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1 Introduction

Throughout, (A, m) denotes a commutative Noetherian local ring with the max-
imal ideal m and M a finitely generated A-module with dim M = d. We denote
by Qas(z) the submodule of M defined by

Qu(z) = U ((x’f“, e @Y M x’f---xﬁ),

n>0

where z = (1, ..., 24) is a system of parameters on M. The submodule Qs (z)
is a useful tool in the study of Monomial Conjecture, determinant maps, top
local cohomology modules, modules of generalized fractions... (see [25], [4], [6]
and [8]).

1.1 Definition The module M is called pseudo Cohen-Macaulay if there
exists an system of parameters z on M such that e(z; M) = £a(M /Qn(z))

1.2 Example

If dim M =1, then M is pseudo Cohen-Macaulay by [22].

If M is Cohen-Macaulay, then one can easily see that Qas(z) = (21, ..., xg) M
for an abitrary system of parameters z = (1, ..., 24) of M. Thus every Cohen-
Macaulay module is a pseudo Cohen-Macaulay module. The converse may be
not true in general.
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146 System of parameters for pseudo-Cohen-Macaulay modules

This note presents some properties on systems of parameters of pseudo
Cohen-Macaulay modules.

2 Preliminaries

2.1 Secondary representation, cosequences, width,
Noetherian dimension of Artinian modules

Let L be an Artinian A-module with a minimal secondary representation
L=Cit - +Cy,

where each C; is p,- secondary. The finite set Att(L) = {py,...,p,} is called

the set of attached prime ideals of L. Set Ly = Z C;. Then Lg is
p.eAtt(L)\{m}

independent of the choice of the minimal secondary representation of L and is

called the residuum of L. Moreover, the length of the quotient module L / Lo

is finite. This length is called the residual length of L and denoted by R{(L).

An element a € A is called L-coregular element if L. = aL. The sequence

of elements a1, ..., a, of A is called an L-cosequence if 0 :, (a1, ...,a,) # 0 and

a; is 0 :p, (a1, ..., a;—1)-coregular element for every i = 1,...,n. We denote by
Width(L) the supremum of lengths of all L- cosequences in m.

An element a € m is called pseudo-L- coregular if a ¢ U p. Note
peAtt(L)\{m}
that for each pseudo-L-coregular element a € m, there exists s € N such that
a’L = L().

2.1 Lemma (cf. [2, (11.3.9) and (11.3.10)] ). Let p € Ass(M). Then,
Hg{m A/p(M) # 0 and p € Att(Hg{m A/p(M)). Moreover, Att(HH(M)) =
{p € Ass(M) | dim A/p = d}.

The Noetherian dimension of L, denoted by N- dimy4 L, is defined inductively
as follows: when L = 0, put N-dimy L = —1. For an integer d > 0, we put
N-dimy4 L = d if N- dimy L < d is false and for every ascending sequence Ly C
L; C .- of submodules of L, there exists ng such that N-dima (L, +1/L,) < d
for all n > ng.

It is easy to see that N-dim 4 L = 0 if and only if L is a non-zero Noetherian
module.

2.2 Lemma ([7]).
(i) For any exact sequence of Artinian A-molules

0—L —L—L'"—0
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we have N-dim L = max{N-dim L', N-dim L"}.
(ii) N-dim(L) < dim(L). The equality holds if A is complete.
(iii) N-dim (L) =N-dim (L) = dim(L).
(iv) N-dim(H{y(M)) <4, Vi =0, ...,d— 1 and N-dim(H& (M)) = d.

2.2 The invariants p(M), pf(M) and pseudo Cohen-Macaulay
modules.

Let z = (x1,...,z4) be an system of parameters of M and n = (nq,...,nq) a
d-tuple of positive integers. Set z(n) = (z7*, ..., z;*)A. Consider the differences
Ingg(n) = 0(M/z(n)M) —ny .. .nge(z; M);

Ing(n) =ni...ng e(z; M) —0(M/Qr(z(n))

as functions in nq, ..., ng, where e(xz; M) is the multiplicity of M with respect
to z and
Qu(z) = U (@ 2t M 2l al).
>0
In general, Ins z(n) and Jas z(n) are not polynomials for ny, . . ., ng large enough

(see [3], [6]). However they are bounded above by polynomials and the least
degree of all polynomials in n bounding above Ip.(n) (resp. Jumg(n)) is
independent of the choice of z, and it is denoted by p(M) (resp. pf(M)). The
invariant p(M) is called the polynomial type of M (see [3]) and the invariant
pf(M) is called the polynomial type of fractions of M (see [16], [5] and [4]).
For convenience we stipulate that the degree of the zero-polynomial is equal to
—00. One can easy to see that following the conditions are equivalent:

(i) M is pseudo Cohen-Macaulay

(i) (M) = —o0

(iii) For every system of parameters z on M we have e(z; M) = 4 (M /Qnm(z))

Let us list basic facts on p(M) and pf(M) from [3], [16], and [5].

