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Abstract

In this paper we give some general properties of semilocal multiplica-
tion modules. Then some characterizations of these modules are given.
Also we study the endomorphism rings of semilocal multiplication mod-
ules and give necessary and sufficient conditions for the endomorphism
rings of such modules to be semilocal.

1. Preliminaries

Let R be a commutative ring with identity, and let M be a unitary right R-
module. The radical of M , Rad(M) =

⋂{K ≤ M/K is maximal in M},
and M is called semisimple if it is the sum of its simple submodules. The
module M is called a semilocal module if M/Rad(M) is semisimple and M is
a multiplication module if each submodule N of M has the form MI for some
ideal I of R. The ring R is semilocal if RR is a semilocal module. A submodule
K of M is superfluous in M , abbreviated, K � M , if for every submodule L
of M , K + L = M implies L = M . For M �= 0, we call M a hollow module
if every proper submodule is superfluous in M , and M is said to have finite
hollow dimension if there exists an exact sequence

M
g−→

n⊕

i=1

Hi −→ 0

where all the Hi are hollow and the kernel of g is superfluous in M . Then
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n is called the hollow dimension of M . A submodule N of M has a weak
supplement L in M if N + L = M and N ∩ L � M , and M is called weakly
supplemented if every submodule has a weak supplement in M .

Our starting point is the following result taking from Theorem 2.7 in [8].

1.1 Lemma Consider the following properties :
(1) M has finite hollow dimension ;
(2) M is weakly supplemented ;
(3) M is semilocal .

Then (1) ⇒ (2) ⇒ (3) holds.
If Rad(M) � M then (3) ⇒ (2) holds.
If M is finitely generated then (3) ⇒ (1) holds.

1.2 Proposition For a multiplication module M , M is semilocal if and only
if M is weakly supplemented.

Proof (⇒) Since we assume M is multiplication, we have Rad(M) � M .
Thus M is weakly supplemented by Lemma 1.1.

(⇐) Every weakly supplemented module is semilocal. �

1.3 Proposition Let M be a multiplication semilocal module. Then every
supplement in M and every direct summand of M are semilocal.

Proof Since M is multiplication semilocal, M is weakly supplemented. So
every supplement in M and every direct summand of M is weakly supplemented
by Proposition 2.2 in [8]. Thus the assertion follows from Lemma 1.1. �

C. Lomp [8] proved that every finite direct sum of weakly supplemented
modules is weakly supplemented. Next proposition shows that with multipli-
cation the arbitrary direct sum of weakly supplemented modules is still weakly
supplemented.

1.4 Proposition Let (Mλ)λ∈Λ be a non-empty collection of modules. Assume
that M =

⊕

λ∈Λ

Mλ is multiplication. Then M is weakly supplemented if and

only if Mλ is weakly supplemented for each λ ∈ Λ.

Proof (⇒) Suppose M is weakly supplemented. Then M =
⊕

λ∈Λ

Mλ is semilo-

cal, and thus Mλ is semilocal for all λ ∈ Λ. Since Mλ is multiplication, Mλ is
weakly supplemented for all λ ∈ Λ.

(⇐) Suppose that Mλ is weakly supplemented for all λ ∈ Λ. So Mλ is
semilocal. From the fact that the direct sum of semilocal modules is still semilo-
cal , hence M =

⊕

λ∈Λ

Mλ is semilocal. Since we assume M is multiplication, M

is weakly pupplemented by Proposition 1.2. �
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1.5 Proposition Let M be a multiplication R-module then M is cyclic if and
only if M/Rad(M) is cyclic.

Proof (⇒)Obvious.
(⇐) Assume M/Rad(M) is cyclic, say M/Rad(M) = (m + Rad(M))R

for some m ∈ M . Let a + Rad(M) ∈ M/Rad(M) for any a ∈ M . Then
a + Rad(M) = mr + Rad(M) for some r ∈ R. So a − mr = b for some
b ∈ Rad(M). Thus a = b + mr ∈ Rad(M) + mR, hence M = Rad(M) + mR.
But Rad(M) � M , so we have M = mR. �

1.6 Proposition Every finitely generated multiplication semilocal module is
cyclic.

Proof Let M be a finitely generated multiplication semilocal module. Then

M/Rad(M) is finitely generated, and semisimple. So M/Rad(M) =
n∑

i=1
T̄i ,

where T̄i is a simple submodule of M/Rad(M). Thus we can find m ≤ n

such that M/Rad(M) =
m⊕

j=1

T̄ij . Since each T̄ij is cyclic and M/Rad(M) is

multiplication, M/Rad(M) is cyclic. Therefore M is cyclic as required. �

2. Multiplication Semilocal Modules
and Semilocal Rings.

In this section some properties of multiplication modules over semilocal rings
are studied. Also some characterizations of such rings in terms of endomor-
phism rings of multiplication modules are given.

