SYSTEM OF PARAMETERS FOR PSEUDO COHEN-MACAULAY MODULES

Nguyen Thai Hoa and Nguyen Duc Minh*
Department of Mathematics, Quynhon University, Vietnam
e-mail: minhnd45@hotmail.com

1 Introduction

Throughout, (A, \mathfrak{m}) denotes a commutative Noetherian local ring with the maximal ideal \mathfrak{m} and M a finitely generated A-module with $\operatorname{dim} M=d$. We denote by $Q_{M}(\underline{x})$ the submodule of M defined by

$$
Q_{M}(\underline{x})=\bigcup_{n>0}\left(\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) M: x_{1}^{n} \cdots x_{d}^{n}\right)
$$

where $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ is a system of parameters on M. The submodule $Q_{M}(\underline{x})$ is a useful tool in the study of Monomial Conjecture, determinant maps, top local cohomology modules, modules of generalized fractions... (see [25], [4], [6] and [8]).
1.1 Definition The module M is called pseudo Cohen-Macaulay if there exists an system of parameters \underline{x} on M such that $e(\underline{x} ; M)=\ell_{A}\left(M / Q_{M}(\underline{x})\right)$

1.2 Example

If $\operatorname{dim} M=1$, then M is pseudo Cohen-Macaulay by [22].
If M is Cohen-Macaulay, then one can easily see that $Q_{M}(\underline{x})=\left(x_{1}, \ldots, x_{d}\right) M$ for an abitrary system of parameters $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ of M. Thus every CohenMacaulay module is a pseudo Cohen-Macaulay module. The converse may be not true in general.

[^0]This note presents some properties on systems of parameters of pseudo Cohen-Macaulay modules.

2 Preliminaries

2.1 Secondary representation, cosequences, width, Noetherian dimension of Artinian modules

Let L be an Artinian A-module with a minimal secondary representation

$$
L=C_{1}+\cdots+C_{n},
$$

where each C_{i} is $\mathfrak{p}_{i^{-}}$secondary. The finite set $\operatorname{Att}(L)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ is called the set of attached prime ideals of L. Set $L_{0}=\sum_{\mathfrak{p}_{i} \in \operatorname{Att}(L) \backslash\{\mathfrak{m}\}} C_{i}$. Then L_{0} is independent of the choice of the minimal secondary representation of L and is called the residuum of L. Moreover, the length of the quotient module L / L_{0} is finite. This length is called the residual length of L and denoted by $R \ell(L)$.

An element $a \in A$ is called L-coregular element if $L=a L$. The sequence of elements a_{1}, \ldots, a_{n} of A is called an L-cosequence if $0:_{L}\left(a_{1}, \ldots, a_{n}\right) \neq 0$ and a_{i} is $0:_{L}\left(a_{1}, \ldots, a_{i-1}\right)$-coregular element for every $i=1, \ldots, n$. We denote by Width (L) the supremum of lengths of all L - cosequences in \mathfrak{m}.

An element $a \in \mathfrak{m}$ is called pseudo- L - coregular if $a \notin \bigcup \mathfrak{p}$. Note that for each pseudo- L-coregular element $a \in \mathfrak{m}$, there exists $s \in \mathbb{N}$ such that $a^{s} L=L_{0}$.
2.1 Lemma (cf. [2, (11.3.9) and (11.3.10)]). Let $\mathfrak{p} \in \operatorname{Ass}(M)$. Then, $H_{\mathfrak{m}}^{\operatorname{dim}} A / \mathfrak{p}(M) \neq 0$ and $\mathfrak{p} \in \operatorname{Att}\left(H_{\mathfrak{m}}^{\operatorname{dim} A / \mathfrak{p}}(M)\right)$. Moreover, $\operatorname{Att}\left(H_{\mathfrak{m}}^{d}(M)\right)=$ $\{\mathfrak{p} \in \operatorname{Ass}(M) \mid \operatorname{dim} A / \mathfrak{p}=d\}$.

The Noetherian dimension of L, denoted by $\mathrm{N}-\operatorname{dim}_{A} L$, is defined inductively as follows: when $L=0$, put $\mathrm{N}-\operatorname{dim}_{A} L=-1$. For an integer $d \geqslant 0$, we put $\mathrm{N}-\operatorname{dim}_{A} L=d$ if $\mathrm{N}-\operatorname{dim}_{A} L<d$ is false and for every ascending sequence $L_{0} \subseteq$ $L_{1} \subseteq \cdots$ of submodules of L, there exists n_{0} such that N - $\operatorname{dim}_{A}\left(L_{n+1} / L_{n}\right)<d$ for all $n>n_{0}$.

It is easy to see that $\mathrm{N}-\operatorname{dim}_{A} L=0$ if and only if L is a non-zero Noetherian module.

2.2 Lemma ([7]).

(i) For any exact sequence of Artinian A-molules

$$
0 \longrightarrow L^{\prime} \longrightarrow L \longrightarrow L^{\prime \prime} \longrightarrow 0
$$

we have $N-\operatorname{dim} L=\max \left\{N-\operatorname{dim} L^{\prime}, N-\operatorname{dim} L^{\prime \prime}\right\}$.
(ii) N - $\operatorname{dim}(L) \leqslant \operatorname{dim}(L)$. The equality holds if A is complete.
(iii) $N-\operatorname{dim}_{A}(L)=N-\operatorname{dim}_{\widehat{A}}(L)=\operatorname{dim}_{\widehat{A}}(L)$.
(iv) $N-\operatorname{dim}\left(H_{\mathfrak{m}}^{i}(M)\right) \leqslant i, \forall i=0, \ldots, d-1$ and $N-\operatorname{dim}\left(H_{\mathfrak{m}}^{d}(M)\right)=d$.