2.3 Lemma ([3] and [5]).
() POM) = p(M/HQ(D) = b,y (VD)
pfa(M) =pfa (M /Hpy(M)) = pfA/Ann(M)(M)
(ii) pa(M) = pA(J/W\),pfA(M) = pfg(]\/j), where M is the m-adic comple-
tion of M.
(iii) Let z be an system of parameters of M with dim(0 : z1) < d—1. Then
pf(M /a1 M) < pf(M) < pf(M/x1M) + 1.

2.4 Lemma ([5, (3.4) and (3.5)] ).
(i) p(M)<dim M —1 and if dimM =d > 1 then pf(M) < d—2 .
(it) pf(M) < p(M). If depth(M) > p(M) then pf(M) = p(M).
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2.5 Lemma ([5, (3.6)] ).
(i) If pf(M) = —o0 then H{y(M) =0 for all i =p(M)+1,...,d — 1.
(ii) If pf(M) < 0 then ((H{L(M)) < oo for all i = p(M) +1,...,d— 1.

2.6 Proposition Assume that dim M =d > 1. Then,
() p(M) = max (N-clim Hiy(M)),
(ii) Suppose that p = p(M) > 0. Set Q = UAtt(H&(M)) \ {m}. Let = be
a parameter element of M such that x ¢ pUQ 1;? Then p(M/xM) = p(M) — 1.
=

Proof (i). Denote a;(M) be the annihilator of the i-th local cohomology
module H{,(M) of M with respect to the maximal ideal m and set a(M) =
ag(M)---ag—1(M). It follows from Lemma 2.3, [3, (3.1)] and Lemma 2.2 that

pa(M) = p;(M) = dim; A/a(M) = max {dimg H%l(M)}
= max {N- dimg(Hf%(M))} = max {N-dim (His(M))}

(i1). Let = ¢ |J p be a parameter element of M. Choose g, ...,zq € A such
peQ

that z = (z, x2, ..., £4) is an system of parameters of M. For each q € Ass(M)

with dim A/q > p(M) we have q € Att(Hg{m A/ (M)) by Lemma 2.1. Thus

x ¢ q for each q € Ass(M) with dim(A/q) > p. This implies that dim (0 :ps

x) < p < dim M. Hence, e(z'; M/xM) = e(xz; M) where 2’ = (z2,...,24). By

[3] (2.2), we get

Ing(n,z) < madpr((1,n2, ., na); 2) = nadarsan (02, .0, na); ),

where n = (n1,ng,...,ng) is a d-tuple positive integers. Therefore p(M) <
p(M/xM) + 1.

We next show the converse inequality p(M/zM)+1 < p(M). As p(M) > 0,
we need only to argue for p(M/xM) > 0. By the statement (i), there exists
j €{0,...,d— 2} such that p(M/xM) = N-dim H} (M/xM). There are only
two situations arising.

Case 1: 0 < j < p. In this case

p(M/xM) = N-dim (Hjp(M/aM)) < j <p—1

by Lemma 2.2. '
Case 2: p < j < d—2. As dim(0 :iy 2) < p < j, we have Hj (0 1 z) =
HY 1(0:as ) = 0. Therefore, the exact sequences

O—>(O:Mx)—>M—>M/(O:Mx)—>O
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and
0— M/ 2) > M— M/zM—0

induce an exact sequence of local cohomology modules

0 — H,(M)/xHI, (M) — Hl,(M/zM) — (0 on ©) — 0 (1)

