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Abstract

Clones are sets of operations which are closed under superposition
and contain all projections. The superposition operation maps to each
(n + 1)−tuple of n-ary operations a new n-ary operation and satisfies
the so-called superassociative law. The corresponding algebraic struc-
tures are Menger algebras of rank n, unitary Menger algebras of rank
n and Menger algebras with infinitely many nullary operations. Identities
of clones of term operations of a given algebra correspond to hyperi-
dentities of this algebra, i.e. to identities which are satisfied after any
replacements of fundamental operations by derived operations ([10]). If
any identity of an algebra is satisfied as a hyperidentity, the algebra is
called solid ([3]). Solid algebras correspond to free clones. These con-
nections will be extended to strongly full clones, to generalized clones,
to strong hyperidentities and to strongly solid varieties. We prove that n-
hyperidentities, SF -hyperidentities and strong hyperidentities correspond
to identities in free unitary Menger algebras of finite rank, in Menger al-
gebras of finite rank or to free unitary Menger algebras with infinitely
many nullary operations, respectively.

1 Superposition of Total and Partial Opera-

tions

Let f : An → A be an n-ary operation defined on the set A, let O(n)(A) be the

set of all n-ary operations on A and let O(A) :=
∞⋃

n=1
O(n)(A) be the set of all
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180 Menger Algebras and Clones of Terms

(finitary) operations on A. Then an (n+1)-ary operation Sn,A : O(n)(A)n+1 →
O(n)(A) can be defined by setting

Sn,A(f, g1, . . . , gn)(a) := f(g1(a), . . . , gn(a)) for a := (a1, . . . , an).(∗)
Together with the projections en,A

i , 1 ≤ i ≤ n, this gives an algebra
(O(n)(A);Sn,A, (en,A

i )1≤i≤n) of type (n + 1, 0, . . .0). For n = 1 the oper-
ation S1,A is the usual composition of unary operations and the algebra
(O(1)(A);S1,A, e1,A

1 ) is a monoid. An (n+1)−ary superposition operation Sn,A

can also be defined on the set P (n)(A) of all n-ary partial operations. In this
case we request additionally that in (*) the left hand side is defined whenever
the right hand side is defined and that both sides are equal. It is easy to see
that the algebra (O(n)(A);Sn,A, (en,A

i )1≤i≤n) satisfies the following identities:

(C1) S̃n(T, S̃n(F1, T1, . . . , Tn), . . . , S̃n(Fn, T1, . . . , Tn))
≈ S̃n(S̃n(T, F1, . . . , Fn), T1, . . . , Tn), n ∈ N

+.

(C2) S̃n(T, λ1, . . . , λn) = T, n ∈ N
+.

(C3) S̃n(λi, T1, . . . , Tn) = Ti for 1 ≤ i ≤ n, n ∈ N
+.

(Here S̃n is an operation symbol corresponding to the operations Sn , λi, 1 ≤
i ≤ n are nullary operation symbols and T, Tj , Fi are variables.)
Indeed,
(Sn,A(Sn,A(f, g1, . . . , gn), h1, . . . , hn))(a)

= f(g1 , . . . , gn)(h1, . . . , hn)(a)
= f(g1(h1, . . . , hn)(a), . . . , gn(h1, . . . , hn)(a))
= Sn,A(f, Sn,A(g1, h1, . . . , hn), . . . , Sn,A(gn, h1, . . . , hn))(a)

and this means that (C1) is satisfied. (C2) and (C3) can be easily checked.

The superposition operation Sn,A can also be applied to partial operations
defined on A. In this case one has to assume that the right hand side of (C1)
((C2), (C3)) is defined whenever the left hand side is defined and then both
sides are equal.

2 Menger Algebras

Definition 2.1 An algebra M = (M ;Sn) of type (n+1), which satisfies (C1)
is called a Menger algebra of rank n. An algebra M = (M ;Sn, λ1, . . . , λn) of
type (n + 1, 0, . . . , 0) satisfying (C1), (C2), (C3) is called a unitary Menger
algebra of rank n. (For more background on Menger algebras see e.g [9]).

If (M ;Sn) is an algebra of type (n+ 1), then we introduce a binary operation
∗ on the cartesian power Mn by

(x1, . . . , xn) ∗ (y1, . . . , yn) := (Sn(x1, y1 . . . , yn), . . . , Sn(xn, y1, . . . , yn)).
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Then it is easy to see that an algebra (M ;Sn) of type n+1 is a Menger algebra
iff (Mn; ∗) is a semigroup (see e.g. [Sch-T 65]).
We introduce the following generalization of the concept of a unitary Menger
algebra of rank n:

Definition 2.2 An algebra (M ;Sm, (ei)i∈N+) where Sm is (m + 1)-ary and
ei, i ∈ N

+ are nullary, is called a Menger algebra with infinitely many nullary
operations if the following axioms (Cg1), (Cg2), (Cg3) and (Cg4) are satisfied:

(Cg1) S̃m(T, S̃m(F1, T1, . . . , Tm), . . . , S̃m(Fm, T1, . . . , Tm))
≈ S̃m(S̃m(T, F1, . . . , Fm), T1, . . . , Tm), m ∈ N

+.

