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Abstract

Distributive implication groupoids as an essential generalization of the
implication reduct of intuitionistic logic were introduced and studied by
the second author and I. Chajda in [3]. It has been proved that for these
algebras ideals, deductive systems and congruence kernels coincide. In
the paper the same connection is shown even if the implication groupoid
is quasi-distributive.

1 Introduction

In 50-ties L. Henkin and T. Skolem introduced the notion of Hilbert algebra as
an algebraic counterpart of intuitionistic logic. A Hilbert algebra is an algebra
H = (H, ·, 1) of type (2,0) satisfying the axioms

(H1) x · (y · x) = 1
(H2) (x · (y · z)) · ((x · y) · (x · z)) = 1
(H3) x · y = 1 and y · x = 1 imply x = y.

One can easily show that (H2) can be replaced by two rather simpler axioms

(LD) x · (y · z) = (x · y) · (x · z) (left distributivity)
(E) x · (y · z) = y · (x · z) (exchange).
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Following [3] by an implication groupoid we mean any algebra
A = (A, ·, 1) of type (2,0) satisfying the axioms
(IG1) x · x = 1
(IG2) 1 · x = x.

If A satisfies also (LD), we call it left distributive implication groupoid. On
each implication groupoid we can introduce the so-called induced relation ≤ by
setting

x ≤ y if and only if x · y = 1.

Clearly, the relation x ≤ y is always reflexive. In [3] it has been shown that
(LD) and (E) are independent, but, on the other hand, every left distributive
implication groupoid satisfies a weaker condition

(QE) (x · (y · z)) · (y · (x · z)) = 1 (quasi-exchange)

This result immediately leads to the problem to find a weaker form of left
distributivity still yielding the (QE)-property.

2 Quasi-distributive implication groupoids

The answer to the above question leads to the following concept:
An implication groupoid A = (A, ·, 1) satisfying the axioms
(QLD1) (x · (y · z)) · ((x · y) · (x · z)) = 1
(QLD2) ((x · y) · (x · z)) · (x · (y · z)) = 1
will be called quasi-distributive.

Evidently, every left distributive implication groupoid is quasi-distributive.
On the other hand, there are quasi-distributive groupoids not being distribu-
tive:

Example 1 Let A = (A, ·, 1) be an implication groupoid given by the following
table:

· 1 a b c d

1 1 a b c d
a 1 1 b b 1
b 1 a 1 1 d
c 1 a 1 1 d
d 1 1 b c 1

By tedious computations one can show that A is quasi-distributive but not
distributive: we have

d · (a · c) = d · b = b �= c = 1 · c = (d · a) · (d · c)
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and, moreover, A satisfies (E).

We can state several basic properties of quasi-distributive implication groupoids:

Lemma 1 Let A = (A, ·, 1) be a quasi-distributive implication groupoid. Then
A satisfies the identities
(i) x · 1 = 1
(ii) x · (y · x) = 1
(iii) (x · (x · y)) · (x · y) = 1
(iv) ((x · y) · x) · ((x · y) · y) = 1.

Moreover, the induced relation ≤ is the quasiorder (i.e. reflexive and transitive)
and the following relationships hold:
(v) x ≤ 1
(vi) x ≤ y · x
(vii) 1 ≤ x ⇒ x = 1
(viii) y ≤ z ⇒ x · y ≤ x · z
(ix) x ≤ y ⇒ y · z ≤ x · z
(x) x · (y · z) ≤ y · (x · z)
(xi) x ≤ (x · y) · y.

Proof We have

1 = ((x · x) · (x · x)) · (x · (x · x)) = 1 · (x · 1) = x · 1

by (QLD2), (IG1) and (IG2), hence (i) is proved.
To prove (ii), let us substitute z = x in (QLD2): we get
1 = ((x·y))·(x·x))·(x·(y ·x)) = ((x·y)·1)·(x·(y ·x)) = 1·((x·(y ·x)) = (x·(y ·x)),
where (IG1), (IG2) and (i) are used.
Further, putting y = x and z = y in (QLD1) and using (IG1) and (IG2) we
obtain
1 = (x · (x · y)) · ((x · x) · (x · y)) = (x · (x · y)) · (1 · (x · y)) = (x · (x · y)) · (x · y).
To get (iv), we set x = y · z in (QLD1):

1 = ((y · z) · (y · z)) · (((y · z) · y) · ((y · z) · z)) = ((y · z) · y) · ((y · z) · z).