2.2 The invariants $p(M), p f(M)$ and pseudo Cohen-Macaulay modules.

Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be an system of parameters of M and $\underline{n}=\left(n_{1}, \ldots, n_{d}\right)$ a d-tuple of positive integers. Set $\underline{x}(\underline{n})=\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}\right) A$. Consider the differences

$$
\begin{aligned}
& I_{M, \underline{x}}(\underline{n})=\ell(M / \underline{x}(\underline{n}) M)-n_{1} \ldots n_{d} e(\underline{x} ; M) \\
& J_{M, \underline{x}}(\underline{n})=n_{1} \ldots n_{d} \quad e(\underline{x} ; M)-\ell\left(M / Q_{M}(\underline{x}(\underline{n}))\right.
\end{aligned}
$$

as functions in n_{1}, \ldots, n_{d}, where $e(\underline{x} ; M)$ is the multiplicity of M with respect to \underline{x} and

$$
Q_{M}(\underline{x})=\bigcup_{t>0}\left(\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right) M: x_{1}^{t} \ldots x_{d}^{t}\right)
$$

In general, $I_{M, \underline{x}}(\underline{n})$ and $J_{M, \underline{x}}(\underline{n})$ are not polynomials for n_{1}, \ldots, n_{d} large enough (see [3], [6]). However they are bounded above by polynomials and the least degree of all polynomials in \underline{n} bounding above $I_{M, \underline{x}}(\underline{n})$ (resp. $J_{M, \underline{x}}(\underline{n})$) is independent of the choice of \underline{x}, and it is denoted by $p(M)$ (resp. $p f(M)$). The invariant $p(M)$ is called the polynomial type of M (see [3]) and the invariant $p f(M)$ is called the polynomial type of fractions of M (see [16], [5] and [4]). For convenience we stipulate that the degree of the zero-polynomial is equal to $-\infty$. One can easy to see that following the conditions are equivalent:
(i) M is pseudo Cohen-Macaulay
(ii) $p f(M)=-\infty$
(iii) For every system of parameters \underline{x} on M we have $e(\underline{x} ; M)=\ell_{A}\left(M / Q_{M}(\underline{x})\right)$

Let us list basic facts on $p(M)$ and $p f(M)$ from [3], [16], and [5].
2.3 Lemma ([3] and [5]).
(i) $p(M)=p\left(M / H_{\mathfrak{m}}^{0}(M)\right)=p_{A / \operatorname{Ann}(M)}(M)$ $p f_{A}(M)=p f_{A}\left(M / H_{\mathfrak{m}}^{0}(M)\right)=p f_{A / \operatorname{Ann}(M)}(M)$
(ii) $p_{A}(M)=p_{\hat{A}}(\widehat{M}), p f_{A}(M)=p f_{\widehat{A}}(\widehat{M})$, where \widehat{M} is the m-adic completion of M.
(iii) Let \underline{x} be an system of parameters of M with $\operatorname{dim}\left(0: x_{1}\right)<d-1$. Then

$$
p f\left(M / x_{1} M\right) \leqslant p f(M) \leqslant p f\left(M / x_{1} M\right)+1
$$

2.4 Lemma ([5, (3.4) and (3.5)]).
(i) $p(M) \leqslant \operatorname{dim} M-1$ and if $\operatorname{dim} M=d>1$ then $p f(M) \leqslant d-2$.
(ii) $p f(M) \leqslant p(M)$. If $\operatorname{depth}(M)>p(M)$ then $p f(M)=p(M)$.
2.5 Lemma ([5, (3.6)]).
(i) If $p f(M)=-\infty$ then $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=p(M)+1, \ldots, d-1$.
(ii) If $p f(M) \leqslant 0$ then $\ell\left(H_{\mathfrak{m}}^{i}(M)\right)<\infty$ for all $i=p(M)+1, \ldots, d-1$.
2.6 Proposition Assume that $\operatorname{dim} M=d \geqslant 1$. Then,
(i) $p(M)=\max _{0 \leqslant i \leqslant d-1}\left\{N-\operatorname{dim} H_{\mathfrak{m}}^{i}(M)\right\}$,
(ii) Suppose that $p=p(M)>0$. Set $\mathcal{Q}=\bigcup_{i=p}^{d-1} \operatorname{Att}\left(H_{\mathfrak{m}}^{i}(M)\right) \backslash\{\mathfrak{m}\}$. Let x be a parameter element of M such that $x \notin \bigcup_{\mathfrak{p} \in \mathcal{Q}} \mathfrak{p}$. Then $p(M / x M)=p(M)-1$.

Proof (i). Denote $a_{i}(M)$ be the annihilator of the i-th local cohomology module $H_{\mathfrak{m}}^{i}(M)$ of M with respect to the maximal ideal \mathfrak{m} and set $\mathfrak{a}(M)=$ $\mathfrak{a}_{0}(M) \cdots \mathfrak{a}_{d-1}(M)$. It follows from Lemma 2.3, [3, (3.1)] and Lemma 2.2 that

$$
\left.\begin{array}{rl}
p_{A}(M) & =p_{\widehat{A}}(\widehat{M})=\operatorname{dim}_{\hat{A}} \widehat{A} / a(\widehat{M}) \\
& =\max _{0 \leqslant i \leqslant d-1}\left\{\mathrm{~N}-\operatorname{dim}_{\widehat{A}}\left(H_{\widehat{m}}^{i}(\widehat{M})\right)\right\}
\end{array}=\max _{0 \leqslant i \leqslant d-1}\left\{\operatorname{dim}_{\widehat{A}} H_{\widehat{\mathfrak{m}}}^{i}(\widehat{M})\right\}, \operatorname{dim}\left(H_{\mathfrak{m}}^{i}(M)\right)\right\} .
$$