By our assumption, =z is pseudo—H{.'a(M )- coregular. Consequently,
N-dim (Hjy (M) /xH}y(M)) < 0. Moreover, when N-dim(HJ{"'(M)) > 0,
¢ | p implies that = is a parameter element on Hy,™' (M) so that

peo

N-dim (0 : 511 (yp) @) = N-dim (H (M) - 1.
It now follows from the exact sequence (1) that
0 <p(M/zM)=N-dim (Hj,(M/xM))
— max {N- dim (i (M) /2 Hj, (M)); N-dim (0 01y x)}
= N-dim (0 1y () #) = N-dlim (HT (M) =1 < p(M) — 1. O
2.7 Lemma Let x = (x1,x2,...,24) be a system of parameters of M. Put

My = M /x1M. For each n’ = (na,...,ng) € N4, set 2'(n) := (ah?, ..., 2}}")
and z(n') = (z1, 252, ...,x;*). Then, there exists an epimorphism

e My /Qu, (2 () — M /Qui(z(n))

defined by o (T + Qur, (2'(n))) = u+ Qu(z(n')) for each u € M.
Moreover, if x1 ¢ U q, then for allns, ..., ng enough large,
qeAtt(Hgy ' (M)\{m}
we have an eract sequence

0 — HEY(M) /e HE (M) — My /Qun (@' (') 22 M/Qui(z(n’)) — 0.

Proof For d—tuples of positive integers n = (n1,...,nq) and m = (my,...,mq)
we define n < m if n; < m; for all 7. Then the map

On.m + M/Qu(z(n)—M/Qun(z(m)),

d
which is defined by pm (v + Qu(z(n))) = Hx;”_"u + Qum(z(m)) for each

i=1
u € M, is injective by [4, (3.1)]. Moreover, {dpm; M/Qum(z(n))} forms a
direct system and lim M/Q s (z(n)) = Hijy(M).

n
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Similarly, we also have the direct system {0n/ m; M1 /Qur(2/(n'))} and
lim My /Qu, (2 () = Hyy ' (My).
~ Forn' < m/ with 0/ = (ng,...,ng) and m’ = (my, ..., mg), we have the
following commutative diagram with exact rows

0 . Ker o o Mi/Qun, (2'(n)) _»goﬂr M/Qu(z(n) — 0

T/ ;m/ O/ On’,m/

0 Ker om v My/Qun(a/(m)) 220 M/Quz(m')) — 0

where 7,/ is the reduced homomorphism. Thus, {7, m;Ker ¢} and
{6/ ,m; M/Qun(z(n'))} form direct systems. Therefore, we obtain the follow-
ing commutative diagram with exact rows

0 » Ker o o Mi/Qu, (2’ (1)) P M/Qu(z(n')) — 0

7'('2/ 511’ 511’

0 . limKer gy o Hp'(M) 2 lim M/Qu(z(®)) . 0

where 7/, 0 and 0, are the natural homomorphisms and v = lim ¢,/ Since
the homomorphisms 8,/ ', Op/ m and T, v are injective, we have 8,7, 0,7 and
Ty are injective.

By Lemma 2.1, 1 ¢ q for all ¢ € Ass(M) with dimA/q > d — 1. Thus
dim(0 :ar z1) < d — 1 and then Hiy(M/(0 :ar z1)) = Hiy(M) for i > d — 1.
Therefore, from the exact sequence

O—>M/(O M Z1) 5 M—M, — 0,
we have an exact sequence of local cohomology modules
0— Hig (M) o Hig (M) — Hig ' (M) = — Hip (M),

where A is the connecting homomorphism.
Further, we can also show a monomorphism j : lim , M /Qu(z(n)) —

H2 (M) such that the following diagram is commutative
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HE (M) lim , M /Qun(z(n))

A i

Hip (M)

Hence lim Ker ¢, = Keru = KerA = Hﬁ{l(M)/legL_l(M). Since
Hi (M) /x1Hygy '(M) has finite length by the choice of x1, 7, is an iso-
morphism for enough large n’ (n’ > 0 for short). So we get

Ker ¢, = HE (M) )z HEZH (M)
for n/ > 0 as required. O

2.8 Corollary Let M be a pseudo Cohen-Macaulay module with p := p(M) >
0. Let x1 be a parameter element with dim(0 :ps 1) < d — 1. Then 1 is a
HE T (M)-coregular element.

Proof With the same notations and using the same argument in the proof of
Lemma 2.7 we have lim Ker ¢, = HE (M) )z HEH(M). On the other hand,

by virtue of Lemma 5.3, M is a pseudo Cohen- Macaulay module. Thus,
Ca(M/Qu(a(n'))) = e(z(n'); M) = e('(0); My) = La (M1 /Qu, (z' ())).