Now we show that the relation ≤ is transitive. Assume x ≤ y and y ≤ z for
some x, y, z ∈ A, i.e. x · y = y · z = 1. Then (QLD1) again yields

1 = (x · (y · z)) · ((x · y) · (x · z)) = (x · 1) · (1 · (x · z)) = x · z,

hence x ≤ z.
(v) and (vi) are clear from (i) and (ii), respectively.
If 1 ≤ x, then 1 = 1 · x = x, proving (vii).
To prove (viii), assume y ≤ z. Then y · z = 1 and by (QLD1) and (i)
1 = (x·(y·z))·((x·y)·(x·z)) = (x·1)·((x·y)·(x·z)) = 1·((x·y)·(x·z)) = (x·y)·(x·z),
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and (viii) is proved.
To prove (ix), assume x ≤ y. Then x · y = 1 and by (QLD1) we derive

x · (y · z) ≤ (x · y) · (x · z) = 1 · (x · z) = x · z.

Using (viii) to the previous inequality we get by (ii)

1 = (y · z) · (x · (y · z)) ≤ (y · z) · (x · z),

hence y · z ≤ x · z. Finally applying (ix) to the inequality y ≤ x · y gives us

(x · y) · (x · z) ≤ y · (x · z),

which, by (QLD1), leads to

1 = (x · (y · z)) · ((x · y) · (x · z)) ≤ (x · (y · z)) · (y · (x · z)),

hence x · (y · z) ≤ y · (x · z).
By (QLD2) and (iii)

1 = ((x · (x · y)) · (x · y)) · (x · ((x · y) · y)) = 1 · (x · ((x · y) · y)) = x · ((x · y) · y)

proving x ≤ (x · y) · y. �

Lemma 1 leads to the following Corollary:

Corollary 1 Let A = (A, ·, 1) be a quasi-distributive implication groupoid.
Then A satisfies the (QE)-property and the induced quasiorder is an order on
A iff A is a Hilbert algebra.

Proof If the induced quasiorder ≤ is an order relation, then A satisfies (LD)
and (E) by Lemma 1 and hence A is a Hilbert algebra. The converse implication
is trivial. �

The concept of implication algebra was introduced by J. C. Abbott [1] to
describe properties of the logical connective implication in a classical logic. Re-
call that a groupoid A = (A, ·, 1) is an implication algebra if it satisfies the
identities

(I1) (x · y) · x = x (contraction)
(I2) (x · y) · y = (y · x) · x (commutativity)
and the exchange property (E).

It is well-known that each implication groupoid satisfies also the identity x ·x =
y · y, i.e. x · x is the algebraic constant denoted by 1. The following connec-
tion between implication algebras and quasi-distributive implication groupoids
is the strengthening of the main result of [6] saying that every commutative
Hilbert algebra is an implication algebra:
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Theorem 1 A quasi-distributive implication groupoid is an implication algebra
iff it is commutative.

Proof Let A = (A, ·, 1) be a commutative quasi-distributive implication groupoid.
Let us show that the induced relation ≤ is an order on A. Indeed, assuming
x ≤ y and y ≤ x we obtain

y = 1 · y = (x · y) · y = (y · x) · x = 1 · x = x.

By Corollary 1, A is a Hilbert algebra and according to [6], any commutative
Hilbert algebra is an implication algebra. The converse assertion is trivial. �

3 Ideals, deductive systems, congruences

The concept of an ideal for Hilbert algebras coincides with that one for im-
plication algebras and it was introduced in [3]. The concept of a deductive
system for Hilbert algebras was introduced by A. Diego [4] and W. Dudek [5]
proved that all these concepts coincide. We will show that the same holds even
for quasi-distributive implication groupoids when the formal definitions remain
unchanged:

Definition Let A = (A, ·, 1) be an implication groupoid. A subset I ⊆ A is
called an ideal of A if
(1) 1 ∈ I
(2) x ∈ A and y ∈ I imply x · y ∈ I
(3) x ∈ A and y1, y2 ∈ I imply (y2 · (y1 · x)) · x ∈ I.

Let us note that if I is an ideal of an implication groupoid A = (A, ·, 1) and
a ∈ I and x ∈ A, then taking y1 = a, y2 = 1 in (3) we get
(4) (a · x) · x ∈ I.

Definition Let A = (A, ·, 1) be an implication groupoid. A subset D ⊆ A is
called a deductive system of A if
(1) 1 ∈ D
(5) x ∈ D and x · y ∈ D imply y ∈ D.

Denote by Id(A) or Ded(A) the set of all ideals or the set of all deductive
systems of A, respectively.

When the binary operation ”· ” is considered to be a propositional con-
nective implication, (5) is the expression of Modus Ponens. Thus deductive
systems are just the sets of true values closed under the deductive derivation.

Lemma 2 Let A = (A, ·, 1) be a quasi-distributive implication groupoid. Then
Id(A) = Ded(A).
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Proof Let I ⊆ A be an ideal in A. To prove (5), assume x ∈ I and x · y ∈ I.
By (4) we know (x · y) · y ∈ I, hence putting y2 = (x · y) · y, y1 = x · y in (3) we
get

y = 1 · y = (((x · y) · y) · ((x · y) · y)) · y ∈ I.