(Cg2) S̃m(T, λ1, . . . , λm) = T,m ∈ N
+.

(Cg3) S̃m(λi, T1, . . . , Tm) = Ti for 1 ≤ i ≤ m,m ∈ N
+.

(Cg4) S̃m(λj , T1, . . . , Tm) = λj for j > m,m ∈ N
+.

(Here S̃m is an (m+ 1)-ary operation symbol corresponding to Sm , λi, i ∈ N
+

are nullary operation symbols and T, Tj , Fi are variables).

The connection between Menger algebras of rank n and semigroups defined on
the cartesian power of its universe can also be generalized.
Menger algebras of rank n, unitary Menger algebras of rank n and unitary
Menger algebras with infinitely many nullary operations form varieties which
we want to denote by VMn , VM+

n
and V∞

M , respectively. Our next aim is to
determine the free objects with respect to these varieties.

3 Sets of Terms and Free Menger Algebras

We will call a type of algebras n-ary if all the operation symbols of the type
are n-ary, for some fixed natural number n. Now we assume that τn is such a
fixed n-ary type, with operation symbols (fi)i∈I indexed by some set I.
We begin with some notation. We let X = {x1, x2, x3, . . .} be a countably
infinite set of individual variables, and for each n ≥ 1 let Xn = {x1, x2, . . . xn}.
We denote by Wτn(Xn) the set of all n-ary terms of type τn built up from the
operation symbols fi of type τn and the alphabet Xn.
On the set Wτn(Xn) of all n-ary terms of type τn an algebra of the type τ =
(n + 1, 0, . . . , 0) can be defined. Here the (n + 1)-ary superposition operation
Sn is defined inductively by
Sn(xj, t1, . . . , tn) := tj, for 1 ≤ j ≤ n; and
Sn(fi(s1, . . . , sn), t1, . . . , tn) := fi(Sn(s1, t1, . . . , tn), . . . , Sn(sn, t1, . . . , tn)).
Selecting the variable terms x1, . . . , xn for the nullary operations, we form the
algebra

n− cloneτn := (Wτn(Xn); Sn, x1, . . . , xn).
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Of particular interest are the terms of the form fi(x1, . . . , xn), for each i ∈ I,
which are usually called the fundamental terms of type τn. We shall denote by
Fτn the set of these fundamental terms of type τn. We shall make frequent use
of the fact that this set Fτn generates the algebra n − cloneτn.

Proposition 3.1 The algebra n− cloneτn is a unitary Menger algebra of rank
n.

Proof (C3) is satisfied by the definition of Sn . We prove (C1)
by induction on the complexity of the term which is substituted
for T . If we substitute for T a variable xj, then by (C3) we
have Sn(xj, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)) = Sn(tj , s1, . . . , sn) =
Sn(Sn(xj , t1, . . . , tn), s1, . . . , sn). If we substitute for T the term t0 =
fi(r1, . . . , rn) and assume inductively that (C1) is satisfied for r1, . . . , rn, then
Sn(fi(r1, . . . , rn), Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1 . . . , sn))

= fi(Sn(r1, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1 . . . , sn)), . . . ,
Sn(rn, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1 . . . , sn)))
= fi(Sn(Sn(r1, t1, . . . , tn), s1, . . . , sn), . . . , Sn(Sn(rn, t1, . . . , tn), s1, . . . , sn))
= Sn(fi(Sn(r1, t1, . . . , tn), . . . , Sn(rn, t1, . . . , tn)), s1, . . . , sn))
= Sn(Sn(fi(r1, . . . , rn), t1, . . . , tn), s1, . . . , sn)
= Sn(Sn(t0, t1, . . . , tn), s1, . . . , sn).

(C2) is a consequence of (C3) and (C1). �
We consider the free algebra FV

M+
n

({Yi | i ∈ I}) in the variety VM+
n

, generated

by a special alphabet {Yi | i ∈ I}. The fact that this alphabet is in bijection
with the set of fundamental operations (fi)i∈I of type τn, and hence with the
set Fτn of fundamental terms which generates n − cloneτn, will give us an
isomorphism between this free algebra and n− cloneτn.

Theorem 3.2 ([4]) The algebra n− cloneτn is isomorphic to FV
M

+
n

({Yi | i ∈
I}), and therefore free with respect to the variety of unitary Menger algebras of
rank n, and freely generated by the set Fτn.

A Menger algebra of terms can be obtained in the following way:
We consider the concept of a term in a restricted setting. Strongly full terms of
n-ary type τn are inductively defined by the following steps:

(i) fi(x1, . . . , xn), i ∈ I, is a strongly full term,

(ii) If t1, . . . , tn are strongly full terms, then fi(t1, . . . , tn) is strongly full.