(ii). Let $x \notin \bigcup_{\mathfrak{p} \in \mathcal{Q}} \mathfrak{p}$ be a parameter element of M. Choose $x_{2}, \ldots, x_{d} \in A$ such that $\underline{x}=\left(x, x_{2}, \ldots, x_{d}\right)$ is an system of parameters of M. For each $\mathfrak{q} \in \operatorname{Ass}(M)$ with $\operatorname{dim} A / \mathfrak{q} \geqslant p(M)$ we have $\mathfrak{q} \in \operatorname{Att}\left(H_{\mathfrak{m}}^{\operatorname{dim} A / \mathfrak{q}}(M)\right)$ by Lemma 2.1. Thus $x \notin \mathfrak{q}$ for each $\mathfrak{q} \in \operatorname{Ass}(M)$ with $\operatorname{dim}(A / \mathfrak{q}) \geqslant p$. This implies that $\operatorname{dim}\left(0:_{M}\right.$ $x)<p<\operatorname{dim} M$. Hence, $e\left(\underline{x}^{\prime} ; M / x M\right)=e(\underline{x} ; M)$ where $\underline{x}^{\prime}=\left(x_{2}, \ldots, x_{d}\right)$. By [3] (2.2), we get

$$
I_{M}(\underline{n}, \underline{x}) \leqslant n_{1} I_{M}\left(\left(1, n_{2}, \ldots, n_{d}\right) ; \underline{x}\right)=n_{1} I_{M / x M}\left(\left(n_{2}, \ldots, n_{d}\right) ; \underline{x}^{\prime}\right)
$$

where $\underline{n}=\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ is a d-tuple positive integers. Therefore $p(M) \leqslant$ $p(M / x M)+1$.

We next show the converse inequality $p(M / x M)+1 \leqslant p(M)$. As $p(M)>0$, we need only to argue for $p(M / x M)>0$. By the statement (i), there exists $j \in\{0, \ldots, d-2\}$ such that $p(M / x M)=\mathrm{N}-\operatorname{dim} H_{\mathfrak{m}}^{j}(M / x M)$. There are only two situations arising.
Case 1: $0 \leqslant j<p$. In this case

$$
p(M / x M)=\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{j}(M / x M)\right) \leqslant j \leqslant p-1
$$

by Lemma 2.2 .
Case 2: $p \leqslant j \leqslant d-2$. As $\operatorname{dim}\left(0:_{M} x\right)<p \leqslant j$, we have $H_{\mathfrak{m}}^{j}\left(0:_{M} x\right)=$ $H_{\mathfrak{m}}^{j+1}\left(0:_{M} x\right)=0$. Therefore, the exact sequences

$$
0 \longrightarrow\left(0:_{M} x\right) \longrightarrow M \longrightarrow M /\left(0:_{M} x\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow M /\left(0:_{M} x\right) \xrightarrow{x} M \longrightarrow M / x M \longrightarrow 0
$$

induce an exact sequence of local cohomology modules

$$
\begin{equation*}
0 \longrightarrow H_{\mathfrak{m}}^{j}(M) / x H_{m}^{j}(M) \longrightarrow H_{\mathfrak{m}}^{j}(M / x M) \longrightarrow\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x\right) \longrightarrow 0 \tag{1}
\end{equation*}
$$

By our assumption, $\quad x$ is pseudo- $H_{\mathfrak{m}}^{j}(M)$ - coregular. Consequently, $\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{j}(M) / x H_{\mathfrak{m}}^{j}(M)\right) \leqslant 0$. Moreover, when $\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{j+1}(M)\right)>0$, $x \notin \bigcup_{\mathfrak{p} \in \mathcal{Q}} \mathfrak{p}$ implies that x is a parameter element on $H_{\mathfrak{m}}^{j+1}(M)$ so that

$$
\mathrm{N}-\operatorname{dim}\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x\right)=\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{j+1}(M)\right)-1
$$

It now follows from the exact sequence (1) that

$$
\begin{aligned}
0 & <p(M / x M)=\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{j}(M / x M)\right) \\
& =\max \left\{\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{j}(M) / x H_{m}^{j}(M)\right) ; \mathrm{N}-\operatorname{dim}\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x\right)\right\} \\
& =\mathrm{N}-\operatorname{dim}\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x\right)=\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{j+1}(M)\right)-1 \leqslant p(M)-1
\end{aligned}
$$

2.7 Lemma Let $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a system of parameters of M. Put $M_{1}=M / x_{1} M$. For each $\underline{n}^{\prime}=\left(n_{2}, \ldots, n_{d}\right) \in \mathbb{N}^{d-1}$, set $\underline{x}^{\prime}\left(\underline{n}^{\prime}\right):=\left(x_{2}^{n_{2}}, \ldots, x_{d}^{n_{d}}\right)$ and $\underline{x}\left(\underline{n}^{\prime}\right)=\left(x_{1}, x_{2}^{n_{2}}, \ldots, x_{d}^{n_{d}}\right)$. Then, there exists an epimorphism

$$
\varphi_{\underline{n}^{\prime}}: M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right) \longrightarrow M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right)
$$

defined by $\varphi_{\underline{n}^{\prime}}\left(\bar{u}+Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right)\right)=u+Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right)$ for each $u \in M$.

$$
\text { Moreover, if } x_{1} \notin \bigcup_{\mathfrak{q} \in \operatorname{Att}\left(H_{\mathfrak{m}}^{d-1}(M)\right) \backslash\{\mathfrak{m}\}} \mathfrak{q} \text {, then for all } n_{2}, \ldots, n_{d} \text { enough large, }
$$

we have an exact sequence
$0 \longrightarrow H_{\mathfrak{m}}^{d-1}(M) / x_{1} H_{\mathfrak{m}}^{d-1}(M) \longrightarrow M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right) \xrightarrow{\varphi_{\underline{n^{\prime}}}} M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right) \longrightarrow 0$.

Proof For d-tuples of positive integers $\underline{n}=\left(n_{1}, \ldots, n_{d}\right)$ and $\underline{m}=\left(m_{1}, \ldots, m_{d}\right)$ we define $\underline{n} \leqslant \underline{m}$ if $n_{i} \leqslant m_{i}$ for all i. Then the map

$$
\delta_{\underline{n}, \underline{m}}: M / Q_{M}(\underline{x}(\underline{n})) \longrightarrow M / Q_{M}(\underline{x}(\underline{m})),
$$

which is defined by $\delta_{\underline{n}, \underline{m}}\left(u+Q_{M}(\underline{x}(\underline{n}))\right)=\prod_{i=1}^{d} x_{i}^{m_{i}-n_{i}} u+Q_{M}(\underline{x}(\underline{m}))$ for each $u \in M$, is injective by [4, (3.1)]. Moreover, $\left\{\delta_{\underline{n}, \underline{m}} ; M / Q_{M}(\underline{x}(\underline{n}))\right\}$ forms a direct system and $\underset{\longrightarrow}{\lim } M / Q_{M}(\underline{x}(\underline{n})) \cong H_{\mathfrak{m}}^{d}(M)$.