Conversely, let D be a deductive system of A. Suppose x ∈ A and y ∈ D.
Then 1 = y · (x · y) ∈ D, thus by (5) we get x · y ∈ D proving (2).
Let us prove (3). Using (QLD2) we have

1 = ((y · (y · x)) · (y · x)) · (y · ((y · x) · x)) ∈ D,

which by Lemma 1(iii) yields

y · ((y · x) · x) = 1 ∈ D.

Applying (5) we obtain

(∗) (y · x) · x ∈ D.

Assume further y1, y2 ∈ D, x ∈ A. Then according to (∗)
(y1 · (y2 · x)) · (y2 · x) ∈ D

and by (QE),

1 = ((y1 · (y2 · x)) · (y2 · x)) · (y2 · ((y1 · (y2 · x)) · x)) ∈ D.

Finally, using (5) twice we obtain y2 · ((y1 · (y2 · x)) · x) ∈ D and
(y1 · (y2 · x)) · x ∈ D. �

For an implication groupoid A = (A, ·, 1) denote by ConA its congruence
lattice. If Θ ∈ ConA, the subset [1]Θ = {x ∈ A; 〈x, 1〉 ∈ Θ} of A is called the
congruence kernel of Θ. Denote Ck(A) the set of all congruence kernels of A.

Lemma 3 Let A = (A, ·, 1) be a quasi-distributive implication groupoid. Then
Ck(A)=Id(A). Moreover, every ideal I of A is the kernel of the congruence ΘI

defined by

〈x, y〉 ∈ ΘI iff x · y ∈ I and y · x ∈ I,

and ΘI is the greatest congruence on A having the kernel I.

Proof The inclusion Ck(A) ⊆ Id(A) holds even if A is an implication groupoid,
see [3] .
Let us prove Id(A) ⊆ Ck(A). Since 1 ∈ I by (1), the relation ΘI is reflexive
and, evidently, it is symmetric. Now we prove transitivity of ΘI : let 〈x, y〉 ∈ ΘI

and 〈y, z〉 ∈ ΘI , i.e. x · y, y · x, y · z, z · y ∈ I. By (QLD1) we have
(∗∗) 1 = (x · (y · z)) · ((x · y) · (x · z)) ∈ I.
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Since y · z ∈ I, by (2) also x · (y · z) ∈ I. Moreover, I is the deductive system,
hence (∗∗) leads by (5) (x · y) · (x · z) ∈ I. Applying (5) once more with respect
to x · y ∈ I, finally x · z ∈ I.
Similarly, z · x ∈ I can be proved and ΘI is transitive.

Let us prove the compatibility of ΘI . Assume 〈x, y〉 ∈ ΘI and 〈u, v〉 ∈ ΘI ,
i.e. x · y, y · x, u · v, v · u ∈ I. By (QLD1) we have
(∗ ∗ ∗) 1 = (x · (u · v)) · ((x · u) · (x · v)) ∈ I.
Analogously u · v ∈ I gives by (2) x · (u · v) ∈ I, and applying (5) with respect
to (∗∗∗) we obtain (x ·u) · (x ·v) ∈ I. Similarly (x ·v) · (x ·u) ∈ I and altogether
(∗ ∗ ∗∗) 〈x · u, x · v〉 ∈ ΘI .
Now, using the property (QE) we obtain
(∗ ∗ ∗ ∗ ∗) 1 = (y · ((x · v) · v)) · ((x · v) · (y · v)) ∈ I.
According to Lemma 1 (xi) we derive x ≤ (x · v) · v and, applying (viii) of
Lemma 1, y · x ≤ y · ((x · v) · v), thus

(y · x) · (y · ((x · v) · v)) = 1 ∈ I.

Since y · x ∈ I, by (5) also y · ((x · v) · v) ∈ I which, with respect to (∗ ∗ ∗ ∗ ∗)
and (5) again, gives

(x · v) · (y · v) ∈ I.

Analogously, (y · v) · (x · v) ∈ I and hence 〈x · v, y · v〉 ∈ ΘI . Finally, using
(∗ ∗ ∗∗) and transitivity of ΘI , we get 〈x · u, y · v〉 ∈ ΘI .

It is an easy exercise to show that [1]ΘI = I. Assume that Φ is any congru-
ence of A with the property [1]Θ = I. If 〈x, y〉 ∈ Φ, then

〈x · y, 1〉 = 〈x · y, y · y〉 ∈ Φ,

〈y · x, 1〉 = 〈y · x, x · x〉 ∈ Φ,

i.e. x · y, y · x ∈ [1]Φ = I. This immediately yields Φ ⊆ ΘI and hence ΘI is the
greatest congruence with the kernel I. �

Summarizing the above lemmas, we state

Theorem 2 Let A = (A, ·, 1) be a quasi-distributive implication groupoid. Then
Id(A) = Ck(A) = Ded(A).
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