SYSTEM OF PARAMETERS FOR PSEUDO COHEN-MACAULAY MODULES

Nguyen Thai Hoa and Nguyen Duc Minh*

 $\begin{array}{c} Department\ of\ Mathematics,\ Quynhon\ University,\ Vietnam\\ e-mail:\ minhnd45@hotmail.com \end{array}$

1 Introduction

Throughout, (A, \mathfrak{m}) denotes a commutative Noetherian local ring with the maximal ideal \mathfrak{m} and M a finitely generated A-module with dim M = d. We denote by $Q_M(\underline{x})$ the submodule of M defined by

$$Q_M(\underline{x}) = \bigcup_{n>0} ((x_1^{n+1}, ..., x_d^{n+1})M : x_1^n \cdots x_d^n),$$

where $\underline{x} = (x_1, ..., x_d)$ is a system of parameters on M. The submodule $Q_M(\underline{x})$ is a useful tool in the study of Monomial Conjecture, determinant maps, top local cohomology modules, modules of generalized fractions... (see [25], [4], [6] and [8]).

1.1 Definition The module M is called pseudo Cohen-Macaulay if there exists an system of parameters \underline{x} on M such that $e(\underline{x}; M) = \ell_A(M/Q_M(\underline{x}))$

1.2 Example

If dim M = 1, then M is pseudo Cohen-Macaulay by [22].

If M is Cohen-Macaulay, then one can easily see that $Q_M(\underline{x}) = (x_1, ..., x_d)M$ for an abitrary system of parameters $\underline{x} = (x_1, ..., x_d)$ of M. Thus every Cohen-Macaulay module is a pseudo Cohen-Macaulay module. The converse may be not true in general.

^{*}The author is supported by the Swedish International Development Cooperation Agency (SIDA) and The Abdus Salam International Centre Theoretical of Physics (ICTP), Trieste, Italy.

Key words: pseudo Cohen-Macaulay module, system of parameters, Noetherian dimension, coregular element, residual length,

²⁰⁰⁰ Mathematics Subject Classification: 13C14, 13H14, 16E65, 16G50

This note presents some properties on systems of parameters of pseudo Cohen-Macaulay modules.

2 Preliminaries

2.1 Secondary representation, cosequences, width, Noetherian dimension of Artinian modules

Let L be an Artinian A-module with a minimal secondary representation

$$L = C_1 + \dots + C_n,$$

where each C_i is \mathfrak{p}_i - secondary. The finite set $\mathrm{Att}(L) = \{\mathfrak{p}_1, ..., \mathfrak{p}_n\}$ is called the set of attached prime ideals of L. Set $L_0 = \sum_{\mathfrak{p}_i \in \mathrm{Att}(L) \setminus \{\mathfrak{m}\}} C_i$. Then L_0 is

independent of the choice of the minimal secondary representation of L and is called the residuum of L. Moreover, the length of the quotient module L/L_0 is finite. This length is called the residual length of L and denoted by $R\ell(L)$.

An element $a \in A$ is called *L*-coregular element if L = aL. The sequence of elements $a_1, ..., a_n$ of A is called an *L*-cosequence if $0 :_L (a_1, ..., a_n) \neq 0$ and a_i is $0 :_L (a_1, ..., a_{i-1})$ -coregular element for every i = 1, ..., n. We denote by Width(L) the supremum of lengths of all L- cosequences in \mathfrak{m} .

An element $a \in \mathfrak{m}$ is called pseudo-L- coregular if $a \notin \bigcup_{\mathfrak{p} \in \operatorname{Att}(L) \setminus \{\mathfrak{m}\}} \mathfrak{p}$. Note that for each pseudo-L-coregular element $a \in \mathfrak{m}$, there exists $s \in \mathbb{N}$ such that $a^s L = L_0$.

2.1 Lemma (cf. [2, (11.3.9) and (11.3.10)]). Let $\mathfrak{p} \in \mathrm{Ass}(M)$. Then, $H^{\dim A/\mathfrak{p}}_{\mathfrak{m}}(M) \neq 0$ and $\mathfrak{p} \in \mathrm{Att}(H^{\dim A/\mathfrak{p}}_{\mathfrak{m}}(M))$. Moreover, $\mathrm{Att}(H^{d}_{\mathfrak{m}}(M)) = \{\mathfrak{p} \in \mathrm{Ass}(M) \mid \dim A/\mathfrak{p} = d\}$.

The Noetherian dimension of L, denoted by N- $\dim_A L$, is defined inductively as follows: when L=0, put N- $\dim_A L=-1$. For an integer $d\geqslant 0$, we put N- $\dim_A L=d$ if N- $\dim_A L< d$ is false and for every ascending sequence $L_0\subseteq L_1\subseteq \cdots$ of submodules of L, there exists n_0 such that N- $\dim_A (L_{n+1}/L_n)< d$ for all $n>n_0$.

It is easy to see that N-dim $_A L = 0$ if and only if L is a non-zero Noetherian module.

2.2 Lemma ([7]).

(i) For any exact sequence of Artinian A-molules

$$0 \longrightarrow L' \longrightarrow L \longrightarrow L'' \longrightarrow 0$$

we have N-dim $L = \max\{N$ -dim L', N-dim L''.

- (ii) N-dim $(L) \leq \dim(L)$. The equality holds if A is complete.
- (iii) $N\operatorname{-dim}_A(L) = N\operatorname{-dim}_{\widehat{A}}(L) = \dim_{\widehat{A}}(L)$.
- (iv) N-dim $(H^{i}_{\mathfrak{m}}(M)) \leq i$, $\forall i = 0, ..., d-1 \text{ and } N$ -dim $(H^{d}_{\mathfrak{m}}(M)) = d$.