Similarly, we also have the direct system $\left\{\bar{\delta}_{\underline{n}^{\prime}, \underline{m}^{\prime}} ; M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right)\right\}$ and $\underset{\underline{n}^{\prime}}{\lim _{\rightarrow}} M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right) \cong H_{\mathfrak{m}}^{d-1}\left(M_{1}\right)$.

For $\underline{n}^{\prime} \leqslant \underline{m}^{\prime}$ with $\underline{n}^{\prime}=\left(n_{2}, \ldots, n_{d}\right)$ and $\underline{m}^{\prime}=\left(m_{2}, \ldots, m_{d}\right)$, we have the following commutative diagram with exact rows

where $\pi_{\underline{n^{\prime}}, \underline{m^{\prime}}}$ is the reduced homomorphism. Thus, $\left\{\pi_{\underline{n^{\prime}}, \underline{m^{\prime}}} ; \operatorname{Ker} \varphi_{\underline{n^{\prime}}}\right\}$ and $\left\{\delta_{\underline{n}^{\prime}, \underline{m}^{\prime}} ; M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right)\right\}$ form direct systems. Therefore, we obtain the following commutative diagram with exact rows

where $\pi_{\underline{n}^{\prime}}, \bar{\delta}_{\underline{n}^{\prime}}$ and $\delta_{\underline{n}^{\prime}}$ are the natural homomorphisms and $u=\underset{\underline{\underline{n}^{\prime}}}{\lim } \varphi_{\underline{n}^{\prime}}$. Since the homomorphisms $\delta_{\underline{n}^{\prime}, \underline{m}^{\prime}}, \bar{\delta}_{\underline{n}^{\prime}, \underline{m}^{\prime}}$ and $\pi_{\underline{n}^{\prime}, \underline{m}^{\prime}}$ are injective, we have $\delta_{\underline{n}^{\prime}}, \bar{\delta}_{\underline{n}^{\prime}}$ and $\pi_{\underline{n}^{\prime}}$ are injective.

By Lemma 2.1, $x_{1} \notin \mathfrak{q}$ for all $\mathfrak{q} \in \operatorname{Ass}(M)$ with $\operatorname{dim} A / \mathfrak{q} \geqslant d-1$. Thus $\operatorname{dim}\left(0:_{M} x_{1}\right)<d-1$ and then $H_{\mathfrak{m}}^{i}\left(M /\left(0:_{M} x_{1}\right)\right) \cong H_{\mathfrak{m}}^{i}(M)$ for $i \geqslant d-1$. Therefore, from the exact sequence

$$
0 \longrightarrow M /\left(0:_{M} x_{1}\right) \xrightarrow{x_{1}} \longrightarrow M \longrightarrow M_{1} \longrightarrow 0
$$

we have an exact sequence of local cohomology modules

$$
0 \longrightarrow H_{\mathfrak{m}}^{d-1}(M) / x_{1} H_{\mathfrak{m}}^{d-1}(M) \longrightarrow H_{\mathfrak{m}}^{d-1}\left(M_{1}\right) \stackrel{\Delta}{\longrightarrow} \longrightarrow H_{\mathfrak{m}}^{d}(M)
$$

where Δ is the connecting homomorphism.
Further, we can also show a monomorphism $j: \underline{\lim }_{\underline{n^{\prime}}} M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right) \longrightarrow$ $H_{m}^{d}(M)$ such that the following diagram is commutative

Hence $\underset{\underline{n}^{\prime}}{\lim } \operatorname{Ker} \varphi_{\underline{n}^{\prime}} \cong \operatorname{Ker} u \cong \operatorname{Ker} \Delta \cong H_{\mathfrak{m}}^{d-1}(M) / x_{1} H_{m}^{d-1}(M)$. \quad Since $H_{\mathfrak{m}}^{d-1}(M) / x_{1} H_{\mathfrak{m}}^{d-1}(M)$ has finite length by the choice of $x_{1}, \pi_{\underline{n}^{\prime}}$ is an isomorphism for enough large $\underline{n}^{\prime}\left(\underline{n}^{\prime} \gg 0\right.$ for short). So we get

$$
\operatorname{Ker} \varphi_{\underline{n}^{\prime}} \cong H_{\mathfrak{m}}^{d-1}(M) / x_{1} H_{m}^{d-1}(M)
$$

for $\underline{n}^{\prime} \gg 0$ as required.
2.8 Corollary Let M be a pseudo Cohen-Macaulay module with $p:=p(M)>$ 0 . Let x_{1} be a parameter element with $\operatorname{dim}\left(0:_{M} x_{1}\right)<d-1$. Then x_{1} is a $H_{\mathfrak{m}}^{d-1}(M)$-coregular element.

Proof With the same notations and using the same argument in the proof of Lemma 2.7 we have $\underset{\longrightarrow}{\lim } \operatorname{Ker} \varphi_{\underline{\underline{n}}^{\prime}} \cong H_{\mathfrak{m}}^{d-1}(M) / x_{1} H_{\mathfrak{m}}^{d-1}(M)$. On the other hand, by virtue of Lemma $\frac{n}{2} .3, M_{1}$ is a pseudo Cohen- Macaulay module. Thus,

$$
\ell_{A}\left(M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right)\right)=e\left(\underline{x}\left(\underline{n}^{\prime}\right) ; M\right)=e\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right) ; M_{1}\right)=\ell_{A}\left(M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right)\right) .
$$

Therefore, the epimorphism $\varphi_{\underline{n}^{\prime}}: M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}(n)\right) \longrightarrow M / Q_{M}(\underline{x}(n))$ defined in Lemma 2.7 must be an isomorphism. This implies that $\operatorname{Ker} \varphi_{\underline{n}^{\prime}}=0$ for all $\underline{n}^{\prime} \in \mathbb{N}^{d-1}$. Hence $\underset{\underline{\underline{n}^{\prime}}}{\lim } \operatorname{Ker} \varphi_{\underline{n}^{\prime}}=0$ and so $H_{\mathfrak{m}}^{d-1}(M)=x_{1} H_{\mathfrak{m}}^{d-1}(M)$, as required.

