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Abstract

In this paper we consider some MD5-groups and MD5-algebras, i.e.,
five-dimensional solvable Lie algebras and groups such that their orbits
in the co-adjoint representation ( K-orbits ) are orbits of dimension zero
or maximal dimension. We describe the geometry of K-orbits of MD5-
groups. The foliations formed by K-orbits of maximal dimension of these
MD5-groups and their measurability are also presented in the paper.

Introduction

Let G be an n-dimensional Lie group. It is called an MDn-group (see [4]), iff its
orbits in the co-adjoint representation (K-orbits) are orbits of dimension zero or
maximal dimension. The corresponding Lie algebras are called MDn-algebras.
All MD4-algebras were first listed by D.V Tra in 1984 (see [5])and then classified
up to an isomorphism by the author in 1990 (see [8], [9]). The description of
the geometry of K-orbits of all indecomposable MD4-groups, the topological
classification of foliations formed by K-orbits of maximal dimension and the
characterization of C*-algebras associated to these foliations by the method of
K-functors were also given by the author in 1990 (see [6], [7], [8], [9]). Until
now, no complete classification of MDn-algebras with n ≥ 5 is known. In this
paper we concern with a similar problem for MD5-groups and MD5-algebras.
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We begin our discussion in Section 2 by giving some interesting examples of
MD5-algebras. Section 3 is devoted to the geometric description of K-orbits
of MD5-groups corresponding to these MD5-algebras and a discussion of the
foliations formed by their maximal dimensional K-orbits. At first, we recall
some concepts and notations which will be used later.

1. K-Orbits of a Lie group and

measurable foliations

1.1 The Co-adjoint Representation and K-orbits of a Lie Group

1. Let G be a Lie group. We denote by G the Lie algebra of G and by G∗

the dual space of G. To each element g of G we associate an automorphism

A(g) : G −→ G

x �−→ A(g)(x) : = gxg−1

(which is called the internal automorphism associated to g). A(g) induces the
tangent map

A(g)∗ : G −→ G

X �−→ A(g)∗(X) : =
d

dt
[g.exp(tX)g−1] |t=0 .

2. The action
Ad : G −→ Aut(G)

g �−→ Ad(g) : = A(g)∗
is called the adjoint representation of G in G.

3. The action
K : G −→ Aut(G∗)

g �−→ K(g)

such that
〈K(g)F,X〉 : = 〈F,Ad(g−1)X〉; (F ∈ G∗, X ∈ G)

is called the co-adjoint representation of G in G∗.
4. Each orbit of the co-adjoint representation of G is called a K-orbit. The

dimension of a K-orbit of G is always even (see [2]).

1.2 Measurable Foliations
1. Let V be a smooth manifold. We denote by TV its tangent bundle, so

that for each x ∈ V, TxV is the tangent space of V at x. A smooth subbundle
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F of TV is called integrable iff the following condition is satisfied: every x from
V is contained in a submanifold W of V such that Tp(W ) = Fp(∀p ∈ W ).

2. A foliation (V, F) is given by a smooth manifold V and an integrable
subbundle F of TV. Then, V is called the foliated manifold and F is called the
subbundle defining the foliation.

3. The leaves of the foliation ( V, F ) are the maximal connected subman-
ifolds L of V with Tx(L) = Fx(∀x ∈ L).

The set of leaves with the quotient topology is denoted by V/F and will be
called the space of leaves of (V, F ). It is a fairly untractable topological space.

4. The partition of V in leaves V =
⋃

α∈V/F Lα is charaterized geometrically
by the following local triviality: Every x ∈ V has a system of local coordinates
{U ; x1, x2, ..., xn}(x ∈ U ;n = dimF) such that for any leaf L with L ∩ U 
= ∅,
each connected component of L ∩U (which is called a plaque of the leaf L ) is
given by the equations

xk+1 = c1, xk+2 = c2, ... , xn = cn−k; k = dimF ,
where c1, c2, ..., cn−k are constants (depending on each plaque). Such a system
{U, x1, x2, ..., xn} is called a foliation chart.

A foliation can be given by a partition of V in a family C of its submanifolds
such that each L ∈ C is a maximal connected integral submanifold of some
integrable subbundle F of TV. Then C is the family of leaves of the foliation
(V,F). Sometimes C is identified with F and we will say that (V,F) is formed
by C.