2.1 Definition A ring R is said to have stable range 1 if whenever a, b ∈ R
and Ra+Rb = R , there exists t ∈ R with a+ tb ∈ U(R) the group of invertible
elements of the ring R.

Some results of a semilocal ring from Base [3] and Evans [5] are used.
(1) A semilocal ring has stable range 1.
(2) Let M be an R-module, suppose that End(M) has stable range 1. If P

and Q are arbitrary R-modules and M ⊕ P ∼= M ⊕ Q , then P ∼= Q.

2.2 Proposition Let M be a multiplication module over a semilocal ring R
and S := End(M). Then

(1) M is semilocal;
(2) M has finite hollow dimension ;
(3) M is weakly supplemented ;
(4) M has finitely many maximal submodules ;
(5) S is semilocal ;
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(6) if P and Q are arbitrary R-modules such that M ⊕ P ∼= M ⊕ Q, then
P ∼= Q.

Proof Let M be multiplication and R a semilocal ring. From the fact that
every multiplication module over a semilocal ring is cyclic, so M is cyclic. Thus
S ∼= R/annR(M).

(1) M is semilocal by Theorem 3.5 in [8].
(2) and (3). By Lemma 1.1, M has finite hollow dimension and weakly

supplemented.
(4) Let (Kλ)λ∈Λ be the collection of all maximal submodules of M . Then

there exists Iλ a maximal ideal of R such that Kλ = MIλ for each λ ∈ Λ. So
Λ must be finite (see [6] page 2).

(5) From the fact that S ∼= R/annR(M) and R is semilocal, we have S is
semilocal .

(6) Let P and Q be arbitrary R-modules such that M ⊕ P ∼= Q⊕ P . Since
S is semilocal by (5), S has stable range 1, and hence Q ∼= P . �

2.3 Proposition The following conditions are equivalent :
(1) RR is semilocal ;
(2) every multiplication R-module has a semilocal endomorphism ring ;
(3) every cyclic R-module has a semilocal endomorphism ring.

Proof (1) ⇒ (2) by Proposition 2.2(5).
(2) ⇒ (3) is obvious.
(3) ⇒ (1) is clear. �

3. The Endomorphism Rings.

Let us consider Z�. It is a semilocal Z-module, but Z is not semilocal. However,
we will see that if a module is faithful finitely generated and multiplication,
then there are some relations among the semilocal property of the module MR,
the rings R, the ring S of R-endomorphisms of M , and the module MS (see
Corollary 3.2).

Herbera and Shamsuddin [7] gave some conditions in testing whether the
endomorphism ring of a module is semilocal : Let M be a module of finite
hollow dimension and every surjective endomorphism of M is an isomorphism,
then End(M) is semilocal. We now apply their result.

3.1 Theorem Let M be a finitely generated multiplication R-module and
S = End(M). Then the following statements are equivalent :

(1) R/annR(M) is a semilocal ring;
(2) M is semilocal as an R-module;
(3) S is a semilocal ring;
(4) M is semilocal as an S-module.
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Proof (1) ⇔ (3) Since M is a finitely generated multiplication R-module,
S ∼= R/annR(M). Thus the assertion follows.

(2) ⇒ (3) From M is finitely generated multiplication and semilocal, we get
M has finite hollow dimension by Lemma 1.1. Because M is multiplication, so
every surjective endomorphism of M is an isomorphism. Thus by Herbera and
Shamsuddin [7], S is semilocal.

(3) ⇒ (4) Since S is semilocal, Theorem 3.5 in [8] shows that MS is semilo-
cal.

(4) ⇒ (2) The lattices of submodules of MR and MS are coincide since MR

is finitely generated multiplication. Thus MS is semilocal if and only if MR is
semilocal . �

3.2 Corollary Let M be a faithful finitely generated multiplication R-module
and S = End(M). Then the following statements are equivalent:

(1) R is a semilocal ring;
(2) M is semilocal as an R-module;
(3) S is a semilocal ring;
(4) M is semilocal as an S-module.

Proof It is an immediate consequence of Theorem 3.1. �

3.3 Corollary Let M be a finitely generated multiplication R-module.
(1) M has finite hollow dimension if and only if S is semilocal;
(2) If S is semilocal, then End(M/N) is semilocal for any submodule N of

M .

Proof (1) A module M has finite hollow dimension if and only if it is semilocal
by Lemma 1.1. Hence the assertion holds by Theorem 3.1.