3 Parametric characterizations for pseudo Cohen-Macaulay modules

Following [3], a subsequence $\left(x_{1}, \ldots, x_{j}\right)$ of a system of parameters of M is called a reducing sequence if $x_{i} \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}\left(M /\left(x_{1}, \ldots, x_{i-1}\right) M\right)$ with $\operatorname{dim} A / \mathfrak{p} \geqslant d-i, \quad(i=1, \ldots, j)$. Note that if $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ is a system of parameters on M and x_{1}, \ldots, x_{d-1} form a reducing sequence, then \underline{x} is just a reducing system of parameters as introduced in [1]. It should be mentioned that every A-module admits a reducing parameter system of parameters.
3.1 Definition Let $\underline{x}=\left(x_{1}, \ldots, x_{t}\right)$ be a sequence of elements in \mathfrak{m}. We set $M_{i}:=M /\left(x_{1}, \ldots, x_{i}\right) M$ for all $i=0, \ldots, t$. The sequence \underline{x} is called p seudo regular for M if x_{i} is an $H_{\mathrm{m}}^{d-i}\left(M_{i-1}\right)$ - coregular element for all $i=1, \ldots, t$. If $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ is an system of parameters on M and $\left(x_{1}, \ldots, x_{d-1}\right)$ forms a pseudo regular sequence, then it is called a pseudo regular system of parameters.

3.2 Remark

(i) An abitrary system of parameters of a Cohen- Macaulay module M is a pseudo regular system of parameters
(ii) $\underline{x}=\left(x_{1}, \ldots, x_{t}\right)$ is a pseudo regular sequence of M if and only if $\left(x_{1}, \ldots\right.$, $\left.x_{j-1}\right)$ is pseudo regular sequence of M and $\left(x_{j}, \ldots, x_{t}\right)$ is a pseudo regular sequence of M_{j-1} for each $j=2, \ldots, t$.
(iii) By Lemma 2.1, every pseudo regular system of parameters for M is a reducing system of parameters of M.
3.3 Theorem Assume that $\operatorname{dim} M=d>1$. Then the following statements are equivalent:
(i) M is pseudo Cohen-Macaulay;
(ii) Any reducing system of parameters of M is pseudo regular system of parameters;
(iii) M admits a reducing system of parameters which is pseudo regular system of parameters;
(iv) M admits a pseudo regular system of parameters.

Proof It suffices to prove that (i) \Longrightarrow (ii) and (iv) \Longrightarrow (i).
(i) \Longrightarrow (ii). We prove by induction on d. Let $d=2$ and assume that $\underline{x}=\left(x_{1}, x_{2}\right)$ is a reducing system of parameters of M. By Corollary $2.8, x_{1}$ is $H_{\mathfrak{m}}^{1}(M)$ coregular and then \underline{x} is pseudo regular system of parameters of M. Suppose that $d>2$ and that our assertion is true for all pseudo Cohen- Macaulay A-modules of smaller dimension.

Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a reducing system of parameters of M. As $\operatorname{dim}(0$: $\left.x_{1}\right)<d-1$, then $M_{1}:=M / x_{1} M$ is pseudo Cohen-Macaulay by virtue of Lemma 2.3 (iii). The inductive hypothesis implies that $\left(x_{2}, \ldots, x_{d}\right)$ is a pseudo regular system of parameters of M_{1}.

The induction is finished now by Corollary 2.8 and Remark 3.2 (ii).
(iv) \Longrightarrow (i). Again we use induction on d. Let $d=2$, and assume that M has a pseudo regular system of parameters, say $\underline{x}=\left(x_{1}, x_{2}\right)$. Let $\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$. By $[22,(3.2)], J_{M, \underline{x}}(\underline{n})=R l\left(H_{\mathfrak{m}}^{1}(M)\right)$ for all $n_{1}, n_{2} \gg 0$. As x_{1} is $H_{\mathfrak{m}}^{1}(M)$ coregular, it follows that $R l\left(H_{\mathfrak{m}}^{1}(M)\right)=0$ and so M is pseudo Cohen-Macaulay.

Assume that $d>2$ and $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is a pseudo regular system of parameters for M. Then $\underline{x}^{\prime}=\left(x_{2}, \ldots, x_{d}\right)$ is a pseudo regular system of parameters
for $M_{1}=M / x_{1} M$. For all $n_{2}, \ldots, n_{d} \geqslant 1$, set $\underline{x}\left(\underline{n}^{\prime}\right)=\left(x_{1}, x_{2}^{n_{2}}, \ldots, x_{d}^{n_{d}}\right), \underline{x}^{\prime}\left(\underline{n}^{\prime}\right)$ $=\left(x_{2}^{n_{2}}, \ldots, x_{d}^{n_{d}}\right)$. The inductive hypothesis gives

$$
\begin{equation*}
\left.\underline{x}^{\prime}\left(\underline{n}^{\prime}\right) ; M_{1}\right)=\ell\left(M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right)\right) . \tag{2}
\end{equation*}
$$

On the other hand, Lemma 2.1 shows that $x_{1} \notin \mathfrak{p}$, for all $\mathfrak{p} \in \operatorname{Ass}(M)$ with $\operatorname{dim} A / p \geqslant d-1$. We thus have $\operatorname{dim}\left(0: x_{1}\right)<d-1$ and hence

$$
\begin{equation*}
e\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right) ; M_{1}\right)=e\left(\underline{x}\left(\underline{n}^{\prime}\right) ; M\right) . \tag{3}
\end{equation*}
$$