5. A submanifold N of the foliated manifold V is called a transversal iff
TxV = TxN ⊕Fx(∀x ∈ N). Thus, dimN = n-dimF = codimF .

A Borel subset B of V such that B ∩L is countable for any leaf L is called
a Borel transversal to ( V,F ).

A transverse measure Λ for the foliation ( V,F ) is σ - additive map B�→ Λ
(B) from the set of all Borel transversals to [0, +∞ ] such that the following
coditions are satisfied:

(i) If ψ : B1 → B2 is a Borel bijection and ψ(x) is on the leaf of any x∈ B1,
then Λ(B1) = Λ(B2).

(ii) Λ(K) < +∞ if K is any compact subset of a smooth transversal sub-
manifold of V, then (V, F) is called a measurable foliation, following A. Connes.

6. Let ( V,F ) be a foliation with F is oriented. Then the complement
of zero section of the bundle Λk(F) (k = dimF) has two components Λk(F)−

and Λk(F)+.
Let μ be a measure on V and {U, x1, x2, ..., xn} be a foliation chart of

(V,F). Then U can be identified with the direct product N×Π of some smooth
transversal submanifold N of V and a some plaque Π. The restriction of μ on
U ≡ N×Π becomes the product μN ×μΠ of measures μN and μΠ respectively.

Let X ∈ C∞(
Λk(F)

)+ be a smooth k-vector field and μX be the measure
on each leaf L determined by the volume element X.
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The measure μ is called X-invariant iff μX is proportional to μΠ for an
arbitrary foliation chart {U, x1, x2, ..., xn}.

7. Let (X, μ), (Y, ν) be two pairs where X, Y ∈ C∞(
Λk(F)

)+ and μ, ν are
measures on V such that μ is X-invariant, ν is Y -invariant. (X, μ), (Y, ν) are
equivalent iff Y = ϕX and μ = ϕν for some ϕ ∈ C∞(V ).

There is a bijective map between the set of transverse measures for (V,F)
and the one of equivalence classes of pairs (X, μ), where X ∈ C∞(

Λk(F)
)+

and μ is a X-invariant measure on V.
Thus, to prove that (V,F) is measurable, we only need to choose some

suitable pair (X, μ) on V (see [1]).

2. Some examples of MD5-algebras and MD5-

groups

From now on, G will denote a connected solvable Lie group of dimension 5. The
Lie algebra of G is denoted by G. We always choose a fixed basis (S, T,X, Y, Z)
in G. Then its Lie algebra is isomorphic to R

5 as a real vector space. The
notation G∗ will mean the dual space of G. Clearly G∗ can be identified with
R

5 by fixing in it the basis (S∗, T ∗, X∗, Y ∗, Z∗) which is dual to the basis
(S, T,X, Y, Z).

Recall that a group G is called an MD5-group if its K-orbits are orbits of
dimension zero or maximal dimension. Then its Lie algebra is called an MD5 -
algebra. Note that for any MD4 - algebra G0, the direct product G = G′ ×R of
G0 with the commutative Lie R is a MD5-algebra. It is called a decomposable
MD5-algebra the study of which can be directly reduced to the case of MD4
- algebras. Therefore, we will restrict in the case of indecomposable MD5 -
algebras.

2.1 Some Examples of Indecomposable MD5 - algebras and MD5 -
groups

1. Denote by G1 the real algebra of dimension 5 with the basis (S, T,X, Y, Z)
such that

G1
1 = [G1, G1] = 〈Y, Z〉 ≡ R

2; End
(G1

1
) ≡Mat(2,R);

[S, T ] = [T,X] = [X, S] = 0; adX = adT = 0; adS =
(

0 −1
1 0

)
.

The simply connected Lie group associated to G1 is denoted by G1.

2. Let G2 be the real algebra of dimension 5 with the basis (S, T,X, Y, Z) such
that
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G2
1 = [G2, G2] = 〈T,X, Y, Z〉 ≡ R

4;

adS =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ∈ Aut

(G2
1
) ≡ GL(4,R).

The simply connected Lie group associated to G2 is denoted by G2.

3. Let G3 be the real algebra of dimension 5 with the basis (S, T,X, Y, Z), such
that

G3
1 = [G3, G3] = 〈T,X, Y, Z〉 ≡ R

4;

adS =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠ ∈ Aut

(G3
1
) ≡ GL(4,R).