Therefore, the epimorphism ¢, : Mi/Qar, (2 (n)) — M /Qn(z(n)) defined
in Lemma 2.7 must be an isomorphism. This implies that Kery, = 0 for
all n’ € N*"!. Hence lim Ker ¢,y = 0 and so Hy, (M) = z1Hp '(M), as

required. ([l

3 Parametric characterizations for pseudo
Cohen-Macaulay modules

Following [3], a subsequence (z1,...,x;) of a system of parameters of M is
called a reducing sequence if z; ¢ p for all p € Ass(M /(1,...,x;—1)M) with
dimA/p > d—14, (i =1,....j). Note that if z = (21, ...,xq) is a system of
parameters on M and z1,...,T4—1 form a reducing sequence, then z is just a
reducing system of parameters as introduced in [1]. It should be mentioned
that every A-module admits a reducing parameter system of parameters.
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3.1 Definition Let z = (z1,...,2:) be a sequence of elements in m. We set
M; == M/(21,...,2;)M for all i = 0,...,t. The sequence z is called pseudo
regular for M if x; is an Hﬁl{i(Mi_l)— coregular element for all 7+ = 1,...,¢.
If £ = (x1,...,24) is an system of parameters on M and (z1,...,x4—1) forms a
pseudo regular sequence, then it is called a pseudo reqular system of parameters.

3.2 Remark

(i) An abitrary system of parameters of a Cohen- Macaulay module M is a
pseudo regular system of parameters

(ii) z = (x1, ..., x¢) is a pseudo regular sequence of M if and only if (x4, ...,
xj_1) is pseudo regular sequence of M and (xj,...,x¢) is a pseudo regular se-
quence of M;_; for each j =2,...,t.

(iii) By Lemma 2.1, every pseudo regular system of parameters for M is a
reducing system of parameters of M.

3.3 Theorem Assume that dim M = d > 1. Then the following statements
are equivalent:

(i) M is pseudo Cohen-Macaulay;

(ii) Any reducing system of parameters of M is pseudo regular system of
parameters;

(iii) M admits a reducing system of parameters which is pseudo reqular
system of parameters;

(iv) M admits a pseudo reqular system of parameters.

Proof It suffices to prove that (i) = (ii) and (iv) = (i).

(i) = (ii). We prove by induction on d. Let d = 2 and assume that x = (1, z2)
is a reducing system of parameters of M. By Corollary 2.8, z; is Hj,(M)-
coregular and then z is pseudo regular system of parameters of M. Suppose
that d > 2 and that our assertion is true for all pseudo Cohen- Macaulay
A-modules of smaller dimension.

Let z = (x1,...,zq) be a reducing system of parameters of M. As dim(0 :
z1) < d—1, then My := M /z;M is pseudo Cohen-Macaulay by virtue of
Lemma 2.3 (iii). The inductive hypothesis implies that (xa, ..., z4) is a pseudo
regular system of parameters of M;.

The induction is finished now by Corollary 2.8 and Remark 3.2 (ii).

(iv) = (i). Again we use induction on d. Let d = 2, and assume that M has a
pseudo regular system of parameters , say x = (71, 72). Let n = (ny,n2) € N2,
By [22, (3.2)], Jmg(n) = RI(HE(M)) for all ny,ne > 0. As zy is Hpy(M)-
coregular, it follows that RI(Hgy(M)) = 0 and so M is pseudo Cohen-Macaulay.

Assume that d > 2 and & = (21, Z9, ..., 24) is a pseudo regular system of pa-
rameters for M. Then 2’ = (x3, ..., x4) is a pseudo regular system of parameters
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for M, = M/le. For all na,...,ng > 1, set z(n') = (x1, 252, ...,25%),2'(n)
= (32, ..., 2;%). The inductive hypothesis gives

z'(n'); My) = 0(M:1/Qur, 2/ (n))). (2)

On the other hand, Lemma 2.1 shows that x; ¢ p, for all p € Ass(M) with
dim A/p > d — 1. We thus have dim(0 : z1) < d — 1 and hence

e(z'(n'); My) = e(z(n'); M). (3)

Take no, ..., ng large enough to obtain the exact sequence defined in Lemma
2.7,

0 — Hyg '(M) /a1 Hy ' (M) — Mi/Q (2 () — M /Qur(z(n) — 0.
As 21 is Hiy H(M)-coregular, we obtain from above exact sequence that