Take n_{2}, \ldots, n_{d} large enough to obtain the exact sequence defined in Lemma 2.7,

$$
0 \longrightarrow H_{\mathfrak{m}}^{d-1}(M) / x_{1} H_{m}^{d-1}(M) \longrightarrow M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right) \longrightarrow M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right) \longrightarrow 0
$$

As x_{1} is $H_{\mathfrak{m}}^{d-1}(M)$-coregular, we obtain from above exact sequence that

$$
\begin{equation*}
\ell_{A}\left(M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right)\right)=\ell_{A}\left(M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right)\right) \tag{4}
\end{equation*}
$$

Combining (2), (3) and (4), for all $n_{2}, \ldots, n_{d} \gg 0$, we get

$$
e\left(\underline{x}\left(\underline{n}^{\prime}\right) ; M\right)=\ell_{A}\left(M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right)\right)
$$

and this finishes our proof.
According to [9], M is called an f-module if every system of parameters $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ is a M-filter regular sequence, i.e. $x_{i} \notin \mathfrak{q}$ for all $\mathfrak{q} \in$ $\operatorname{Ass}\left(M /\left(x_{1}, \ldots, x_{i-1}\right) M\right) \backslash\{\mathfrak{m}\} ;(i=1, \ldots, d)$.

We next combine Theorem 3.3 with [9, (2.5) and (2.11)] to obtain
3.4 Corollary M is both f-module and pseudo Cohen-Macaulay if and only if every system of parameters for M is pseudo regular system of parameters.
3.5 Theorem Suppose that $p=p(M)>0$. Then M is pseudo CohenMacaulay if and only if $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=p+1, \ldots, d-1$ and there exists a subsystem of parameters $\left(x_{1}, \ldots, x_{p}\right)$ on M such that x_{i} is an $H_{\mathfrak{m}}^{p-i+1}\left(M_{i-1}\right)$ coregular element for all $i=1, \ldots, p$.

Proof Assume that M is pseudo Cohen-Macaulay with $p(M)>0$. Then $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=p+1, \ldots, d-1$ by Lemma 2.5. It follows from Corollary 2.8 that $\operatorname{Width}\left(H_{\mathfrak{m}}^{d-1}(M)\right)>0$ and that $m \notin \operatorname{Att}\left(H_{\mathfrak{m}}^{p}(M)\right)$. Set

$$
\mathfrak{P}=\{\mathfrak{q} \in \operatorname{Ass}(M) \mid \operatorname{dim} A / \mathfrak{q}=d\} \cup \operatorname{Att}\left(H_{\mathfrak{m}}^{p}(M)\right)
$$

and choose $x_{1} \notin \bigcup_{\mathfrak{q} \in \mathfrak{p}} \mathfrak{q}$. Obviously, x_{1} is a parameter element of M and also a $H_{\mathfrak{m}}^{p}(M)$-coregular element. Observe that $p\left(M / x_{1} M\right)=p(M)-1$ by Proposition 2.6. Now the existence of the required subsystem of parameters $\left(x_{1}, \ldots, x_{p}\right)$ follows by induction on p.

Conversely, assume that $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=p+1, \ldots, d-1$ and that M admits a subsystem of parameters $\left(x_{1}, \ldots, x_{p}\right)$ such that x_{i} is an $H_{\mathfrak{m}}^{p-i+1}(M)$ coregular element for all $i=1, \ldots, p$. Take x_{p+1}, \ldots, x_{d} such that $\underline{x}=\left(x_{1}, \ldots, x_{p}\right.$, $\left.x_{p+1}, \ldots, x_{d}\right)$ becomes an system of parameters on M. We will prove by induction on p that $J_{M, \underline{x}}(\underline{n})=0$ for all $\underline{n} \gg 0$.

The case $p=1$ was proved in $[5,(4.4)]$.
Assume that $p>1$ and that our claim is true for all modules with polynomial type less than p. Set $M_{1}=M / x_{1} M$. Because $H_{\mathfrak{m}}^{i}(M)=0$ for all $i=p+1, \ldots, d-1$ and x_{1} is $H_{\mathfrak{m}}^{p}(M)$-coregular, Lemma 2.1 shows that $x_{1} \notin \mathfrak{q}$ for all $\mathfrak{q} \in \operatorname{Ass}(M)$ with $\operatorname{dim} A / \mathfrak{q} \geqslant p$. Therefore $\operatorname{dim}\left(0:_{M} x_{1}\right)<p \leqslant d-$ $1, e\left(x_{1}, \ldots, x_{d} ; M\right)=e\left(x_{2}, \ldots, x_{d} ; M_{1}\right)$ and (by Proposition 2.6) $p\left(M_{1}\right)=p-1>$ 0 . Furthermore, for all $n_{2}, \ldots, n_{d} \gg 0$, Lemma 2.7 gives us $M_{1} / Q_{M_{1}}\left(\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)\right) \cong$ $M / Q_{M}\left(\underline{x}\left(\underline{n}^{\prime}\right)\right)$, where $\underline{x}^{\prime}\left(\underline{n}^{\prime}\right)=\left(x_{2}^{n_{2}}, \ldots, x_{d}^{n_{d}}\right)$ and $\underline{x}\left(\underline{n}^{\prime}\right)=\left(x_{1}, x_{2}^{n_{2}}, \ldots, x_{d}^{n_{d}}\right)$. Hence

$$
\begin{equation*}
J_{M, \underline{x}}(\underline{n})=J_{M_{1}, \underline{x}^{\prime}}\left(\underline{n}^{\prime}\right), \forall n_{2}, \ldots, n_{d} \gg 0 \tag{5}
\end{equation*}
$$

On the other hand, since $\operatorname{dim}\left(0:_{M} x_{1}\right)<p$ for each $i \in\{p, \ldots, d-1\}$, we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{\mathfrak{m}}^{i}(M) / x_{1} H_{m}^{i}(M) \longrightarrow H_{\mathfrak{m}}^{i}\left(M_{1}\right) \longrightarrow\left(0:_{H_{\mathfrak{m}}^{i+1}(M)} x_{1}\right) \longrightarrow 0 \tag{6}
\end{equation*}
$$

Since $H_{\mathfrak{m}}^{i+1}(M)=0$ for all $i=p, \ldots, d-2$ and $\left(H_{\mathfrak{m}}^{p}(M) / x_{1} H_{\mathfrak{m}}^{p}(M)\right)=0$, the exact sequence (6) implies $H_{\mathfrak{m}}^{i}\left(M_{1}\right)=0$ for all $i=p, \ldots, d-2$. The induction is complete by applying the inductive hypothesis to M_{1} and using the equality (5).