The simply connected Lie group associated to G3 is denoted by G3.

2.2 Remarks
1. The Lie algebras G1, G2, G3 are the semi-direct products of the form

R×ϕA of the Lie abelian algebra A = 〈T,X, Y, Z〉 ≡ R
4 with B = 〈S〉 ≡ R by

the corresponding actions ϕ = adS .
2. In the next section we shall prove that G1, G2, G3 are indecomposable

MD5-algebras ( see Section 3, Corollary 2 ). Hence, G1, G2, G3 are also MD5-
groups.

3. The main results

3.1 The Geometry of K-orbits of G1, G2, G3

Throughout this section, G will denote one of the groups G1, G2, G3, G for
its Lie algebra, G∗ = 〈S∗, T ∗, X∗, Y ∗, Z∗〉 ≡ R

5 for the dual space of G, and
F = sFS

∗ + tFT
∗ + xFX

∗ + yFY
∗ + zFZ

∗ ≡ (sF , tF , xF , yF , zF ) an arbitrary
element of G∗, and finally ΩF for the K-orbit of G which contains F.
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Theorem 1
G = G1:

1. If xF = yF = 0 then ΩF is a K-orbit of dimension zero, i.e.,

ΩF = {F (sF , tF , 0, 0, zF )}.

2. If x2
F + y2

F 
= 0 then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, tF , x, y, zF )/x2 + y2 = x2
F + y2

F }
( a cylinder of revolution ).

G = G2:

1. If tF = xF = yF = zF = 0 then ΩF is a K-orbit of dimension zero, i.e.,

ΩF = {F (sF , 0, 0, 0, 0)}.

2. If tF 
= 0 = xF = yF = zF then ΩF is a K-orbit of dimension two as
follows

ΩF = {(s, t, 0, 0, 0)/tFt > 0}
( a coordinate half - plane ).

3. If xF 
= 0 = tF = yF = zF then ΩF is a K-orbit of dimension two as
follows

ΩF = {(s, 0, x, 0, 0)/xFx > 0}
( a coordinate half - plane ).

4. If yF 
= 0 = tF = xF = zF then ΩF is a K-orbit of dimension two as
follows

ΩF = {(s, 0, 0, y, 0)/yFy > 0}
( a coordinate half - plane ).

5. If zF 
= 0 = tF = xF = yF then ΩF is a K-orbit of dimension two as
follows

ΩF = {(s, 0, 0, 0, z)/zFz > 0}
( a coordinate half - plane ).

6. If tFxF 
= 0 = yF zF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, t, x, 0, 0)/xFt − tFx = 0, tF t > 0, xFx > 0}

( a part of plane ).
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7. If tFyF 
= 0 = xF zF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, t, 0, y, 0)/yF t − tF y = 0, tF t > 0, yFy > 0}

( a part of plane ).

8. If tF zF 
= 0 = xFyF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, t, 0, 0, z)/zF t− tF z = 0, tF t > 0, zF z > 0}

( a part of plane ).

9. If xFyF 
= 0 = tF zF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, 0, x, y, 0)/yFx− xFy = 0, xFx > 0, yFy > 0}

( a part of plane ).

10. If xF zF 
= 0 = tF yF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, 0, x, 0, z)/zFx− xF z = 0, xFx > 0, zF z > 0}

( a part of plane ).

11. If yF zF 
= 0 = tFxF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, 0, 0, y, z)/zFy − yF z = 0, yFy > 0, zF z > 0}

( a part of plane ).

12. If tFxF yF 
= 0 = zF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, t, x, y, 0)/tFx− xF t = 0, tFy − yF t = 0, tF t > 0, xFx > 0, yF y > 0}

( a part of plane ).

13. If tFxF zF 
= 0 = yF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, t, x, 0, z)/tFx− xF t = 0, tF z − zF t = 0, tF t > 0, xFx > 0, zF z > 0}

( a part of plane ).

14. If tFyF zF 
= 0 = xF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, t, 0, y, z)/tFy − yF t = 0, tFz − zF t = 0, tF t > 0, yFy > 0, zF z > 0}

( a part of plane ).
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15. If xFyF zF 
= 0 = tF then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, 0, x, y, z)/xFy − yFx = 0, xF z − zFx = 0, xFx > 0, yFy > 0, zF z > 0}

( a part of plane ).