The superposition operation Sn is defined on WSF
τn

(Xn) as follows:

(i) Sn(fi(x1, . . . , xn), t1, . . . , tn) := fi(t1, . . . , tn),

(ii) Sn(fi(s1, . . . , sn), t1, . . . , tn) := fi(Sn(s1, t1, . . . , tn), . . . , Sn(sn, t1, . . . , tn)).
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The set WSF
τn

(Xn) is closed under the application of the (n + 1)-ary super-
position operation and cloneSF τn := (WSF

τn
(Xn);Sn) is an algebra of type

τ = (n + 1) with Fn as a generating system. The algebra cloneSF τn is called
the clone of strongly full terms of type τn. Clearly, cloneSF τn satisfies the ax-
iom (C1) and therefore it is a Menger algebra of rank n. Let VMn be the variety
of Menger algebras of rank n and let FVMn

({Yi | i ∈ I}) be the free algebra
with respect to VMn , freely generated by a special alphabet {Yi | i ∈ I}. The
fact that this alphabet is in bijection with the set of fundamental operations
(fi)i∈I of type τn, and hence with the set Fτn of fundamental terms which gen-
erates cloneSF τn, will give us an isomorphism between this free algebra and
cloneSF τn.

Theorem 3.3 The algebra cloneSF τn is isomorphic to FVMn
({Yi | i ∈ I}),

and therefore free with respect to the variety VMn, and freely generated by the
set {fi(x1, . . . , xn) | i ∈ I}.

Proof We define a mapping ϕ : WSF
τn

(Xn) → FVMn
({Yi | i ∈ I}) inductively

as follows:

(i) ϕ(fi(x1 . . . xn)) := Yi for every i ∈ I.

(ii) ϕ(fi(t1, . . . , tn)) := S̃n(Yi, ϕ(t1), . . . , ϕ(tn)).

Since ϕ maps the generating system of cloneSF τn onto the generat-
ing system of FVMn

({Yi | i ∈ I}) it is surjective. We prove the
homomorphism property ϕ(Sn(t0, t1, . . . , tn)) = S̃n(ϕ(t0), . . . , ϕ(tn))
by induction on the complexity of the term t0. If t0 =
fi(x1, . . . , xn), then ϕ(Sn(fi(x1, . . . , xn), t1, . . . , tn)) = ϕ(fi(t1, . . . , tn)) =
S̃n(Yi, ϕ(t1), . . . , ϕ(tn)) = S̃n(ϕ(fi(x1, . . . , xn)), ϕ(t1), . . . , ϕ(tn)). Induc-
tively, assume that t0 = fi(s1, . . . , sn) and that ϕ(Sn(sj , t1, . . . , tn)) =
S̃n(ϕ(sj), . . . , ϕ(tn)) for all 1 ≤ j ≤ n. Then

ϕ(Sn(fi(s1, . . . , sn), t1, . . . , tn))
= ϕ(fi(Sn(s1, t1, . . . , tn), Sn(s2 , t1, . . . , tn), . . . , Sn(sn , t1, . . . , tn))
= S̃n(Yi, ϕ(Sn(s1, t1, . . . , tn)), ϕ(Sn(s2, t1, . . . , tn)), . . . , ϕ(Sn(sn, t1, . . . , tn)))
= S̃n(Yi, S̃

n(ϕ(s1), ϕ(t1), . . . , ϕ(tn)), . . . , S̃n(ϕ(sn), ϕ(t1), . . . , ϕ(tn)))
= S̃n(S̃n(Yi, ϕ(s1), . . . , ϕ(sn)), ϕ(t1), . . . , ϕ(tn)))
= S̃n(ϕ(fi(s1, . . . , sn)), ϕ(t1), . . . , ϕ(tn)))
= S̃n(ϕ(t0), ϕ(t1), . . . , ϕ(tn)).

Thus ϕ is a homomorphism. The mapping ϕ is bijective since {Yi | i ∈ I} is a
free independent set and therefore we have

Yi = Yj ⇒ i = j ⇒ fi(x1, . . . , xn) = fj(x1, . . . , xn).
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Thus ϕ is a bijection between the generating sets of cloneSF τn and
FVMn

({Yi | i ∈ I}), and hence it is bijective on Wτn(Xn). Altogether, ϕ is an
isomorphism. �

Menger algebras with infinitely many nullary operations occur if we consider
a generalized superposition operation of terms which is inductively defined as
an (m + 1)-ary operation Sm, m ∈ N

+ := N \ {0} on Wτ (X) by the following
steps:

Definition 3.4 (i) If t = xi, 1 ≤ i ≤ m, then Sm(xi, t1, . . . , tn) := ti for
t1, . . . , tn ∈Wτ (X).

(ii) If t = xi, m < i, then Sm(xi, t1, . . . , tn) := xi.

(iii) If t = fi(s1, . . . , sni), then

Sm(t, t1, . . . , tn) := fi(Sm(s1, t1, . . . , tn), . . . , Sm(sni , t1, . . . , tn)).

Then for the type τn we may consider the algebraic structure

clonegτ := (Wτn(X);Sn , (xi)i∈N+)

with the universe Wτn(X), with the (n+1)-ary operation Sn and with infinitely
many nullary operations. Now we prove:

Theorem 3.5 The algebra clonegτn satisfies the following identities:

(Cg1) S̃n(T, S̃n(F1, T1, . . . , tn), . . . , S̃n(Fn, T1, . . . , tn))
≈ S̃n(S̃n(T, F1, . . . , Fn), T1, . . . , tn).

(Cg2) S̃n(T, λ1, . . . , λn) = T .

(Cg3) S̃n(λi, T1, . . . , tn) = Ti for 1 ≤ i ≤ n.