2.2 The invariants p(M), pf(M) and pseudo Cohen-Macaulay modules.

Let $\underline{x} = (x_1, ..., x_d)$ be an system of parameters of M and $\underline{n} = (n_1, ..., n_d)$ a d-tuple of positive integers. Set $\underline{x}(\underline{n}) = (x_1^{n_1}, ..., x_d^{n_d})A$. Consider the differences

$$I_{M,\underline{x}}(\underline{n}) = \ell(M/\underline{x}(\underline{n})M) - n_1 \dots n_d e(\underline{x}; M);$$

$$J_{M,\underline{x}}(\underline{n}) = n_1 \dots n_d \ e(\underline{x}; M) - \ell(M/Q_M(\underline{x}(\underline{n})))$$

as functions in n_1, \ldots, n_d , where $e(\underline{x}; M)$ is the multiplicity of M with respect to \underline{x} and

$$Q_M(\underline{x}) = \bigcup_{t>0} ((x_1^{t+1}, ..., x_d^{t+1})M : x_1^t ... x_d^t).$$

In general, $I_{M,\underline{x}}(\underline{n})$ and $J_{M,\underline{x}}(\underline{n})$ are not polynomials for n_1,\ldots,n_d large enough (see [3], [6]). However they are bounded above by polynomials and the least degree of all polynomials in \underline{n} bounding above $I_{M,\underline{x}}(\underline{n})$ (resp. $J_{M,\underline{x}}(\underline{n})$) is independent of the choice of \underline{x} , and it is denoted by p(M) (resp. pf(M)). The invariant p(M) is called the polynomial type of M (see [3]) and the invariant pf(M) is called the polynomial type of fractions of M (see [16], [5] and [4]). For convenience we stipulate that the degree of the zero-polynomial is equal to $-\infty$. One can easy to see that following the conditions are equivalent:

- (i) M is pseudo Cohen-Macaulay
- (ii) $pf(M) = -\infty$
- (iii) For every system of parameters \underline{x} on M we have $e(\underline{x}; M) = \ell_A(M/Q_M(\underline{x}))$

Let us list basic facts on p(M) and pf(M) from [3], [16], and [5].

2.3 Lemma ([3] and [5]).

(i)
$$p(M) = p(M/H_{\mathfrak{m}}^{0}(M)) = p_{A/\operatorname{Ann}(M)}(M)$$

 $pf_{A}(M) = pf_{A}(M/H_{\mathfrak{m}}^{0}(M)) = pf_{A/\operatorname{Ann}(M)}(M)$

- (ii) $p_A(M) = p_{\widehat{A}}(\widehat{M}), pf_A(M) = pf_{\widehat{A}}(\widehat{M}), \text{ where } \widehat{M} \text{ is the m-adic completion of } M.$
 - (iii) Let x be an system of parameters of M with $\dim(0:x_1) < d-1$. Then

$$pf(M/x_1M) \leqslant pf(M) \leqslant pf(M/x_1M) + 1.$$

- **2.4 Lemma** ([5, (3.4) and (3.5)]).
 - (i) $p(M) \leq \dim M 1$ and if $\dim M = d > 1$ then $pf(M) \leq d 2$.
 - (ii) $pf(M) \leq p(M)$. If depth(M) > p(M) then pf(M) = p(M).

2.5 Lemma ([5, (3.6)]).

- (i) If $pf(M) = -\infty$ then $H^i_{\mathfrak{m}}(M) = 0$ for all i = p(M) + 1, ..., d 1.
- (ii) If $pf(M) \leq 0$ then $\ell(H^i_{\mathfrak{m}}(M)) < \infty$ for all i = p(M) + 1, ..., d 1.
- **2.6 Proposition** Assume that dim $M = d \geqslant 1$. Then,
 - (i) $p(M) = \max_{0 \le i \le d-1} \{ N \text{-} \dim H^i_{\mathfrak{m}}(M) \},$
- (ii) Suppose that p = p(M) > 0. Set $Q = \bigcup_{i=p}^{d-1} \operatorname{Att}(H^i_{\mathfrak{m}}(M)) \setminus \{\mathfrak{m}\}$. Let x be a parameter element of M such that $x \notin \bigcup_{\mathfrak{p} \in Q} \mathfrak{p}$. Then p(M/xM) = p(M) 1.

Proof (i). Denote $a_i(M)$ be the annihilator of the *i*-th local cohomology module $H^i_{\mathfrak{m}}(M)$ of M with respect to the maximal ideal \mathfrak{m} and set $\mathfrak{a}(M) = \mathfrak{a}_0(M) \cdots \mathfrak{a}_{d-1}(M)$. It follows from Lemma 2.3, [3, (3.1)] and Lemma 2.2 that

$$\begin{split} p_A(M) &= p_{\widehat{A}}(\widehat{M}) = \dim_{\widehat{A}} \, \widehat{A}/a(\widehat{M}) &= \max_{0 \leqslant i \leqslant d-1} \left\{ \dim_{\widehat{A}} H^i_{\widehat{\mathfrak{m}}}(\widehat{M}) \right\} \\ &= \max_{0 \leqslant i \leqslant d-1} \left\{ \operatorname{N-dim}_{\widehat{A}}(H^i_{\widehat{m}}(\widehat{M})) \right\} &= \max_{0 \leqslant i \leqslant d-1} \left\{ \operatorname{N-dim}(H^i_{\mathfrak{m}}(M)) \right\}. \end{split}$$

(ii). Let $x \notin \bigcup_{\mathfrak{p} \in \mathcal{Q}} \mathfrak{p}$ be a parameter element of M. Choose $x_2,...,x_d \in A$ such that $\underline{x} = (x, x_2,...,x_d)$ is an system of parameters of M. For each $\mathfrak{q} \in \mathrm{Ass}(M)$ with dim $A/\mathfrak{q} \geqslant p(M)$ we have $\mathfrak{q} \in \mathrm{Att}(H^{\dim A/\mathfrak{q}}_{\mathfrak{m}}(M))$ by Lemma 2.1. Thus $x \notin \mathfrak{q}$ for each $\mathfrak{q} \in \mathrm{Ass}(M)$ with $\dim(A/\mathfrak{q}) \geqslant p$. This implies that $\dim(0:_M x) . Hence, <math>e(\underline{x}'; M/xM) = e(\underline{x}; M)$ where $\underline{x}' = (x_2, ..., x_d)$. By [3] (2.2), we get

$$I_M(n,x) \leq n_1 I_M((1,n_2,...,n_d);x) = n_1 I_{M/xM}((n_2,...,n_d);x'),$$

where $\underline{n} = (n_1, n_2, ..., n_d)$ is a *d*-tuple positive integers. Therefore $p(M) \leq p(M/xM) + 1$.