Ca(Mi/Qur, (2 (n))) = €a (M /Qui(2(n))). (4)
Combining (2), (3) and (4), for all na, ..., ng > 0, we get
e(z(n'); M) = £a(M/Qun(z(n)))

and this finishes our proof. O

According to [9], M is called an f-module if every system of parame-
ters z = (x1,...,24) is a M-filter regular sequence, i.e. x; ¢ q for all q €
ASS(M/(xla "'7xi—1)M) \ {m}a (Z = 1) 7d)

We next combine Theorem 3.3 with [9, (2.5) and (2.11)] to obtain

3.4 Corollary M is both f-module and pseudo Cohen-Macaulay if and only
if every system of parameters for M is pseudo regular system of parameters.

3.5 Theorem Suppose that p = p(M) > 0. Then M is pseudo Cohen-
Macaulay if and only if Hiy (M) =0 for alli = p+1,...,d—1 and there exists a
subsystem of parameters (zx1,...,xp) on M such that x; is an Hg{“’l(Mi_l)_
coreqular element for all i =1, ..., p.

Proof Assume that M is pseudo Cohen-Macaulay with p(M) > 0. Then
H{ (M) =0foralli=p+1,..,d—1by Lemma 2.5. It follows from Corollary
2.8 that Width(Hg, ' (M)) > 0 and that m ¢ Att(Hp, (M)). Set

P={qe€Ass(M) |dimA/q=d} U Att(HZ(M))
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and choose 1 ¢ U q. Obviously, z; is a parameter element of M and also a
qep

HZE, (M)-coregular element. Observe that p(M/x1M) = p(M) — 1 by Proposi-

tion 2.6. Now the existence of the required subsystem of parameters (x1, ..., T;)

follows by induction on p.

Conversely, assume that Hj (M) =0 for alli =p+1,...,d—1 and that M
admits a subsystem of parameters (z1,...,%p) such that x; is an H{;{Hl(M )-
coregular element for all ¢ = 1, ..., p. Take xp11, ..., z4 such that z = (z1, ..., zp,
Tp41, ..., Tq) becomes an system of parameters on M. We will prove by induc-
tion on p that Jas ,(n) =0 for all n > 0.

The case p = 1 was proved in [5, (4.4)].

Assume that p > 1 and that our claim is true for all modules with poly-
nomial type less than p. Set M; = M /21 M. Because Hjy(M) = 0 for all
i=p+1,...,d—1and z; is Hf (M)-coregular, Lemma 2.1 shows that z; ¢ g
for all ¢ € Ass(M) with dim A/q > p. Therefore dim(0 :as 1) < p < d —
1,e(x1,...,xq; M) = e(xa, ..., xqg; M7) and (by Proposition 2.6) p(M;) =p—1 >
0. Furthermore, for all ny, ...,ng > 0, Lemma 2.7 gives us M /Qr, (z'(n)) =
M/Qum(z(n))), where z/(n') = (z5?,...,z}%) and z(n') = (z1, 252, ..., 2%).
Hence

JMQ(Q) = J]\/[17£’(ﬂ/),vn2, ceeyg > 0. (5)

On the other hand, since dim(0 :ps 1) < p for each ¢ € {p, ...,d — 1}, we have
an exact sequence

0 — Hin(M)/ 21 Hi, (M) — Hin(M:) — (0 3y 21) — 0 (6)

Since Hid(M) =0 for all i = p,...,d — 2 and (H&(M)/le&(M)) — 0, the

exact sequence (6) implies Hyy (M;) = 0 for all i = p, ...,d — 2. The induction
is complete by applying the inductive hypothesis to M; and using the equality
(5). O

The next result is an immediate consequence of Theorem 3.5 and Proposi-
tion 2.6 (ii).

3.6 Corollary Let M be pseudo Cohen-Macaulay with p = p(M) > 0. Then
M admits a subsystem of parameters (z1,...,xp) such that

N — dim(HE (M) =p—i+1

and
Width(HE " (M;_1)) > min{2,p —i + 1}.

foralli=1,... p.
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The rest of this section is devoted to results on sequentially Cohen-Macaulay
modules. These modules was first introduced by P. Stanley in [24] (Chapter
III, 2.9) in the graded case. We recall here a definition for the local case from

[8].