(Cg4) S̃n(λj, T1, . . . , tn) = λj for j > n.

(Here S̃n , λi are operation symbols corresponding to the operations Sn and
xi, i ∈ N

+, respectively and T, Tj , Fi are new variables.)

Proof. (Cg1) We give a proof by induction on the complexity of the term t.

(i) If t = xj, 1 ≤ j ≤ n, then
Sn(xj, S

n(s1, t1, . . . , tn), . . .Sn(sn , t1, . . . , tn))
= Sn(sj , t1, . . . , tn)
= Sn(Sn(xj , s1, . . . , sn), t1, . . . , tn).

(ii) If t = xj, j > n, then
Sn(xj, S

n(s1, t1, . . . , tn), . . .Sn(sn , t1, . . . , tn))
= xj

= Sn(xj, t1, . . . , tn)
= Sn(Sn(xj , s1, . . . , sn), t1, . . . , tn).
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(iii) If t = fi(t′1, . . . , t
′
n) and if we assume that our proposition is satisfied for

t′1, . . . , t′n, then

Sn(fi(t′1, . . . , t′n), Sn(s1, t1, . . . , tn), . . . , Sn(sn, t1, . . . , tn))
= fi(Sn(t′1, S

n(s1, t1 . . . , tn), . . . , Sn(sn, t1, . . . , tn)), . . . ,
Sn(t′n, Sn(s1 , t1, . . . , tn), . . . , Sn(sn , t1, . . . , tn)))

= fi(Sn(Sn(t′1, s1, . . . , sn), t1, . . . , tn), . . . , Sn(Sn(t′n, s1, . . . , sn), t1, . . . , tn))
= Sn(Sn(fi(t′1, . . . , t′n), s1, . . . , sn), t1, . . . , tn)
= Sn(Sn(t, s1, . . . , sn), t1, . . . , tn).

(Cg2) If t contains variables from the set {x1, . . . , xn}, then we substitute in
t for these variables the same variables and obtain t. If t contains a variable
which does not belong to the set {x1, . . . , xn}, then this variable will not be
replaced by another term. Therefore the result is t.
(Cg3) and (Cg4) correspond to (i) and (ii), respectively, from the definition of
Sn . �

The class of all unitary Menger algebras with infinitely many nullary operations
forms a variety V∞

M and the algebra clonegτ belongs to this variety.
Let FV ∞

M
({Yi | i ∈ I}) be the free algebra with respect to the variety VM , freely

generated by {Yi | i ∈ I}. Then we have:

Theorem 3.6 ([6]) The algebra clonegτ is isomorphic to the free algebra
FV ∞

M
({Yi | i ∈ I}) and therefore free with respect to the variety of unitary

Menger algebras with infinitely many nullary operations.

4 Hypersubstitutions, Clone Substitutions and
Endomorphisms of free Menger Algebras

Hypersubstitutions are mappings which take n-ary operation symbols to n-ary
terms.

Definition 4.1 Let τn be an n-ary type. A hypersubstitution of type τn is a
mapping from the set {fi | i ∈ I} of operation symbols of type τn to the
set Wτn(Xn) of all n-ary terms of type τn. Any hypersubstitution induces a
mapping σ̂ defined on Wτn(Xn) by the following steps:

(i) σ̂[xj] := xj, 1 ≤ j ≤ n,

(ii) σ̂[fi(t1, . . . , tni)] := Sn(σ(fi), σ̂[t1], . . . , σ̂[tn]).

Hypersubstitutions can be multiplied by σ1 ◦h σ2 := σ̂1 ◦ σ2 and together
with the identity hypersubstitution σid which maps for every i ∈ I the oper-
ation symbol fi to the term fi(x1, . . . , xni) we have a monoid (Hyp(τn); ◦h, σid).

If we map the operation symbols of our n-ary type to strongly full n-ary terms,
we get the subset of all strongly full hypersubstitutions.
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Definition 4.2 A strongly full hypersubstitution of n-ary type τn is a mapping
from the set {fi | i ∈ I} of n-ary operation symbols of the type τn to the set
WSF

τn
(Xn) of all strongly full n-ary terms of type τn.

Any strongly full hypersubstitution σ induces a mapping σ̂ defined on the set
WSF

τn
(Xn) of all n-ary terms of the type τn, as follows:

Definition 4.3 Let σ be a strongly full hypersubstitution of type τn. Then σ
induces a mapping σ̂ : WSF

τn
(Xn) −→WSF

τn
(Xn), by setting

(i) σ̂[fi(x1, . . . , xn)] := σ(fi),

(ii) σ̂[fi(t1, . . . , tn)] := Sn
n(σ(fi), σ̂[t1], . . . , σ̂[tn]).