We next show the converse inequality $p(M/xM) + 1 \le p(M)$. As p(M) > 0, we need only to argue for p(M/xM) > 0. By the statement (i), there exists $j \in \{0, ..., d-2\}$ such that $p(M/xM) = \text{N-dim } H^j_{\mathfrak{m}}(M/xM)$. There are only two situations arising.

<u>Case 1:</u> $0 \le j < p$. In this case

$$p(M/xM) = \text{N-dim}(H^j_{\mathfrak{m}}(M/xM)) \leqslant j \leqslant p-1$$

by Lemma 2.2.

Case 2: $p \leqslant j \leqslant d-2$. As dim $(0:_M x) , we have <math>H^j_{\mathfrak{m}}(0:_M x) = H^{j+1}_{\mathfrak{m}}(0:_M x) = 0$. Therefore, the exact sequences

$$0 \longrightarrow (0:_M x) \longrightarrow M \longrightarrow M/(0:_M x) \longrightarrow 0$$

and

$$0 \longrightarrow M/(0:_M x) \stackrel{x}{\longrightarrow} M \longrightarrow M/xM \longrightarrow 0$$

induce an exact sequence of local cohomology modules

$$0 \longrightarrow H^{j}_{\mathfrak{m}}(M)/xH^{j}_{m}(M) \longrightarrow H^{j}_{\mathfrak{m}}(M/xM) \longrightarrow (0:_{H^{j+1}_{\mathfrak{m}}(M)} x) \longrightarrow 0 \qquad (1)$$

By our assumption, x is pseudo- $H_{\mathfrak{m}}^{j}(M)$ - coregular. N-dim $(H^j_{\mathfrak{m}}(M)/xH^j_{\mathfrak{m}}(M)) \leq 0$. Moreover, when N-dim $(H^{j+1}_{\mathfrak{m}}(M)) > 0$, $x \notin \bigcup \mathfrak{p}$ implies that x is a parameter element on $H^{j+1}_{\mathfrak{m}}(M)$ so that

$$\operatorname{N-dim}\left(0:_{H^{j+1}_{\mathbf{m}}(M)}x\right) = \operatorname{N-dim}\left(H^{j+1}_{\mathbf{m}}(M)\right) - 1.$$

It now follows from the exact sequence (1) that

$$\begin{array}{ll} 0 & < p\left(M/xM\right) = \operatorname{N-dim}\left(H^{j}_{\mathfrak{m}}(M/xM)\right) \\ & = \max\left\{\operatorname{N-dim}\left(H^{j}_{\mathfrak{m}}(M)/xH^{j}_{m}(M)\right); \ \operatorname{N-dim}\left(0:_{H^{j+1}_{\mathfrak{m}}(M)}x\right)\right\} \\ & = \operatorname{N-dim}\left(0:_{H^{j+1}_{\mathfrak{m}}(M)}x\right) = \operatorname{N-dim}\left(H^{j+1}_{\mathfrak{m}}(M)\right) - 1 \leqslant p(M) - 1. \end{array} \qquad \square$$

2.7 Lemma Let $\underline{x} = (x_1, x_2, ..., x_d)$ be a system of parameters of M. Put $M_1 = M/x_1M$. For each $\underline{n}' = (n_2, ..., n_d) \in \mathbb{N}^{d-1}$, set $\underline{x}'(\underline{n}') := (x_2^{n_2}, ..., x_d^{n_d})$ and $\underline{x}(\underline{n}') = (x_1, x_2^{n_2}, ..., x_d^{n_d})$. Then, there exists an epimorphism

$$\varphi_{n'}: M_1/Q_{M_1}(\underline{x}'(\underline{n}')) \longrightarrow M/Q_M(\underline{x}(\underline{n}'))$$

defined by $\varphi_{\underline{n}'}(\overline{u} + Q_{M_1}(\underline{x}'(\underline{n}'))) = u + Q_M(\underline{x}(\underline{n}'))$ for each $u \in M$. $Moreover, if x_1 \notin \bigcup_{\mathfrak{q} \in \operatorname{Att}(H^{d-1}_{\mathfrak{m}}(M)) \backslash \{\mathfrak{m}\}} \mathfrak{q}, \ then \ for \ all \ n_2, ..., n_d \ enough \ large,$

we have an exact sequence

$$0 \longrightarrow H^{d-1}_{\mathfrak{m}}(M) / x_1 H^{d-1}_{\mathfrak{m}}(M) \longrightarrow M_1 / Q_{M_1}(\underline{x}'(\underline{n}')) \stackrel{\varphi_{\underline{n}'}}{\longrightarrow} M / Q_M(\underline{x}(\underline{n}')) \longrightarrow 0.$$

Proof For d-tuples of positive integers $\underline{n} = (n_1, \dots, n_d)$ and $\underline{m} = (m_1, \dots, m_d)$ we define $\underline{n} \leq \underline{m}$ if $n_i \leq m_i$ for all i. Then the map

$$\delta_{\underline{n},\underline{m}}: M/Q_M(\underline{x}(\underline{n})) \longrightarrow M/Q_M(\underline{x}(\underline{m})),$$

which is defined by $\delta_{\underline{n},\underline{m}} (u + Q_M(\underline{x}(\underline{n}))) = \prod_{i=1}^d x_i^{m_i - n_i} u + Q_M(\underline{x}(\underline{m}))$ for each $u \in M$, is injective by [4, (3.1)]. Moreover, $\{\delta_{\underline{n},\underline{m}}; M/Q_M(\underline{x}(\underline{n}))\}$ forms a direct system and $\varinjlim_{\underline{n}} M/Q_M(\underline{x}(\underline{n})) \cong H^d_{\mathfrak{m}}(M)$.