3.7 Definition ([8, (4.1)]. A filtration 0 = Ny C N7y C ... C N = M of
submodules of M is said to be a Cohen-Macaulay filtration if

(a) Each quotient N;/N;_; is Cohen-Macaulay.

(b) dlle/N() < dlmNQ/Nl <. < dimNt/Nt_l.

We say that M is sequentially Cohen-Macaulay if it admits a Cohen-
Macaulay filtration.

3.8 Lemma Let M be a sequentially Cohen- Macaulay A-module. Then, for
all each i =0, ..., d, the local cohomology module Hiy (M) vanishes or is a co-
Cohen- Macaulay module of Noetherian dimension i.

Proof Let {M;}o<ica be a Cohen-Macaulay filtration of M. Set M, =
M;/M;—q for all i = 1,...,d and My = My. If M, does not vanish, then it
is Cohen- Macaulay module of dimension 4. It follows from [17] and [7, (3.5)]
that

Width(H{y(M;)) = i = N — dim(H{y (M;)).

Since Hyy(M) =2 Hi(M;), Vi > 0 by [20] (5.4), this equality shows that
Hi, (M) is a co-Cohen-Macaulay module. O

3.9 Theorem Suppose that d > 1. Then the following conditions are equiva-
lent:

(i) M is a sequentially Cohen-Macaulay module;

(i) If z = (21, ..., xq) is an abitrary filter-regular system of parameters of M
then x; is a coregular element on Hy (M/(z1,...,xi—1)M) forallj =1,...,d—1
and alli=1,...,d—1;

(iii) There exists a filter-regular system of parameters x = (r1,...,xq) of
M such that z; is a coregular element on Hyy(M/(z1,...,x;-1)M) for all j =
1,....,d—iand alli=1,...,d—1;

(iv) There exists a system of parameters x = (v1,...,xq) of M such that x;
is a coregular element on Hyy(M/ (21, ...,xi—1)M) for all j =1,...,d—i and all
i=1,...d—1.

Proof It is enough to prove (i) = (ii) and (iv) = (i).

(i) = (ii). We make induction on d. It is clearly true for d = 1. Suppose that
d > 2 and that statement (ii) is true for all modules of dimension < d.
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Let z = (x1,...,2q) be a filter regular system of parameters of M. Let
i € {0,...,d}.Since M is a sequentially Cohen-Macaulay, H}, (M) is zero or a co-
Cohen-Macaulay of Noetherian dimension ¢ by Lemma 3.8. By Lemma 2.1 this
implies that z1 is a Hy, (M )-coregular element. Thus Hj, (M) /x1Hiy(M) =0
and (0 : Hipy (M) x1) is zero or a co-Cohen-Macaulay module.

On the other hand, since x; is a filter-regular element of M, we have
dim(0 :ps 1) = 0. This yields the exact sequence

0 — H (M) /xy Hiy (M) — H}(M/x,M) — (0 gty 1) — 0

for all j = 1,....,d — 2. Thus, H}(M/z:M) = (0 S () xp) for all j =

1,...,d — 2. Therefore, for each j € {1,...,d}, an(M/le) vanishes or is a
co-Cohen- Macaulay. Observe that ' = (z2, ..., z4) is a filter regular sequence
of M/x1M. So we get claim (ii) by induction on d.

(iv) = (i). We use induction on d. Clearly it is true for d = 1. Suppose
that d > 2 and that statement (i) is proved for all modules of dimension
< d. It is easy to see, that x; is a filter-regular element of M. Similarly as
above, we obtain Hj, (M/z1M) = (0 () xq1) for all j =1,...,d — 2. For
each 7 = 1,...,d — 3, this isomorphism and the inductive hypothesis give us
that (0 : 541y 1) is either zero a co-Cohen-Macaulay module of Noetherian
m
dimension j.
If (0 LRI (M) x1) = 0, then H{.‘fl(M) = 0 by the Nakayama Lemma for
m
Artinian modules (see [12]). If (0 : ys41 ) #1) is a co-Cohen-Macaulay module
m
of Noetherian dimension j, then H{ Y(M) is a Cohen-Macaulay module of

dimension j + 1.

As 1 is a Hpy(M)- coregular element, Hy, (M) is either zero or a co-Cohen-
Macaulay module of Noetherian dimension 1. By [20, (5.5)], M is a sequentially
Cohen- Macaulay module. The proof is now complete. O

3.10 Corollary Any sequentially Cohen-Macaulay A-module is pseudo Cohen-
Macaulay module.
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