Let HypSF (τn) be the set of all hypersubstitutions of type τn. Then the product
σ1 ◦h σ2 of two strongly full hypersubstitutions is again strongly full and σid is
also strongly full. Therefore (HypSF (τn); ◦h, σid) is a submonoid of the monoid
of all hypersubstitutions of type τn. Let M be any submonoid of Hyp(τn). If A
= (A; (fAi )i∈I) is an n-ary algebra, then an identity s ≈ t in A is said to be an
M -hyperidentity in A if σ̂[s] ≈ σ̂[t] is an identity in A for every hypersubstitu-
tion σ ∈M . In the special case that M is all of HypSF (τn), an M -hyperidentity
is usually called a strongly full hyperidentity. An identity is an M -hyperidentity
of a variety V if it is an M -hyperidentity of every algebra in V . A variety in
which every identity of the variety holds as an M -hyperidentity is called an
M -solid variety, or a SF -solid variety in the special case M = HypSF (τn). If
the variety is of n-ary type and if the identity s ≈ t is built up of terms of
arity n then s ≈ t is called an n-hyperidentity if σ̂[s] ≈ σ̂[t] is an identity for
every hypersubstitution σ and V is called n-solid if every n-ary identity is an
n-hyperidentity. For more detailed information on hyperidentities we refer the
reader to [3].
Hypersubstitutions and strongly full hypersubstitutions preserve arities. A gen-
eralization was defined in [8].

Definition 4.4 A mapping σ : {fi | i ∈ I} → Wτ (X) is called a generalized
hypersubstitution of type τ . Generalized hypersubstitutions can be inductively
extended to mappings σ̂ defined on Wτ (X) by

(i) σ̂[xi] := xi ∈ X.

(ii) σ̂[fi(t1, . . . , tni)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni])

Here Sni means the generalized superposition introduced in section 3. Let
HypG(τ ) be the set of all generalized hypersubstitutions of type τ .

In [6] was proved:

Proposition 4.5 The extension of a generalized hypersubstitution is an endo-
morphism of the algebra clonegτn.
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The converse is also satisfied, i.e.

Proposition 4.6 ([6]) Every endomorphism of clonegτn is the extension of a
generalized hypersubstitution.

It is easy to see that the set HypG(τn) together with the binary operation ◦G

defined by σ1 ◦G σ2 := σ̂1 ◦σ2 and σid forms also a monoid (HypG(τn); ◦G, σid).
Let End(clonegτn) be the endomorphism monoid of clonegτn. Then we have:

Proposition 4.7 ([6]) The monoid (HypG(τn); ◦G, σid) of all generalized hy-
persubstitutions is isomorphic with the endomorphism monoid End(clonegτn).

The algebra clonegτn = (Wτn(X);Sn , (xi)i∈N+) is generated by the set Fτn =
{fi(x1, . . . , xni) | i ∈ I}. Any mapping from Fτn to Wτn(X) is called a gener-
alized clone substitution. Since clonegτn is free, every generalized clone substi-
tution can be uniquely extended to an endomorphism of the algebra clonegτn.
Let SubstG be the set of all generalized clone substitutions. We introduce a
binary composition operation ⊗ on this set, by setting η1 ⊗ η2 := η1 ◦ η2 where
◦ denotes the usual composition of functions. Denoting by idFτn

the identity
mapping on Fτn we see that (SubstG;⊗, idFτn

) is a monoid. Further we have:

Proposition 4.8 ([6]) The monoids (SubstG;⊗, idFτn
) and (HypG(τn);

◦G, σid) are isomorphic. �

For the monoids (Hyp(τn); ◦h, σid) and (HypSF (τn); ◦h, σid) we obtain simi-
lar results if we consider the monoids (Subst;⊗; id) of all substitutions Fτn →
Wτn(Xn), (SubstSF ;⊗; id) of all substitutions Fτn →WSF

τn
(Xn) and the endo-

morphism monoids End(n− cloneτn) and End(cloneSF τn), respectively.

Theorem 4.9 Let τn be an n-ary type, then

(i) (Hyp(τn); ◦h, σid) ∼= (Subst;⊗; id) ∼= End(n− cloneτn)

(ii) (HypSF (τn); ◦h, σid) ∼= (SubstSF ;⊗; id) ∼= End(cloneSF τn).

Proof (i) The isomorphism (Hyp(τn); ◦h, σid) ∼= (Subst;⊗; id) was proved in [4]
and the isomorphism (Subst;⊗; id) ∼= End(n−cloneτn) is clear since because of
the freeness of End(n−cloneτn) every mapping from the free generating system
Fτn to Wτn(Xn) can be uniquely extended to an endomorphism of n− cloneτn.
The mapping which maps each substitution to its extension is a bijection.
The inverse mapping takes any endomorphism of n − cloneτn to its restric-
tion on Fτn which is a clone substitution. For two substitutions η1, η2 we have
η1 ⊗ η2(fi(x1, . . . , xni)) = (η1 ⊗ η2)(fi(x1, . . . , xni)) = η1(η2(fi(x1, . . . , xn))) =
η1(η2(fi(x1, . . . , xn))) = (η1 ◦ η2)(fi(x1, . . . , xn)) and because of the freeness of
n− cloneτn we getη1 ⊗ η2 = η1 ◦ η2. This shows that the mapping which takes
any clone substitution to its extension is an isomorphism.
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(ii) We define a mapping ψ : SubstSF −→ HypSF (τn) by ψ(η) := η ◦ σid. This
gives a well-defined mapping between SubstSF and HypSF (τn). The mapping
is surjective, since any strongly full hypersubstitution σ can be obtained as
ψ(η) for η = σ ◦ σ−1

id . The mapping ψ is also injective, since

ψ(η1) = ψ(η2) ⇒ η1 ◦ σid = η2 ◦ σid ⇒ η1 = η2,

since σid is a bijection. To show that ψ is a homomorphism, we first verify the
following additional property:

(η1 ◦ σid)ˆ[t] = η1[t], (∗)

where η is the unique extension of η. For the fundamental terms
t = fi(x1, . . . , xn), we have
(η1 ◦ σid)ˆ[fi(x1, . . . , xn)] = (η1 ◦ σid)(fi) = η1(fi(x1, . . . , xn)) =
η1(fi(x1, . . . , xn)),
by (C3) and the definition of the extension of a hypersubstitution. The claimed
property then follows by induction. Now for the homomorphism property for
ψ we have
ψ(η1) ◦h ψ(η2) = (η1 ◦ σid) ◦h (η2 ◦ σid)

= (η1 ◦ σid)ˆ ◦ (η2 ◦ σid)
= η1 ◦ (η2 ◦ σid), by property (*) above,
= (η1 ◦ η2) ◦ σid, by associativity
= (η1 ⊗ η2) ◦ σid, by definition of ⊗,
= ψ(η1 ⊗ η2).

The isomorphism (SubstSF ;⊗; id) ∼= End(cloneSF τn) can be proved
in a similar way as we proved the corresponding isomorphism
n − cloneτn ∼= (Subst;⊗, id) in (i). �

5 Hyperidentities and Clone Identities

Generalized hypersubstitutions can be used to define strong hyperidentities in
algebras or in varieties ([8]).

Definition 5.1 Let V be a variety of type τ and let IdV be the set of all
identities satisfied in V . An identity s ≈ t ∈ IdV is called a strong hyperidentity
in V (Lee-D;00]) if σ̂[s] ≈ σ̂[t] ∈ IdV for all generalized hypersubstitutions σ ∈
HypG(τ ). If every identity of a variety V is satisfied as a strong hyperidentity,
the variety is called strongly solid.

An example of a strongly solid variety of semigroups is the variety

Rec := Mod{x1(x2x3) ≈ (x1x2)x3 ≈ x1x3}([8]).
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The set IdV of all identities satisfied in a variety V forms a fully invariant
congruence relation of the absolutely free algebra of the given type. But we
have also:

Theorem 5.2 ([6]) Let V be a variety of type τn and let IdV be the set of all
identities satisfied in V . Then IdV is a congruence relation on clonegτn.

Further we have:

Theorem 5.3 ([6]) Let V be a variety of type τn. Then V is strongly solid if
and only if IdV is a fully invariant congruence relation on clonegτn.

Since IdV is a congruence relation on clonegτn, we may form the quotient al-
gebra clonegV := clonegτn/IdV . The operations S̃m of this algebra are defined
as usual by

S̃m([t]IdV , [t1]IdV , . . . , [tn]IdV ) := [Sm(t, t1, . . . , tn)]IdV .

The nullary operations are [xi]IdV , i ∈ N
+. Since for a strongly solid variety V

the relation IdV is fully invariant on clonegτn, it corresponds to a fully invariant
congruence on the absolutely free algebra of the type of unitary Menger algebras
with infinitely many nullary operations (see [1]). Fully invariant congruences
on absolutely free algebras of a given type correspond to equational theories,
i.e. to sets of identities of certain varieties. Therefore we have:

Theorem 5.4 ([6]) Let V be a variety of type τn and let s ≈ t ∈ IdV . Then
s ≈ t is a strong hyperidentity in V iff s ≈ t is an identity in clonegV .

Finally from this result one obtains a nice characterization of strongly solid
varieties.

Corollary 5.5 Let V be a variety of type τn. Then V is strongly
solid iff clonegV is free with respect to itself, freely generated by the
set {[fi(x1, . . . , xni)]IdV | i ∈ I}, meaning that every mapping from
{[fi(x1, . . . , xni)]IdV | i ∈ I} to the universe of clonegV can be extended to
an endomorphism of clonegV .

Let IdnV be the set of all n-ary identities of a variety V of n-ary type τn, i.e.
the set IdV ∩Wτn(Xn)2. The variety V is called n-solid if every identity from
IdnV is satisfied as an n-hyperidentity. Then we have ([5]):

Theorem 5.6 Let V be a variety of type τn. Then

(i) The set IdnV of all n-ary identities satisfied in V is a congruence relation
on n− cloneτn.

(ii) V is n-solid if and only if IdnV is a fully invariant congruence relation
on n− cloneτn.
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(iii) An equation s ≈ t is an n-hyperidentity in V iff s ≈ t is an identity in
n− cloneV where n− cloneV is the quotient algebra n− cloneτn/IdnV .

(iv) The variety V is n-solid iff n− cloneV is free with respect to itself, freely
generated by the set {[fi(x1, . . . , xni)]IdV | i ∈ I}, meaning that every
mapping from {[fi(x1, . . . , xni)]IdV | i ∈ I} to the universe of n− cloneV
can be extended to an endomorphism of n− cloneV .

