi_i \in S$ for some set I. It follows that $\varphi^2 \psi_i(M) \subset X$. Thus $\varphi^2 \psi_i \in I_X = P$. By assumption, $\varphi S \psi_i \subset P$. Hence $\varphi S(mR) \subset X$, and therefore $\varphi Sm \subset X$, proving that X is a strongly IFP submodule of M.

Proposition 2.5. Let X be a fully invariant submodule of a right R-module M. X is strongly prime if and only if it is prime and strongly IFP.

Proof. From [3], X is strongly prime if and only if it is prime and IFP. By Proposition 2.3, the result follows. \Box

References

 K.F.U. Ahmed, Le Phuong Thao and N.V, Sanh, On semiprime modules with chain conditions, East-West J. Mathematis, 15 (2) (2013), 135–151.

204

- [2] F.W. Anderson and K.R. Fuller, *Rings and categories of modules*, Springer Verlag, Berlin-Heidelberg-New York, 2nd Edition, 1992.
- [3] Nguyen Trong Bac and N.V. Sanh, A characterization of Noetherian modules by the class of one-sided strongly prime submodules, Southeast Asian Bulletin of Mathematics 41 (2017), 807-814.
- [4] A.W. Chatters and C.R. Hajarnavis, *Rings with Chain Conditions*, Pitman, London, 1980
- [5] T. Dong, N.T. Bac and N.V. Sanh, A generalization of Kaplansky-Cohen's theorem, East-West J. Mathematis, 16 (1) (2014), 187–91.
- [6] K.R. Goodearl and R.B. Warfield, An Introduction to Non-commutative Noetherian rings, Cambridge University Press, Cambridge, UK, 2004.
- [7] N.H. McCoy, Completely prime and completely semiprime ideals, Rings, modules and radicals A. Kertesz (ed.), J. Bolyai math. soc., Budapest, 1973, 147–152.
- [8] On Strongly Semiprime Modules and Submodules, Hai. Q. Dinh, Nguyen T. Bac, N. J. Groenewald and D. T. H. Ngoc, Thai J. of Mathematics, 16(3) (2018), 577-590.
- G.O. Michler, Prime right ideals and right Noetherian rings, Ring theory, Editor: R. Gordon (Proc. Conf., Park City, Utah, 1971), Academic Press, New York, 1972, 251– 255.
- [10] N.V. Sanh, N.A. Vu, K.F.U. Ahmed, S. Asawasamrit and L.P. Thao, Primeness in module category, Asian-European J. of Math. 3 (1) (2010), 145–154.
- [11] N.V. Sanh, S. Assawasamrit, K.F.U. Ahmed and L.P. Thao, On prime and semiprime Goldie modules, Asian-European J. of Math. 4 (2) (2011), 321–334.
- [12] N.V. Sanh, N.T. Bac, N.D. Hoa Nghiem and C. Somsup, On IFP modules and a generalization of Anderson's theorem, Southeast Asian Bulletin of Math., 2019, to appear.
- [13] R. Wishbauer, Foundations of Module and Ring Theory, Gordon and Breach, Tokyo. c.a. 1991.