16. If tFxF yF zF 
= 0 then ΩF is a K-orbit of dimension two as follows

ΩF = {(s, t, x, y, z)/tFx− xF t = 0, tFy − yF t = tF z − zF t = 0,
tF t > 0, xFx > 0, yFy > 0, zF z > 0}

( a part of plane ).

G = G3:

1. If tF = xF = yF = zF = 0 then ΩF is a K-orbit of dimension zero, i.e.,

ΩF = {F (sF , 0, 0, 0, 0)}.

2. If xF = yF = 0 
= t2F + z2
F then ΩF is a K-orbit of dimension two as

follows

ΩF = {(s, t, 0, 0, z)/t2 + z2 = t2F + z2
F }

( a cylinder of revolution ).

3. If tF = zF = 0 
= x2
F + y2

F then ΩF is a K-orbit of dimension two as
follows

ΩF = {(s, 0, x, y, 0)/x2 + y2 = x2
F + y2

F }
( a cylinder of revolution ).

4. If x2
F + y2

F 
= 0 
= t2F + z2
F then ΩF is a K-orbit of dimension two as

follows

ΩF = {(s, t, x, y, z)/t2 + z2 = t2F + z2
F ; x2 + y2 = x2

F + y2
F ; tx− yz = tFxF − yF zF}.

Corollary 2
1. G1, G2, G3 are indecomposable MD5-groups.

2. G1, G2, G3 are indecomposable MD5-algebras.
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3. Sketch the proof of Theorem 1

1. For each G, we denote the set {FU ∈ G∗/U ∈ G} by ΩF (G), where FU is
the linear form on the Lie algebra G of G defined by

〈FU , A〉 = 〈F, exp(adU )(A)〉, A, U ∈ G.

At first, we have to compute exp(adU ) and define FU . After that, ΩF (G)
is described by the same method presented in [6], [8].

2. Note that for G = G2, the map exp: G → G is surjective (see [3]).
Hence, ΩF = ΩF (G).

3. For G ∈ {G1, G3}, the equation ΩF = ΩF (G) is verified by using [10,
Lemma II.1.5].

3.2 MD5-foliations associated to G1, G2, G3

Theorem 3 Let G ∈ {G1, G2, G3}, FG be the family of all its K-orbits of
maximal dimension and VG =

⋃ {Ω/Ω ∈ FG} . Then (VG, FG) is a measurable
foliation in the sense of Connes. We call it MD5-foliation associated to MD5-
group G.

Sketch of the proof of Theorem 3
The proof is analogous to the case of MD4-groups in [6], [8], [10]. First,

we need to define a smooth tangent 2-vector field on the manifold VG such
that each K-orbit Ω from FG is a maximal connected integrable submanifold
corresponding to it. As the next step, we have to show that the Lebegues
measure is invariant for that 2-vector field. The last step is a simple matter
and can be verified by direct computations. Now we introduce the smooth
tangent 2-vector fields corresponding to each of G from {G1, G2, G3}.

• SG1 = X1 ∧ X2 on the foliated manifold VG ≡ R
2 × (R2 \ {O(0, 0)}) × R,

where

1. X1(s, t, x, y, z) = (0, 0, y,−x, 0); ∀(s, t, x, y, z) ∈ VG;

2. X2(s, t, x, y, z) = (1, 0, 0, 0, 0); ∀(s, t, x, y, z) ∈ VG.

• SG2 = X1 ∧ X2 on the foliated manifold VG ≡ R × (R4 \ {O(0, 0, 0, 0)}),
where

1. X1(s, t, x, y, z) = (0, t, x, y, z); ∀(s, t, x, y, z) ∈ VG;

2. X2(s, t, x, y, z) = (1, 0, 0, 0, 0); ∀(s, t, x, y, z) ∈ VG.

• SG3 = X1 ∧ X2 on the foliated manifold VG ≡ R × (R4 \ {O(0, 0, 0, 0)}),
where
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1. X1(s, t, x, y, z) = (0,−z, y,−x, t); ∀(s, t, x, y, z) ∈ VG;

2. X2(s, t, x, y, z) = (1, 0, 0, 0, 0); ∀(s, t, x, y, z) ∈ VG.
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