Similarly, we also have the direct system $\{\overline{\delta}_{\underline{n}',\underline{m}'};\ M_1/Q_{M_1}(\underline{x}'(\underline{n}'))\}$ and $\lim_{\underline{n}'} M_1/Q_{M_1}(\underline{x}'(\underline{n}')) \cong H^{d-1}_{\mathfrak{m}}(M_1).$

For $\underline{n}' \leq \underline{m}'$ with $\underline{n}' = (n_2, ..., n_d)$ and $\underline{m}' = (m_2, ..., m_d)$, we have the following commutative diagram with exact rows

$$0 \longrightarrow \operatorname{Ker} \varphi_{n'} \longrightarrow M_1/Q_{M_1}(\underline{x'}(\underline{n'})) \xrightarrow{\varphi_{\underline{n'}}} M/Q_M(\underline{x}(\underline{n'})) \longrightarrow 0$$

$$\downarrow \pi_{\underline{n'},\underline{m'}} \qquad \qquad \downarrow \overline{\delta_{\underline{n'},\underline{m'}}} \qquad \qquad \downarrow \delta_{\underline{n'},\underline{m'}}$$

$$0 \longrightarrow \operatorname{Ker} \varphi_{\underline{m'}} \longrightarrow M_1/Q_{M_1}(\underline{x'}(\underline{m'})) \xrightarrow{\varphi_{\underline{m'}}} M/Q_M(\underline{x}(\underline{m'})) \longrightarrow 0$$

where $\pi_{\underline{n'},\underline{m'}}$ is the reduced homomorphism. Thus, $\{\pi_{\underline{n'},\underline{m'}}; \text{Ker } \varphi_{\underline{n'}}\}$ and $\{\delta_{\underline{n'},\underline{m'}}; M/Q_M(\underline{x(\underline{n'})})\}$ form direct systems. Therefore, we obtain the following commutative diagram with exact rows

$$0 \longrightarrow \operatorname{Ker} \varphi_{n'} \longrightarrow M_1/Q_{M_1}(\underline{x'}(\underline{n'})) \xrightarrow{\varphi_{\underline{n'}}} M/Q_M(\underline{x}(\underline{n'})) \longrightarrow 0$$

$$\downarrow \pi_{\underline{n'}} \qquad \qquad \downarrow \overline{\delta}_{\underline{n'}} \qquad \qquad \downarrow \delta_{\underline{n'}}$$

$$0 \longrightarrow \lim_{\underline{n'}} \operatorname{Ker} \varphi_{\underline{n'}} \longrightarrow H_{\mathfrak{m}}^{d-1}(M_1) \xrightarrow{u} \lim_{\underline{n'}} M/Q_M(\underline{x}(\underline{n'})) \longrightarrow 0$$

where $\pi_{\underline{n}'}, \overline{\delta}_{\underline{n}'}$ and $\delta_{\underline{n}'}$ are the natural homomorphisms and $u = \varinjlim_{\underline{n}'} \varphi_{\underline{n}'}$. Since

the homomorphisms $\delta_{\underline{n'},\underline{m'}}, \overline{\delta}_{\underline{n'},\underline{m'}}$ and $\pi_{\underline{n'},\underline{m'}}$ are injective, we have $\delta_{\underline{n'}}, \overline{\delta}_{\underline{n'}}$ and $\pi_{\underline{n'}}$ are injective.

By Lemma 2.1, $x_1 \notin \mathfrak{q}$ for all $\mathfrak{q} \in \operatorname{Ass}(M)$ with $\dim A/\mathfrak{q} \geqslant d-1$. Thus $\dim(0:_M x_1) < d-1$ and then $H^i_{\mathfrak{m}}(M/(0:_M x_1)) \cong H^i_{\mathfrak{m}}(M)$ for $i \geqslant d-1$. Therefore, from the exact sequence

$$0 \longrightarrow M/(0:_M x_1) \xrightarrow{x_1} \longrightarrow M \longrightarrow M_1 \longrightarrow 0,$$

we have an exact sequence of local cohomology modules

$$0 \longrightarrow H^{d-1}_{\mathfrak{m}}(M)/x_1H^{d-1}_{\mathfrak{m}}(M) \longrightarrow H^{d-1}_{\mathfrak{m}}(M_1) \xrightarrow{\Delta} \longrightarrow H^d_{\mathfrak{m}}(M),$$

where Δ is the connecting homomorphism.

Further, we can also show a monomorphism $j: \varinjlim_{\underline{n'}} M/Q_M(\underline{x}(\underline{n'})) \longrightarrow H^d_m(M)$ such that the following diagram is commutative

Hence $\varinjlim_{\underline{n'}} \operatorname{Ker} \varphi_{\underline{n'}} \cong \operatorname{Ker} u \cong \operatorname{Ker} \Delta \cong H^{d-1}_{\mathfrak{m}}(M) / x_1 H^{d-1}_{m}(M)$. Since $H^{d-1}_{\mathfrak{m}}(M) / x_1 H^{d-1}_{\mathfrak{m}}(M)$ has finite length by the choice of x_1 , $\pi_{\underline{n'}}$ is an isomorphism for enough large $\underline{n'}$ ($\underline{n'} \gg 0$ for short). So we get

$$\operatorname{Ker} \varphi_{n'} \cong H^{d-1}_{\mathbf{m}}(M)/x_1 H^{d-1}_{m}(M)$$

for $\underline{n}' \gg 0$ as required.