(For a generalization of this theorem see [2]). For a variety V of n-ary type we
form the set SFE

n (V ) of all n-ary identities consisting of strongly full terms.
An equation s ≈ t ∈ SFE

n (V ) is said to be a SFn-hyperidentity if σ̂[s] ≈ σ̂[t]
for every σ ∈ HypSF (τn) and V is called SFn-solid if every identity from
SFE

n (V ) is a SFn-hyperdentity. SFn-hyperidentities and SFn-solid varieties
can be characterized as follows:

Theorem 5.7 Let V be a variety of type τn. Then

(i) The set SFE
n (V ) is a congruence relation on cloneSF τn.

(ii) V is SFn-solid if and only if SFE
n (V ) is a fully invariant congruence re-

lation on cloneSF τn.

(iii) An equation s ≈ t is a SFn-hyperidentity in V iff s ≈ t is an identity in
cloneSFV where SF −cloneV is the quotient algebra cloneSF τn/SFn(V ).

(iv) The variety V is SFn-solid iff cloneSFV is free with respect to itself,
freely generated by the set {[fi(x1, . . . , xni)]SFn(V ) | i ∈ I}, meaning that
every mapping from {[fi(x1, . . . , xni)]SFn(V ) | i ∈ I} to the universe of
cloneSFV can be extended to an endomorphism of cloneSFV .

Proof (i) Let t1 ≈ s1, . . . , tn ≈ sn ∈ IdSFE
n (V ). Then we show by induction

on the complexity of the strongly full n-ary term t that Sn(t, t1, . . . , tn) ≈
Sn(t, s1, . . . , sn) ∈ SFE

n (V ). Assume that t = fi(x1, . . . , xn). Then
Sn(fi(x1, . . . , xn), t1, . . . , tn)

= fi(t1, . . . , tn)
≈ fi(s1, . . . , sn)
= Sn(fi(x1, . . . , xn), s1, . . . , sn) ∈ SFE

N (V )
since fi(t1, . . . , tn) ≈ fi(s1 , . . . , sn) ∈ IdV and since
fi(t1, . . . , tn), fi(s1, . . . , sn) are strongly full n-ary terms of type τn. As-
sume now that t = fi(l1, . . . , ln) and that for lj , 1 ≤ j ≤ n, we have already
Sn(lj , t1, . . . , tn) ≈ Sn(lj , s1, . . . , sn) ∈ SFE

n (V ), 1 ≤ j ≤ n. Then
Sn(t, t1, . . . , tn)

= fi(Sn(l1 , t1, . . . , tn), . . . , Sn(lni , t1, . . . , tn))
≈ fi(Sn(l1 , s1, . . . , sn), . . . , Sn(ln, s1, . . . , sn)) ∈ SFE

n (V ),
since IdV is compatible with the operations corresponding to fi, i ∈ I, in the
absolutely free algebra of type τn and since Sn(lj , t1, . . . , tn), Sn(lj , s1, . . . , sn)
are n-ary SF -terms.
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The next step consists in showing

t ≈ s⇒ Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ SFE
n (V ).

Since IdV is a fully invariant congruence on Fτ (X) from t ≈ s ∈ IdV
we obtain Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ IdV by substitution. The
terms Sn(t, s1, . . . , sn), Sn(s, s1, . . . , sn) are strongly full and n-ary and thus
Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ SFE

n (V ).
Assume now that t ≈ s, t1 ≈ s1, . . . , tn ≈ sn ∈ IdV. Then

Sn(t, t1,. . ., tn)≈ Sn(t, s1,. . ., sn)≈Sn(s, s1,. . ., sn)≈ Sn(s, t1,. . ., tn)∈ SFE
n (V ).

(ii) Let V be SFn-solid, let s ≈ t ∈ SFE
n (V ) and let ϕ : cloneSF τn → cloneSF τn

be an endomorphism of cloneSF τn (ϕ ∈ End(cloneSF τn)). Then we have

ϕ(s) = (ϕ/Fτn ◦ σid) [̂s] ≈ (ϕ/Fτn ◦ σid)ˆ[t] = ϕ(t) ∈ SFE
n (V )

since ϕ/Fτn ◦σid is a SF - hypersubstitution with ϕ = (ϕ/Fτn ◦σid)ˆ. Therefore
IdV is fully invariant.
If conversely SFE

n (V ) is fully invariant, s ≈ t ∈ SFE
n (V ) and let

σ ∈ HypSF (τn), then σ̂[s] ≈ σ̂[t] ∈ SFE
n (V ) since the extension of a

SF -hypersubstitution is a clone endomorpism. This shows that every identity
s ≈ t ∈ SFE

n (V ) is satisfied as a SF−hyperidentity and then V is SFn-solid.

(iii) We first assume that s ≈ t is a SFn-hyperidentity of V . This means that
for every σ ∈ HypSF (τn) we have nat(SFE

n (V ))(σ̂[s]) = nat(SFE
n (V ))(σ̂[t]),

where nat(SFE
n (V )) : WSF

τn
→ WSF

τn
/SFE

n (V ) is the natural mapping. To
show that s ≈ t holds in cloneSF τn, we will show that v(s) = v(t) for every
valuation Fτn → cloneSFV . Since nat(SFE

n (V )) is surjective, there exists a
clone substitution ηv such that v = nat(SFE

n (V )) ◦ ηv. Then ηv ◦ σid is a
hypersubstitution, which we shall denote by σv and we have:

v(s)=(nat(SFE
n (V ))◦ηv)(s)=(nat(SFE

n (V ))◦(ηv◦σid)̂ )(s)=nat(SFE
n (V ))(σ̂v[s]).