(2) Assume S is semilocal. Then M has finite hollow dimension by (1). So
M/N has finite hollow dimension. Since M/N is finitely generated multiplica-
tion, again by (1)we have that End(M/N) is semilocal. �

The following theorem ensures that Theorem 3.1 needs finitely generated.

3.4 Theorem Let M be a multiplication R-module. Then M is finitely
generated and semilocal if and only if S is semilocal.

Proof (⇒) Suppose that M is finitely generated and semilocal. Then M has
finite hollow dimension by Lemma 1.1. Thus S is semilocal by Corollary 3.3.

(⇐) Assume that S is a semilocal ring. Then MS is a cyclic semilocal
module. Since MS is finitely generated, we must have MR is finitely generated.
And MR is semilocal by Theorem 3.1. �

For an R-module M , we set

∇ := {s ∈ S / s(M) � M}.
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3.5 Proposition Let M be a multiplication R-module. Then
(1) ∇ ⊆ J(S);
(2) Hom(M, Rad(M)) ⊆ J(S).

Proof (1) Let f ∈ ∇. Since f(M) + (1M − f)M = M , where 1M is the
identity endomorphism on M , we must have (1M − f)M = M , that is 1M − f
is surjective. By Corollary 2.2 in [10], 1M − f is an isomorphism. Therefore
f ∈ J(S).

(2) If f ∈ Hom(M, Rad(M)), then f(M) ⊆ Rad(M). Since M is a mul-
tiplication module, every proper submodule of M is contained in a maximal
submodule of M . So Rad(M) is the unique largest superfluous submodule of
M . Thus f(M) is a superfluous submodule of M . By (1), f ∈ ∇ ⊆ J(S). �

Let M be a finitely generated multiplication module. Then for each f ∈ S
there is an r ∈ R such that f(m) = mr for all m ∈ M . Thus we write fr

instead of f . The following lemma is a known result (see[13]). For the sake of
completeness we will present the proof here.

3.6 Lemma. Let M be a finitely generated multiplication semilocal R-module
. Then fr ∈ J(S) if and only if for each y ∈ R there exists zy ∈ R such that
(1 − yr)zy − 1 ∈ annR(M).

Proof Since M is cyclic, we let M = xR where x ∈ M. So for each f ∈ S there
exists a ∈ R such that f(m) = ma for all m ∈ M . Let fr : M → M be defined
by fr(m) = mr for all m ∈ M . Then S ∼= R/annR(x) via fr �→ r + annR(x).
So we have

fr ∈ J(S) ⇔ r + annR(x) ∈ J(R/annR(x));
⇔ (1 − yr) + annR(x) has an inverse for all y ∈ R;
⇔ for each y ∈ R there exists zy ∈ R such that

(1 − yr) + annR(x))(zy + annR(x)) = 1 + annR(x);
⇔ for each y ∈ R there exists zy ∈ R, (1 − yr)zy − 1 ∈ annR(x).

�

3.7 Proposition Let M be a finitely generated multiplication semilocal R-
module. Then

(1) J(S) = ∇;
(2) J(S) = Hom(M, Rad(M)).

Proof (1) By Proposition 3.6 (1) we have ∇ ⊆ J(S) . For the opposite
direction we use the result from Lemma 3.7. Since M is cyclic, M = xR for
some x ∈ M , so we obtain that for each fr ∈ J(S), and each y ∈ R there
exists zy ∈ R such that (1 − yr)zy − 1 ∈ annR(x).
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Let fa ∈ J(S). We will prove that fa(M) is a superfluous submodule of
M . Let N be any submodule of M such that N + fa(M) = M . Hence x = n +
fa(m) = n+fa(xt) = n+xta where n ∈ N , m ∈ M , t ∈ R. Thus x(1−ta) = n.
Since fa ∈ J(S), there exists zt ∈ R such that (1− ta)zt − 1 ∈ annR(x). Then
x(1−ta)zt −x = x((1−ta)zt−1) = 0 which implies x = x(1−ta)zt = nzt ∈ N ,
so x ∈ N . Hence M = N .

(2) By Proposition 3.6 (2) Hom(M, Rad(M)) ⊆ J(S). Now if f ∈ J(S),
then by (1) f(M) is a superfluous submodule of M and thus f(M) ⊆ Rad(M).
�

From Theorem 3.4 we get that for a mutiplication module M , M is finitely
generated semilocal if and only if S is semilocal. In this case S is weakly
supplemented, and hence every ideal in S has a weak supplement in S. But
Theorem 3.10 shows that for more general situation, if M is a multiplication
self-projective module, then we have ”Im f and Ker f are direct summands of
M/Rad(M) for every f ∈ End(M/Rad(M)) if and only if every principal ideal
in S has a weak supplement in S”.