2.8 Corollary Let M be a pseudo Cohen-Macaulay module with p := p(M) > 0. Let x_1 be a parameter element with $\dim(0:_M x_1) < d-1$. Then x_1 is a $H^{d-1}_{\mathfrak{m}}(M)$ -coregular element.

Proof With the same notations and using the same argument in the proof of Lemma 2.7 we have $\varinjlim_{\underline{n'}} \operatorname{Ker} \varphi_{\underline{n'}} \cong H^{d-1}_{\mathfrak{m}}(M)/x_1H^{d-1}_{\mathfrak{m}}(M)$. On the other hand, by virtue of Lemma 2.3, M_1 is a pseudo Cohen- Macaulay module. Thus,

$$\ell_A(M/Q_M(\underline{x}(\underline{n}'))) = e(\underline{x}(\underline{n}'); M) = e(\underline{x}'(\underline{n}'); M_1) = \ell_A(M_1/Q_{M_1}(\underline{x}'(\underline{n}'))).$$

Therefore, the epimorphism $\varphi_{\underline{n}'}: M_1/Q_{M_1}(\underline{x}'(n)) \longrightarrow M/Q_M(\underline{x}(n))$ defined in Lemma 2.7 must be an isomorphism. This implies that $\operatorname{Ker} \varphi_{\underline{n}'} = 0$ for all $\underline{n}' \in \mathbb{N}^{d-1}$. Hence $\varinjlim_{\underline{n}'} \operatorname{Ker} \varphi_{\underline{n}'} = 0$ and so $H^{d-1}_{\mathfrak{m}}(M) = x_1 H^{d-1}_{\mathfrak{m}}(M)$, as required.

3 Parametric characterizations for pseudo Cohen-Macaulay modules

Following [3], a subsequence $(x_1,...,x_j)$ of a system of parameters of M is called a reducing sequence if $x_i \notin \mathfrak{p}$ for all $\mathfrak{p} \in \mathrm{Ass}(M/(x_1,...,x_{i-1})M)$ with $\dim A/\mathfrak{p} \geqslant d-i$, (i=1,...,j). Note that if $\underline{x}=(x_1,...,x_d)$ is a system of parameters on M and $x_1,...,x_{d-1}$ form a reducing sequence, then \underline{x} is just a reducing system of parameters as introduced in [1]. It should be mentioned that every A-module admits a reducing parameter system of parameters.

3.1 Definition Let $\underline{x} = (x_1, ..., x_t)$ be a sequence of elements in \mathfrak{m} . We set $M_i := M/(x_1, ..., x_i)M$ for all i = 0, ..., t. The sequence \underline{x} is called *pseudo regular* for M if x_i is an $H^{d-i}_{\mathfrak{m}}(M_{i-1})$ - coregular element for all i = 1, ..., t. If $\underline{x} = (x_1, ..., x_d)$ is an system of parameters on M and $(x_1, ..., x_{d-1})$ forms a pseudo regular sequence, then it is called a *pseudo regular system of parameters*.

3.2 Remark

- (i) An abitrary system of parameters of a Cohen-Macaulay module M is a pseudo regular system of parameters
- (ii) $\underline{x} = (x_1, ..., x_t)$ is a pseudo regular sequence of M if and only if $(x_1, ..., x_{j-1})$ is pseudo regular sequence of M and $(x_j, ..., x_t)$ is a pseudo regular sequence of M_{j-1} for each j = 2, ..., t.
- (iii) By Lemma 2.1, every pseudo regular system of parameters for M is a reducing system of parameters of M.
- **3.3 Theorem** Assume that dim M = d > 1. Then the following statements are equivalent:
 - (i) M is pseudo Cohen-Macaulay;
- (ii) Any reducing system of parameters of M is pseudo regular system of parameters;
- (iii) M admits a reducing system of parameters which is pseudo regular system of parameters;
 - (iv) M admits a pseudo regular system of parameters.

Proof It suffices to prove that (i) \Longrightarrow (ii) and (iv) \Longrightarrow (i).

(i) \Longrightarrow (ii). We prove by induction on d. Let d=2 and assume that $\underline{x}=(x_1,x_2)$ is a reducing system of parameters of M. By Corollary 2.8, x_1 is $H^1_{\mathfrak{m}}(M)$ -coregular and then \underline{x} is pseudo regular system of parameters of M. Suppose that d>2 and that our assertion is true for all pseudo Cohen-Macaulay A-modules of smaller dimension.

Let $\underline{x} = (x_1, ..., x_d)$ be a reducing system of parameters of M. As dim(0: x_1) < d-1, then $M_1 := M/x_1M$ is pseudo Cohen-Macaulay by virtue of Lemma 2.3 (iii). The inductive hypothesis implies that $(x_2, ..., x_d)$ is a pseudo regular system of parameters of M_1 .

The induction is finished now by Corollary 2.8 and Remark 3.2 (ii).

(iv) \Longrightarrow (i). Again we use induction on d. Let d=2, and assume that M has a pseudo regular system of parameters , say $\underline{x}=(x_1,x_2)$. Let $\underline{n}=(n_1,n_2)\in\mathbb{N}^2$. By [22, (3.2)], $J_{M,\underline{x}}(\underline{n})=Rl(H^1_{\mathfrak{m}}(M))$ for all $n_1,n_2\gg 0$. As x_1 is $H^1_{\mathfrak{m}}(M)$ -coregular, it follows that $Rl(H^1_{\mathfrak{m}}(M))=0$ and so M is pseudo Cohen-Macaulay.