The next result is an immediate consequence of Theorem 3.5 and Proposition 2.6 (ii).
3.6 Corollary Let M be pseudo Cohen-Macaulay with $p=p(M)>0$. Then M admits a subsystem of parameters $\left(x_{1}, \ldots, x_{p}\right)$ such that

$$
\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{p-i+1}\left(M_{i-1}\right)\right)=p-i+1
$$

and

$$
\operatorname{Width}\left(H_{\mathfrak{m}}^{p-i+1}\left(M_{i-1}\right)\right) \geqslant \min \{2, p-i+1\}
$$

for all $i=1, \ldots, p$.

The rest of this section is devoted to results on sequentially Cohen-Macaulay modules. These modules was first introduced by P. Stanley in [24] (Chapter III, 2.9) in the graded case. We recall here a definition for the local case from [8].
3.7 Definition ([8, (4.1)]. A filtration $0=N_{0} \subset N_{1} \subset \ldots \subset N_{t}=M$ of submodules of M is said to be a Cohen-Macaulay filtration if
(a) Each quotient N_{i} / N_{i-1} is Cohen-Macaulay.
(b) $\operatorname{dim} N_{1} / N_{0}<\operatorname{dim} N_{2} / N_{1}<\ldots<\operatorname{dim} N_{t} / N_{t-1}$.

We say that M is sequentially Cohen-Macaulay if it admits a CohenMacaulay filtration.
3.8 Lemma Let M be a sequentially Cohen- Macaulay A-module. Then, for all each $i=0, \ldots, d$, the local cohomology module $H_{\mathfrak{m}}^{i}(M)$ vanishes or is a co-Cohen- Macaulay module of Noetherian dimension i.

Proof Let $\left\{M_{i}\right\}_{0 \leqslant i \leqslant d}$ be a Cohen-Macaulay filtration of M. Set $\mathcal{M}_{i}=$ M_{i} / M_{i-1} for all $i=1, \ldots, d$ and $\mathcal{M}_{0}=M_{0}$. If \mathcal{M}_{i} does not vanish, then it is Cohen- Macaulay module of dimension i. It follows from [17] and [7, (3.5)] that

$$
\operatorname{Width}\left(H_{\mathfrak{m}}^{i}\left(\mathcal{M}_{i}\right)\right)=i=\mathrm{N}-\operatorname{dim}\left(H_{\mathfrak{m}}^{i}\left(\mathcal{M}_{i}\right)\right)
$$

Since $H_{\mathfrak{m}}^{i}(M) \cong H_{\mathfrak{m}}^{i}\left(\mathcal{M}_{i}\right), \forall i \geqslant 0$ by [20] (5.4), this equality shows that $H_{\mathfrak{m}}^{i}(M)$ is a co-Cohen-Macaulay module.
3.9 Theorem Suppose that $d \geqslant 1$. Then the following conditions are equivalent:
(i) M is a sequentially Cohen-Macaulay module;
(ii) If $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ is an abitrary filter-regular system of parameters of M then x_{i} is a coregular element on $H_{\mathfrak{m}}^{j}\left(M /\left(x_{1}, \ldots, x_{i-1}\right) M\right)$ for all $j=1, \ldots, d-i$ and all $i=1, \ldots, d-1$;
(iii) There exists a filter-regular system of parameters $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ of M such that x_{i} is a coregular element on $H_{\mathfrak{m}}^{j}\left(M /\left(x_{1}, \ldots, x_{i-1}\right) M\right)$ for all $j=$ $1, \ldots, d-i$ and all $i=1, \ldots, d-1$;
(iv) There exists a system of parameters $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ of M such that x_{i} is a coregular element on $H_{\mathfrak{m}}^{j}\left(M /\left(x_{1}, \ldots, x_{i-1}\right) M\right)$ for all $j=1, \ldots, d-i$ and all $i=1, \ldots, d-1$.

Proof It is enough to prove (i) \Longrightarrow (ii) and (iv) \Longrightarrow (i).
(i) \Longrightarrow (ii). We make induction on d. It is clearly true for $d=1$. Suppose that $d \geqslant 2$ and that statement (ii) is true for all modules of dimension $<d$.

Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a filter regular system of parameters of M. Let $i \in\{0, \ldots, d\}$. Since M is a sequentially Cohen-Macaulay, $H_{\mathfrak{m}}^{i}(M)$ is zero or a co-Cohen-Macaulay of Noetherian dimension i by Lemma 3.8. By Lemma 2.1 this implies that x_{1} is a $H_{\mathfrak{m}}^{i}(M)$-coregular element. Thus $H_{\mathfrak{m}}^{i}(M) / x_{1} H_{\mathfrak{m}}^{i}(M)=0$ and $\left(0:_{H_{\mathfrak{m}}^{i}(M)} x_{1}\right)$ is zero or a co-Cohen-Macaulay module.