Recall that for modules U and M , we say that U is M-projective in case for
each epimorphism g : M → N and each homomorphism γ : U → N there is an
R-homomorphism γ̄ : U → M such that gγ̄ = γ. And U is self-projective if U
is U -projective.

The next proposition is motivated by R. Ware [14].

3.8 Proposition Let M be a multiplication self-projective module. Then
(1) J(S) = ∇;
(2) J(S) = Hom(M, Rad(M));
(3) there is a ring epimorphism φ : S → End(M/Rad(M)) with

kerφ = Hom(M, Rad(M));
(4) S/J(S) ∼= End(M/Rad(M)).

Proof (1) Let f ∈ J(S) and suppose that f(M)+K = M . Let π : M → M/K
be the natural epimorphism. Then πf is an epimorphism. Since M is self-
projective, there exists ϕ : M → M such that πfϕ = π. Thus fϕ(x) + K =
x + K for all x ∈ M , and so (1 − fϕ)(M) ⊆ K. But f ∈ J(S) implies that
(1 − fϕ) is invertible, i.e., M = (1 − fϕ)(M) ⊆ K. So f(M) � M , hence
f ∈ ∇. Therefore J(S) = ∇.

(2) Let f ∈ J(S) = ∇. So f(M) � M and that f(M) ⊆ Rad(M). Thereby
J(S) ⊆ Hom(M, Rad(M)). The opposite direction was shown in Proposition
3.5 (2).

(3) Let f ∈ S. Since M is fully invaraint, f(Rad(M)) ⊆ Rad(M). Consider
the natural epimorphism π : M → M/Rad(M), we get ker(π) ⊆ ker(πf). By
The Factor Theorem there exists unique f̄ : M/Rad(M) → M/Rad(M) such
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that f̄π = πf . We define φ : End(M) → End(M/Rad(M)) via φ(f) = f̄ , that
is φ(f)(m + Rad(M)) = f(m) + Rad(M). Since f(Rad(M)) ⊆ Rad(M), φ is
well-defined. By routine verification we have that φ is a ring homomorphism.
Next we show that φ is an epimorphism. Let h ∈ End(M/Rad(M)). By
the self-projectivity of M , there is g : M → M with hπ = πg. And φ(g)(m +
Rad(M)) = ḡ(m+Rad(M)) = g(m)+Rad(M) = π(g(m)) = h(π(m)) = h(m+
Rad(M)) for all m ∈ M . Thereby φ(g) = h. And kerφ = Hom(M, Rad(M)).

(4) By The Isomorphism Theorem we obtain that End(M/Rad(M)) =
Imφ ∼= End(M)/kerφ = S/J(S). �

In order to prove our main theorem, the following lemma is needed.

3.9 Lemma. R/J(R) is a von Neumann regular ring if and only if every
principal ideal of R has a weak supplement in RR.

Proof See [8] page 13. �

3.10 Theorem Let M be a multiplication self-projective module and S =
End(M). Then Im f and Ker f are direct summands of M/Rad(M) for every
f ∈ End(M/Rad(M)) if and only if every principal ideal in S has a weak
supplement in S.
Proof (⇒) Suppose Imf and Kerf are direct summands of M/Rad(M)

for every f ∈ End(M/Rad(M)). Then End(M/Rad(M)) is a von Neumann
regular ring. So by Proposition 3.8 End(M/Rad(M)) ∼= S/J(S) is also regular.
Thus Lemma 3.9 shows that every principal ideal in S has a weak supplement
in S.

(⇐) Assume that every principal ideal in S has a weak supplement in S.
Then S/J(S) ∼= End(M/Rad(M)) is von Neumann regular which implies Imf
and Kerf are direct summands of M/Rad(M) for every f ∈ End(M/Rad(M)).
�

3.11 Corollary If M is a multiplication self-projective semilocal module, then
every principal ideal in S has a weak supplement in S.

Proof Since M/Rad(M) is semisimple, Imf and Kerf are direct summands
of M/Rad(M) for every f ∈ End(M/Rad(M)). Thus the corollary is a direct
consequence of Theorem 3.10. �

Recall that a submodule N of M is finitely M-generated if there exist n ∈ N

and an epimorphism from Mn onto N .

3.12 Corollary Let M be a multiplication self-projective module and S =
End(M). If every principal ideal in S has a weak supplement in S, then
every finitely M -generated submodule of M/Rad(M) is a direct summand of
M/Rad(M).
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Proof Assume that every principal ideal in S has a weak supplement in S.
So S/J(S) is a von Neumann regular ring. Hence End(M/Rad(M)) is regular.
Thus every finitely M/Rad(M) - generated submodule of M/Rad(M) is a
direct summand of M/Rad(M). But every finitely M/Rad(M) - generated
submodule is finitely M - generated, therefore we have the result. �
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