Assume that d > 2 and $\underline{x} = (x_1, x_2, ..., x_d)$ is a pseudo regular system of parameters for M. Then $\underline{x}' = (x_2, ..., x_d)$ is a pseudo regular system of parameters

for $M_1=M/x_1M$. For all $n_2,...,n_d\geqslant 1$, set $\underline{x}(\underline{n}')=(x_1,x_2^{n_2},...,x_d^{n_d}),\underline{x}'(\underline{n}')=(x_2^{n_2},...,x_d^{n_d})$. The inductive hypothesis gives

$$\underline{x}'(\underline{n}'); M_1) = \ell(M_1/Q_{M_1}(\underline{x}'(\underline{n}'))). \tag{2}$$

On the other hand, Lemma 2.1 shows that $x_1 \notin \mathfrak{p}$, for all $\mathfrak{p} \in \mathrm{Ass}(M)$ with $\dim A/p \geqslant d-1$. We thus have $\dim(0:x_1) < d-1$ and hence

$$e(\underline{x}'(\underline{n}'); M_1) = e(\underline{x}(\underline{n}'); M). \tag{3}$$

Take $n_2, ..., n_d$ large enough to obtain the exact sequence defined in Lemma 2.7,

$$0 \longrightarrow H^{d-1}_{\mathfrak{m}}(M)/x_1H^{d-1}_m(M) \longrightarrow M_1/Q_{M_1}(\underline{x}'(\underline{n}')) \longrightarrow M/Q_M(\underline{x}(\underline{n}')) \longrightarrow 0.$$

As x_1 is $H^{d-1}_{\mathfrak{m}}(M)$ -coregular, we obtain from above exact sequence that

$$\ell_A(M_1/Q_{M_1}(\underline{x}'(\underline{n}'))) = \ell_A(M/Q_M(\underline{x}(\underline{n}'))). \tag{4}$$

Combining (2), (3) and (4), for all $n_2, ..., n_d \gg 0$, we get

$$e(\underline{x}(\underline{n}'); M) = \ell_A(M/Q_M(\underline{x}(\underline{n}')))$$

and this finishes our proof.

According to [9], M is called an f-module if every system of parameters $\underline{x} = (x_1, ..., x_d)$ is a M-filter regular sequence, i.e. $x_i \notin \mathfrak{q}$ for all $\mathfrak{q} \in \mathrm{Ass}(M/(x_1, ..., x_{i-1})M) \setminus \{\mathfrak{m}\}; (i=1, ..., d).$

We next combine Theorem 3.3 with [9, (2.5) and (2.11)] to obtain

- **3.4** Corollary M is both f-module and pseudo Cohen-Macaulay if and only if every system of parameters for M is pseudo regular system of parameters.
- **3.5 Theorem** Suppose that p = p(M) > 0. Then M is pseudo Cohen-Macaulay if and only if $H^i_{\mathfrak{m}}(M) = 0$ for all i = p+1, ..., d-1 and there exists a subsystem of parameters $(x_1, ..., x_p)$ on M such that x_i is an $H^{p-i+1}_{\mathfrak{m}}(M_{i-1})$ -coregular element for all i = 1, ..., p.

Proof Assume that M is pseudo Cohen-Macaulay with p(M)>0. Then $H^i_{\mathfrak{m}}(M)=0$ for all i=p+1,...,d-1 by Lemma 2.5. It follows from Corollary 2.8 that $\mathrm{Width}(H^{d-1}_{\mathfrak{m}}(M))>0$ and that $m\notin\mathrm{Att}(H^p_{\mathfrak{m}}(M))$. Set

$$\mathfrak{P} = \{\mathfrak{q} \in \mathrm{Ass}(M) \mid \dim A/\mathfrak{q} = d\} \cup \mathrm{Att}(H^p_{\mathfrak{m}}(M))$$

and choose $x_1 \notin \bigcup_{\mathfrak{q} \in \mathfrak{p}} \mathfrak{q}$. Obviously, x_1 is a parameter element of M and also a

 $H^p_{\mathfrak{m}}(M)$ -coregular element. Observe that $p(M/x_1M) = p(M) - 1$ by Proposition 2.6. Now the existence of the required subsystem of parameters $(x_1, ..., x_p)$ follows by induction on p.

Conversely, assume that $H^i_{\mathfrak{m}}(M)=0$ for all i=p+1,...,d-1 and that M admits a subsystem of parameters $(x_1,...,x_p)$ such that x_i is an $H^{p-i+1}_{\mathfrak{m}}(M)$ -coregular element for all i=1,...,p. Take $x_{p+1},...,x_d$ such that $\underline{x}=(x_1,...,x_p,x_{p+1},...,x_d)$ becomes an system of parameters on M. We will prove by induction on p that $J_{M,\underline{x}}(\underline{n})=0$ for all $\underline{n}\gg 0$.

The case p = 1 was proved in [5, (4.4)].

Assume that p>1 and that our claim is true for all modules with polynomial type less than p. Set $M_1=M/x_1M$. Because $H^i_{\mathfrak{m}}(M)=0$ for all i=p+1,...,d-1 and x_1 is $H^p_{\mathfrak{m}}(M)$ -coregular, Lemma 2.1 shows that $x_1\notin \mathfrak{q}$ for all $\mathfrak{q}\in \mathrm{Ass}(M)$ with $\dim A/\mathfrak{q}\geqslant p$. Therefore $\dim(0:_Mx_1)< p\leqslant d-1, e(x_1,...,x_d;M)=e(x_2,...,x_d;M_1)$ and (by Proposition 2.6) $p(M_1)=p-1>0$. Furthermore, for all $n_2,...,n_d\geqslant 0$, Lemma 2.7 gives us $M_1/Q_{M_1}(\underline{x}'(\underline{n}'))\cong M/Q_M(\underline{x}(\underline{n}'))$, where $\underline{x}'(\underline{n}')=(x_2^{n_2},...,x_d^{n_d})$ and $\underline{x}(\underline{n}')=(x_1,x_2^{n_2},...,x_d^{n_d})$. Hence

$$J_{M,\underline{x}}(\underline{n}) = J_{M_1,\underline{x}'}(\underline{n}'), \forall n_2, ..., n_d \gg 0.$$
 (5)