Similarly, we have v(t) = nat(SFE
n (V ))(σ̂v[t]). Since by our assumption we

have nat(SFE
n (V ))(σ̂v[s]) = nat(SFE

n (V ))(σ̂v[t]), we get v(s) = v(t), as re-
quired.
Conversely, let s ≈ t ∈ Id(cloneSF τn), so that s, t ∈ WSF

τn
(Xn) and for every

valuation mapping v we have v(s) = v(t). Let σ be any hypersubstitution.
Then there is a clone substitution ησ such that ησ ◦ σid = σ. We take v to be
the valuation nat(SFE

n (V )) ◦ ησ. Then [σ̂[s]]SFE
n (V ) = nat(SFE

n (V ))(σ̂[s]) =
(nat(SFE

n (V )) ◦ (ησ ◦ σid)ˆ)(s)
= (nat(SFE

n (V ))◦ησ)(s) = v[s]. Similarly, we have [σ̂[t]]SFE
n (V ) = v[t], and our

assumption that v(s) = v(t) gives the desired equality.
(iv) Using the equivalence from (iii), we will show that cloneSFV is free iff
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every identity s ≈ t ∈ SFE
n (V ) is also an identity in cloneSFV . Suppose

first that cloneSFV is free with respect to itself, freely generated by the set
{[fi(x1, . . . , xn)]SFE

n (V ) | i ∈ I}. Let s ≈ t be any identity in SFE
n (V ). To

show that s ≈ t is an identity in cloneSFV , we will show that v(s) = v(t)
for any valuation mapping v : Fτn −→ cloneSFV . Given v, we define a
mapping αv : {[fi(x1, . . . , xn)]SFE

n (V ) | i ∈ I} −→ Wτn(Xn)/SFE
n (V ) by

αv([fi(x1, . . . , xn)]SFE
n (V )) = v(fi(x1, . . . , xn)). Since

[fi(x1, . . . , xn)]SFE
n (V ) = [fj(x1, . . . , xn)]SFE

n (V ) =⇒ i = j

=⇒ fi(x1, . . . , xn) = fj(x1, . . . , xn)
=⇒ v(fi(x1, . . . , xn)) = v(fj (x1, . . . , xn))
=⇒ αv([fi(x1, . . . , xn)]SFE

n
) = αv([fj(x1, . . . , xn)]SFE

n (V )),
the mapping αv is well-defined. Since the set {[fi(x1, . . . , xn)]SFE

n (V ) | i ∈ I}
generates the free algebra cloneSFV , the mapping v can be uniquely extended
to v on the set WSF

τn
(Xn)/SFE

n (V ). Then we have

[s]SFE
n (V ) = [t]SFE

n (V ) =⇒ αv([s]SFE
n (V )) = αv([t]SFE

n (V )) =⇒ v(s) = v(t),

showing that s ≈ t ∈ SFE
n (V )).

For the converse direction, we show that when V is SFn-solid, any map-
ping α : {[fi(x1, . . . , xn)]SFE

n (V ) | i ∈ I} −→ WSF
τn

(Xn)/SFE
n (V ) can be

extended to an endomorphism of cloneSFV . We consider the mapping α =
α ◦ nat(SFE

n (V )) : Fτn −→ WSF
τn

(Xn)/SFE
n (V ), which is a valuation of

terms. Then for any terms s, t ∈ WSF
τn

(Xn), it follows from [s]SFE
n (V ) =

[t]SFE
n (V ), i.e. nat(SFE

n (V ))(s) = nat(SFE
n (V ))(t) that α(nat(SFE

n (V ))(s)) =
α(nat(SFE

n (V ))(t)) and (α ◦ (nat(SFE
n (V )))(s) = (α ◦ (nat(SFE

n (V ))(t)) since
α ◦ nat(SFE

n (V ) is a valuation and every SFn-identity is a cloneSFV -identity.
This shows that α is well-defined. It is also an endomorphism since
α(Sn,cloneSF V ([s]SFE

n (V ), [t1]SFE
n (V ), . . . , [tn]SFE

n (V )))
= (α ◦ nat(SFE

n (V )))(Sn(s, t1, . . . , tn))
= Sn,cloneSF V

n ((α ◦ nat(SFE
n (V )))(s), (α ◦ nat(SFE

n (V )))(t1), . . . ,
(α ◦ nat(SFE

n (V )))(tn))
= Sn,cloneSF V

n (α([s]SFE
n (V )), α([t1]SFE

n (V )), . . . , α([tn]]SFE
n (V ))),

using the fact that α ◦ nat(SFE
n (V )) is the homomorphism extending the

valuation α ◦ nat(SFE
n (V )) defined on the generating set of the free alge-

bra cloneSFV . Finally, α extends α since α([fi(x1, . . . , xn)]SFE
n (V )) = (α ◦

nat(SFE
n (V )))(fi(x1, . . . , xn)) = α([fi(x1, . . . , xn)]SFE

n (V )) for each i ∈ I. �
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