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Abstract

In this note we rename the structure of strongly IFP submodules and
make some corrections on a paper of some authors in our group that was
appeared recently.

1 Introduction

Throughout this paper, all rings are associative rings with identity and all
modules are unitary right R-modules. Let R be a ring and M a right R-module.
Denote S = Endg (M), the endomorphism ring of the module M. A submodule
X of M is called a fully invariant submodule of M, if f(X) C X for any f € S.
Especially, a right ideal of R is a fully invariant submodule of Ry if it is a two-
sided ideal of R. The class of all fully invariant submodules of M is non-empty
and closed under intersections and sums. A right R-module M is called a self-
generator if it generates all its submodules. Following [10], a fully invariant
proper submodule X of M is called a prime submodule of M if for any ideal I
of S = Endg (M), and any fully invariant submodule U of M, I(U) C X implies
that either I(M) C X or U C X. A fully invariant submodule X of M is called
a strongly prime submodule of M if for any ¢ € S = Endr(M) and m € M,
p(m) € X implies that either (M) C X or m € X. The basic Theorem 2.1
in [10] shows that the class of prime submodules of a given module has some
properties similar to that of prime ideals in an associative ring. Following this
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theorem, a fully invariant proper submodule X of M is prime if and only if for
any ¢ € S and m € M, pSm C X implies that ¢(M) C X or m € X. Using
this property, one can see that every strongly prime submodule is prime.

Following [18, Definition 2.1], a submodule X of a right R-module M is
said to have insertion factor property (briefly, an IFP-submodule) if for any
endomorphism ¢ of M and any element m € M, if p(m) € X, then pSm C X.
A right ideal I of R is an IFP-right ideal if it is an I[FP-submodule of Rp, that
is for any a,b € R, if ab € I, then aRb C I. A right R-module M is called an
IF'P-module if 0 is an IFP-submodule of M. A ring R is IFP if 0 is an IFP-ideal.

A fully invariant submodule X of a right R-module M is called a semiprime
submodule if it is an intersection of prime submodules of M. A right R-module
M is called a semiprime module if 0 is a semiprime submodule of M. Thus, the
ring R is a semiprime ring if Rp is semiprime. By symmetry, the ring R is a
semiprime ring if Ry is a semiprime left R-module.

Proposition 1.1. [1, Proposition 2.3] Let M be a right R-module which is a
self-generator and X, a fully invariant submodule of M. Then X is a semiprime
submodule if and only if whenever f € S with fSf(M) C X, then f(M) C X.

2 Strongly IFP-submodules and modules.

Definition 2.1. A fully invariant proper submodule X of M is called strongly
IFP if for any v € S and m € M, ¢?(m) € X implies »Sm C X. A right
R-module M is called a strongly IFP-module if 0 is a strongly IFP-submodule
of M.

In [8], authors had a confusion in applying Proposition 1.1. In this result,
we need the condition of self-generator and because of this, we could not call
it completely semiprime. Moreover, authors did not define completely prime
submodules. By the Proposition 2.3 below, we call such a submodule strongly
IFP.

Remark 2.2. If M is a self-generator, then every strongly IFP-submodule is
semiprime.
Proof. The proof can be found in [8, Remark 2.2]. O
Proposition 2.3. Let X be a strongly IFP submodule of M, and S = End(MRg).
Then,

1. X is an IFP-submodule of M,

2. if p,0 €S and m € M such that pip(m) € X, then Yp(m) € X.
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Proof. The proof can be found in [8] and we give here for the sake complete-
ness.

(1.) Let ¢ € S and m € M such that ¢(m) € X. Since X is fully invariant,
we get p?(m) € X. By definition of strongly IFP submodules, we get pSm C X,
proving that X is IFP.

(2.) Take any p, 1) € S, m € M with py(m) € X. Since X is fully invariant,
we get (py)’(m) € X. By definition 2.1, we get (p)Sm C X. Hence,
Yop(m) € X or (1)’ (m) € X. Since X is strongly IFP, »oSm C X. This
shows that 1p(m) € X, proving our claim. O

The following Proposition is a correction of [8, 2.10]. The condition that
being finitely generated is needed.

Proposition 2.4. Let M be a right R-module and S = End(Mg).

(1) If X is a strongly IFP submodule of M, then Ix is a strongly IFP ideal
of S.

(2) Let P be a strongly IFP-ideal of S. If M is finitely generated and a self-
generator, then X = P(M) is a strongly IFP submodule of M and Ix =
P.

Proof. (1). Let 9% € Ix. Then p?¢)(M) C X. This means for any m € M
we have ¢21(m) € X. Since X is strongly IFP, we get pSvy(m) C X. It follows
that Sy (M) C X, showing that ©Sv¥ C Ix.

(2). Let P be a strongly IFP ideal of S and put X = P(M). Since M is
finitely generated, by [20, 18.4], we get Ix = P. Let p?(m) € X with ¢ € S
and m € M. Since M is a self-generator, mR = ), _; ¥;(M), where 1; € S for
some set I. It follows that ©21); (M) C X. Thus p?¢; € Ix = P. By assumption,
pSY; C P. Hence pS(mR) C X, and therefore pSm C X, proving that X is a
strongly IFP submodule of M. O

Proposition 2.5. Let X be a fully invariant submodule of a right R-module
M. X 1is strongly prime if and only if it is prime and strongly IFP.

Proof. From [3], X is strongly prime if and only if it is prime and IFP. By
Proposition 2.3, the result follows. U
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