On the other hand, since $\dim(0:_M x_1) < p$ for each $i \in \{p,...,d-1\}$, we have an exact sequence

$$0 \longrightarrow H^{i}_{\mathfrak{m}}(M)/x_{1}H^{i}_{m}(M) \longrightarrow H^{i}_{\mathfrak{m}}(M_{1}) \longrightarrow (0:_{H^{i+1}_{\mathfrak{m}}(M)} x_{1}) \longrightarrow 0$$
 (6)

Since $H_{\mathfrak{m}}^{i+1}(M) = 0$ for all i = p, ..., d-2 and $\left(H_{\mathfrak{m}}^{p}(M)/x_{1}H_{\mathfrak{m}}^{p}(M)\right) = 0$, the exact sequence (6) implies $H_{\mathfrak{m}}^{i}(M_{1}) = 0$ for all i = p, ..., d-2. The induction is complete by applying the inductive hypothesis to M_{1} and using the equality (5).

The next result is an immediate consequence of Theorem 3.5 and Proposition 2.6 (ii).

3.6 Corollary Let M be pseudo Cohen-Macaulay with p = p(M) > 0. Then M admits a subsystem of parameters $(x_1, ..., x_p)$ such that

$$N - \dim(H_{\mathfrak{m}}^{p-i+1}(M_{i-1})) = p - i + 1$$

and

Width
$$(H_{\mathfrak{m}}^{p-i+1}(M_{i-1})) \ge \min\{2, p-i+1\}.$$

for all i = 1, ..., p.

The rest of this section is devoted to results on sequentially Cohen-Macaulay modules. These modules was first introduced by P. Stanley in [24] (Chapter III, 2.9) in the graded case. We recall here a definition for the local case from [8].

- **3.7 Definition** ([8, (4.1)]. A filtration $0 = N_0 \subset N_1 \subset ... \subset N_t = M$ of submodules of M is said to be a *Cohen-Macaulay filtration* if
 - (a) Each quotient N_i/N_{i-1} is Cohen-Macaulay.
 - (b) $\dim N_1/N_0 < \dim N_2/N_1 < \ldots < \dim N_t/N_{t-1}$.

We say that M is sequentially Cohen-Macaulay if it admits a Cohen-Macaulay filtration.

3.8 Lemma Let M be a sequentially Cohen-Macaulay A-module. Then, for all each i = 0, ..., d, the local cohomology module $H^i_{\mathfrak{m}}(M)$ vanishes or is a co-Cohen-Macaulay module of Noetherian dimension i.

Proof Let $\{M_i\}_{0 \leq i \leq d}$ be a Cohen-Macaulay filtration of M. Set $\mathcal{M}_i = M_i/M_{i-1}$ for all i = 1, ..., d and $\mathcal{M}_0 = M_0$. If \mathcal{M}_i does not vanish, then it is Cohen-Macaulay module of dimension i. It follows from [17] and [7, (3.5)] that

$$\operatorname{Width}(H^i_{\mathfrak{m}}(\mathcal{M}_i)) = i = \operatorname{N} - \dim(H^i_{\mathfrak{m}}(\mathcal{M}_i)).$$

Since $H^i_{\mathfrak{m}}(M) \cong H^i_{\mathfrak{m}}(\mathcal{M}_i)$, $\forall i \geq 0$ by [20] (5.4), this equality shows that $H^i_{\mathfrak{m}}(M)$ is a co-Cohen-Macaulay module.

- **3.9 Theorem** Suppose that $d \ge 1$. Then the following conditions are equivalent:
 - (i) M is a sequentially Cohen-Macaulay module;
- (ii) If $\underline{x} = (x_1, ..., x_d)$ is an abitrary filter-regular system of parameters of M then x_i is a coregular element on $H^j_{\mathfrak{m}}(M/(x_1, ..., x_{i-1})M)$ for all j = 1, ..., d-i and all i = 1, ..., d-1;
- (iii) There exists a filter-regular system of parameters $\underline{x} = (x_1, ..., x_d)$ of M such that x_i is a coregular element on $H^j_{\mathfrak{m}}(M/(x_1, ..., x_{i-1})M)$ for all j = 1, ..., d-i and all i = 1, ..., d-1;
- (iv) There exists a system of parameters $\underline{x} = (x_1, ..., x_d)$ of M such that x_i is a coregular element on $H^j_{\mathfrak{m}}(M/(x_1, ..., x_{i-1})M)$ for all j = 1, ..., d-i and all i = 1, ..., d-1.

Proof It is enough to prove (i) \Longrightarrow (ii) and (iv) \Longrightarrow (i).

(i) \Longrightarrow (ii). We make induction on d. It is clearly true for d=1. Suppose that $d \ge 2$ and that statement (ii) is true for all modules of dimension < d.

Let $\underline{x}=(x_1,...,x_d)$ be a filter regular system of parameters of M. Let $i\in\{0,...,d\}$. Since M is a sequentially Cohen-Macaulay, $H^i_{\mathfrak{m}}(M)$ is zero or a co-Cohen-Macaulay of Noetherian dimension i by Lemma 3.8. By Lemma 2.1 this implies that x_1 is a $H^i_{\mathfrak{m}}(M)$ -coregular element. Thus $H^i_{\mathfrak{m}}(M)/x_1H^i_{\mathfrak{m}}(M)=0$ and $(0:_{H^i_{\mathfrak{m}}(M)}x_1)$ is zero or a co-Cohen-Macaulay module.

On the other hand, since x_1 is a filter-regular element of M, we have $\dim(0:_M x_1) = 0$. This yields the exact sequence

$$0 \longrightarrow H^j_{\mathfrak{m}}(M)/x_1H^j_{\mathfrak{m}}(M) \longrightarrow H^j_{\mathfrak{m}}(M/x_1M) \longrightarrow (0:_{H^{j+1}_{\mathfrak{m}}(M)}x_1) \longrightarrow 0$$

for all j=1,...,d-2. Thus, $H^j_{\mathfrak{m}}(M/x_1M)\cong (0:_{H^{j+1}_{\mathfrak{m}}(M)}x_1)$ for all j=1,...,d-2. Therefore, for each $j\in\{1,...,d\},$ $H^j_{\mathfrak{m}}(M/x_1M)$ vanishes or is a co-Cohen- Macaulay. Observe that $\underline{x}'=(x_2,...,x_d)$ is a filter regular sequence of M/x_1M . So we get claim (ii) by induction on d.