On the other hand, since x_{1} is a filter-regular element of M, we have $\operatorname{dim}\left(0:_{M} x_{1}\right)=0$. This yields the exact sequence

$$
0 \longrightarrow H_{\mathfrak{m}}^{j}(M) / x_{1} H_{\mathfrak{m}}^{j}(M) \longrightarrow H_{\mathfrak{m}}^{j}\left(M / x_{1} M\right) \longrightarrow\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x_{1}\right) \longrightarrow 0
$$

for all $j=1, \ldots, d-2$. Thus, $H_{\mathfrak{m}}^{j}\left(M / x_{1} M\right) \cong\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x_{1}\right)$ for all $j=$ $1, \ldots, d-2$. Therefore, for each $j \in\{1, \ldots, d\}, H_{\mathfrak{m}}^{j}\left(M / x_{1} M\right)$ vanishes or is a co-Cohen- Macaulay. Observe that $\underline{x}^{\prime}=\left(x_{2}, \ldots, x_{d}\right)$ is a filter regular sequence of $M / x_{1} M$. So we get claim (ii) by induction on d.
(iv) \Longrightarrow (i). We use induction on d. Clearly it is true for $d=1$. Suppose that $d \geqslant 2$ and that statement (i) is proved for all modules of dimension $<d$. It is easy to see, that x_{1} is a filter-regular element of M. Similarly as above, we obtain $H_{\mathfrak{m}}^{j}\left(M / x_{1} M\right) \cong\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x_{1}\right)$ for all $j=1, \ldots, d-2$. For each $j=1, \ldots, d-3$, this isomorphism and the inductive hypothesis give us that $\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x_{1}\right)$ is either zero a co-Cohen-Macaulay module of Noetherian dimension j.

If $\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x_{1}\right)=0$, then $H_{\mathfrak{m}}^{j+1}(M)=0$ by the Nakayama Lemma for Artinian modules (see [12]). If $\left(0:_{H_{\mathfrak{m}}^{j+1}(M)} x_{1}\right)$ is a co-Cohen-Macaulay module of Noetherian dimension j, then $H_{\mathfrak{m}}^{j+1}(M)$ is a Cohen-Macaulay module of dimension $j+1$.

As x_{1} is a $H_{\mathfrak{m}}^{1}(M)$ - coregular element, $H_{\mathfrak{m}}^{1}(M)$ is either zero or a co-CohenMacaulay module of Noetherian dimension 1. By [20, (5.5)], M is a sequentially Cohen- Macaulay module. The proof is now complete.
3.10 Corollary Any sequentially Cohen-Macaulay A-module is pseudo CohenMacaulay module.

References

[1] Auslander, M. and D. A. Buchsbaum, Codimension and multiplicity, Ann. of Math. 68(1958), 625-657.
[2] Brodmann, M. P. and R. Y. Sharp, "Local cohomology: an algebraic introduction with geometric applications", Cambridge University Press 1998.
[3] Cuong, N .T., On the least degree of polynomials bounding above the differences between lengths and multiplications of certain systems of parameters in local rings, Nagoya Math. J. 125(1992), 105-114.
[4] Cuong, N. T.; N. T. Hoa and N. T. H. Loan, On certain length functions associated to a system of parameters in local rings, Vietnam J. Math. 27(3) (1999), 259-272.
[5] Cuong N. T. and N.D. Minh, Lengths of generalized fractions of modules having small polynomial type, Math. Proc. Camb. Phil. Soc. 128(2000), 269-282.
[6] Cuong N.T., Morales M. and L. T. Nhan (2000), On the length of generalized fractions, prépublication de l'Institut Fourier n ${ }^{0} 539$.
[7] Cuong N.T. and L. T. Nhan, On the Noetherian dimension of Artinian modules, to appear in Vietnam J. Math.
[8] Cuong N. T. and L. T. Nhan, On pseudo Cohen-Macaulay modules and pseudo generalized Cohen-Macaulay modules, in preparation.
[9] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen Macaulay Moduln, Math. Nachr. 85 (1978), 57-75.
[10] Hartshorne R., "Residues and Duality", Lecture Notes in Mathematics, 20, Springer, 1966.
[11] Herzog J. and Sbarra E., Sequentially Cohen-Macaulay modules and local cohomology, in preparation.
[12] Kirby, D., Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford (2) 24 (1973), 47-57.
[13] Kirby, D., Dimension and length of Artinian modules, Quart. J. Math. Oxford (2) 41 (1990), 419-429.
[14] Matsumura, H., "Commutative ring theory ", Cambridge University Press, 1986.
[15] MacDonald, I. G, Secondary representation of modules over a commutative ring, Sympos. Math. 11 (1973), 23-43.
[16] Minh, N.D., On the least degree of polynomials bounding above the differences between multiplicities and length of generalized fractions, Acta Math. Vietnam. 20(1)(1995), 115-128.
[17] Ooishi, A., Matlis duality and the width of a module, Hiroshima Math. J. 6(1976), 573-587.
[18] Roberts, R.N., Krull dimension of Artinian of modules over quasi-local ring, Quart. J. Math. Oxford (3) 26 (1975), 269-273.
[19] Schenzel, P., "Dualisierende Komplexe in der lokalen Algebra und Buchsbaum Ringe", Lecture Notes in Mathematics 907, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
[20] Schenzel, P., On the dimension filtration and Cohen-Macaulay filtered modules, Commutative algebra and algebraic geometry, (Ferrara), 245264, Lecture Notes in Pure and Apl. Math., 206, Dekker, New York, 1999.
[21] Sharp, R. Y., Some results on the vanishing of local cohomology modules, Proc. London Math. Soc. (3) 30(1975), 177-195.
[22] Sharp, R. Y. and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra 38 (1985), 323-336.
[23] Sharp, R. Y. and H. Zakeri, Local cohomology and modules of generalized fractions, Mathematika 29(1982), 296-306.
[24] Stanley R.P., "Combinations and commutative algebra", Second edition, Progress in Math., Vol. 41, Birkhäuser Boston, 1996.
[25] Strooker J.R., "Homological Questions in Local Algebra ", LMS Lecture Note Series, 145.
[26] Tang, Z. and H. Zakeri, Co-Cohen- Macaulay modules and modules of generalized fractions, Comm. Algebra (6) 22(1994), 2173-2204.

[^0]: *The author is supported by the Swedish International Development Cooperation Agency (SIDA) and The Abdus Salam International Centre Theoretical of Physics (ICTP), Trieste, Italy.
 Key words: pseudo Cohen-Macaulay module, system of parameters, Noetherian dimension, coregular element, residual length,
 2000 Mathematics Subject Classification: 13C14, 13H14, 16E65, 16G50