(iv) \Longrightarrow (i). We use induction on d. Clearly it is true for d=1. Suppose that $d\geqslant 2$ and that statement (i) is proved for all modules of dimension < d. It is easy to see, that x_1 is a filter-regular element of M. Similarly as above, we obtain $H^j_{\mathfrak{m}}(M/x_1M)\cong (0:_{H^{j+1}_{\mathfrak{m}}(M)}x_1)$ for all j=1,...,d-2. For each j=1,...,d-3, this isomorphism and the inductive hypothesis give us that $(0:_{H^{j+1}_{\mathfrak{m}}(M)}x_1)$ is either zero a co-Cohen-Macaulay module of Noetherian dimension j.

If $(0:_{H^{j+1}_{\mathfrak{m}}(M)}x_1)=0$, then $H^{j+1}_{\mathfrak{m}}(M)=0$ by the Nakayama Lemma for Artinian modules (see [12]). If $(0:_{H^{j+1}_{\mathfrak{m}}(M)}x_1)$ is a co-Cohen-Macaulay module of Noetherian dimension j, then $H^{j+1}_{\mathfrak{m}}(M)$ is a Cohen-Macaulay module of dimension j+1.

As x_1 is a $H^1_{\mathfrak{m}}(M)$ - coregular element, $H^1_{\mathfrak{m}}(M)$ is either zero or a co-Cohen-Macaulay module of Noetherian dimension 1. By [20, (5.5)], M is a sequentially Cohen-Macaulay module. The proof is now complete.

3.10 Corollary Any sequentially Cohen-Macaulay A-module is pseudo Cohen-Macaulay module.

References

- [1] Auslander, M. and D. A. Buchsbaum, *Codimension and multiplicity*, Ann. of Math. **68**(1958), 625-657.
- [2] Brodmann, M. P. and R. Y. Sharp, "Local cohomology: an algebraic introduction with geometric applications", Cambridge University Press 1998.

- [3] Cuong, N.T., On the least degree of polynomials bounding above the differences between lengths and multiplications of certain systems of parameters in local rings, Nagoya Math. J. **125**(1992), 105-114.
- [4] Cuong, N. T.; N. T. Hoa and N. T. H. Loan, On certain length functions associated to a system of parameters in local rings, Vietnam J. Math. 27(3) (1999), 259-272.
- [5] Cuong N. T. and N.D. Minh, Lengths of generalized fractions of modules having small polynomial type, Math. Proc. Camb. Phil. Soc. 128(2000), 269-282.
- [6] Cuong N.T., Morales M. and L. T. Nhan (2000), On the length of generalized fractions, prépublication de l'Institut Fourier n⁰ 539.
- [7] Cuong N.T. and L. T. Nhan, On the Noetherian dimension of Artinian modules, to appear in Vietnam J. Math.
- [8] Cuong N. T. and L. T. Nhan, On pseudo Cohen-Macaulay modules and pseudo generalized Cohen-Macaulay modules, in preparation.
- [9] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen Macaulay Moduln, *Math. Nachr.* **85** (1978), 57-75.
- [10] Hartshorne R., "Residues and Duality", Lecture Notes in Mathematics, 20, Springer, 1966.
- [11] Herzog J. and Sbarra E., Sequentially Cohen-Macaulay modules and local cohomology, in preparation.
- [12] Kirby, D., Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford (2) 24 (1973), 47-57.
- [13] Kirby, D., Dimension and length of Artinian modules, Quart. J. Math. Oxford (2) 41 (1990), 419-429.
- [14] Matsumura, H., "Commutative ring theory", Cambridge University Press, 1986.
- [15] MacDonald, I. G, Secondary representation of modules over a commutative ring, Sympos. Math. 11 (1973), 23-43.
- [16] Minh, N.D., On the least degree of polynomials bounding above the differences between multiplicities and length of generalized fractions, Acta Math. Vietnam. **20(1)**(1995), 115- 128.
- [17] Ooishi, A., Matlis duality and the width of a module, Hiroshima Math. J. **6**(1976), 573-587.
- [18] Roberts, R.N., Krull dimension of Artinian of modules over quasi-local ring, Quart. J. Math. Oxford (3) 26 (1975), 269-273.
- [19] Schenzel, P., "Dualisierende Komplexe in der lokalen Algebra und Buchsbaum Ringe", Lecture Notes in Mathematics **907**, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

- [20] Schenzel, P., On the dimension filtration and Cohen-Macaulay filtered modules, Commutative algebra and algebraic geometry, (Ferrara), 245-264, Lecture Notes in Pure and Apl. Math., 206, Dekker, New York, 1999.
- [21] Sharp, R. Y., Some results on the vanishing of local cohomology modules, Proc. London Math. Soc. (3) 30(1975), 177-195.
- [22] Sharp, R. Y. and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra 38 (1985), 323-336.
- [23] Sharp, R. Y. and H. Zakeri, Local cohomology and modules of generalized fractions, Mathematika 29(1982), 296-306.
- [24] Stanley R.P., "Combinations and commutative algebra", Second edition, Progress in Math., Vol. 41, Birkhäuser Boston, 1996.
- [25] Strooker J.R., "Homological Questions in Local Algebra", *LMS Lecture Note Series*, 145.
- [26] Tang, Z. and H. Zakeri, Co-Cohen- Macaulay modules and modules of generalized fractions, Comm. Algebra (6) 22(1994), 2173-2204.