RATHER LARGE SUBSETS OF PRIME AND SEMIPRIME RINGS WITH DERIVATIONS

Vincenzo De Filippis
Dipartimento di Matematica, Università di Messina
Salita Sperone 31, 98166 Messina, Italia
e-mail : enzo@dipmat.unime.it

Abstract

Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2 , with extended centroid C, d and δ non-zero derivations of $R, f\left(x_{1}, . ., x_{n}\right)$ a polynomial over K. If $\delta\left(d\left(f\left(r_{1}, . ., r_{n}\right)\right)\right.$ $\left.f\left(r_{1}, . ., r_{n}\right)\right)=0$, for all $r_{1}, . ., r_{n} \in R$, then $f\left(x_{1}, . ., x_{n}\right)$ is central-valued on R. We also examine the case when R is a two-torsion free semiprime ring, $n=2$ and $f\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]_{k}$, the k-th commutator in two variables, for k a fixed positive integer.

Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2 , with center $Z(R)$ and extended centroid C. Recall that an additive mapping d of R into itself is a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. This result is included in a line of investigation concerning the relationship between the structure of R anf the behaviour of some derivation defined on R. In this context, by considering appropriate conditions on the subset $P(d, S)=\{d(s)-s / s \in S\}$, where S is a suitable subset of R, it is possible to formulate many results obtained in literature. For istance the result of Bell and Daif in [2] states that if $S=\left\{\left[x_{1}, x_{2}\right] / x_{1}, x_{2} \in I\right\}$, for I a non-zero ideal of a semiprime ring R, then $P(d, S)=0$ implies that I is central in R. Later Hongan proved that the same conclusion holds if $P(d, S) \subseteq Z(R)$ [9]. Recently we proved that in a prime ring R, if for any $a \in P(d, S)$ there exists $n=n(a) \geq 1$ such that $a^{n}=0$, then R is commutative [6]. In an other recent paper we also considered the following situation: let

Key words: derivation, PI, GPI, prime ring, differential identity.
2000 Mathematics Subject Classification: 16N60, 16W25.
$P(d, f(R))=\left\{d\left(f\left(x_{1}, . ., x_{n}\right)\right)-f\left(x_{1}, . ., x_{n}\right) / x_{1}, . ., x_{n} \in R\right\}$, such that $a^{m}=0$, for all $a \in P(d, f(I))$ and m a fixed integer. Under this assumption, we showed that $f\left(x_{1}, . ., x_{n}\right)$ is an identity for $R[7]$. In this note we will assume that $f\left(x_{1}, . ., x_{n}\right)$ is not necessarily multilinear and there exists a non-zero derivation δ of R such that $\delta(a)=0$, for all $a \in P(d, f(R))$. We will prove that this condition forces $f\left(x_{1}, . ., x_{n}\right)$ to be central in R. It is well known that this conclusion says that the set $P(d, f(R))$ is rather large in R.

In the first part we study the case $\delta(P(d, f(R)))=0$, where both δ and d are inner derivation: more precisely there exist $a, b \in R$ such that $\delta(x)=[a, x]$ and $d(x)=[b, x]$, for all $x \in R$.

Then we extend our result to arbitrary derivations.
Finally, in the last part of the paper we examine the case when R is a two-torsion free semiprime ring, $k \geq 1$ is a fixed integer and the polynomial f is the k-th commutator $\left[x_{1}, x_{2}\right]_{k}$, which is defined as follows: for $k=1$, $\left[x_{1}, x_{2}\right]_{1}=\left[x_{1}, x_{2}\right]=x_{1} x_{2}-x_{2} x_{1}$ and for $k \geq 2,\left[x_{1}, x_{2}\right]_{k}=\left[\left[x_{1}, x_{2}\right]_{k-1}, x_{2}\right]$.

We begin with the following easy result:
Lemma 1 If $f\left(x_{1}, . ., x_{n}\right)$ is not central in R then there exists a non-zero ideal M of R such that $\delta\left(d\left(\left[x_{1}, x_{2}\right]\right)-\left[x_{1}, x_{2}\right]\right)=0$ for all $x_{1} \in M, x_{2} \in R$.

Proof Let G the additive subgroup generated by the set

$$
f(R)=\left\{f\left(r_{1}, . ., r_{n}\right) / r_{1}, . ., r_{n} \in R\right\} \neq 0
$$

Of course $\delta(d(g)-g)=0$, for all $g \in G$. Since $f\left(x_{1}, . ., x_{n}\right)$ is not central in R, by [5] and $\operatorname{char}(R) \neq 2$, it follows that there exists a non-central Lie ideal L of R such that $L \subseteq G$. Moreover, by [8, pp. 4-5] there exists a non-zero ideal M of R such that $[M, R] \subseteq L$, and we are done.

Remark 1 In all that follows we will always assume that the polynomial f is not central in R. then there exists M an ideal of R such that $\delta\left(d\left(\left[x_{1}, x_{2}\right]\right)-\left[x_{1}, x_{2}\right]\right)$ is a differential identity for M. Since R and M satisfy the same differential identities (see $[11]), \delta\left(d\left(\left[x_{1}, x_{2}\right]\right)-\left[x_{1}, x_{2}\right]\right)$ is also a differential identity for R.

Lemma 2 Let a, b be elements of R such that $\left[a,\left[b,\left[r_{1}, r_{2}\right]\right]-\left[r_{1}, r_{2}\right]\right]=0$ for any $r_{1}, r_{2} \in R$. Then $a \in Z(R)$.

Proof Our assumption says that R satisfies the generalized polynomial identity

$$
\begin{gathered}
{\left[a,\left[b,\left[x_{1}, x_{2}\right]\right]-\left[x_{1}, x_{2}\right]\right]=} \\
{\left[a, b\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] b-\left[x_{1}, x_{2}\right]\right]=} \\
a b\left[x_{1}, x_{2}\right]-a\left[x_{1}, x_{2}\right] b-a\left[x_{1}, x_{2}\right]-b\left[x_{1}, x_{2}\right] a+\left[x_{1}, x_{2}\right] b a+\left[x_{1}, x_{2}\right] a
\end{gathered}
$$

The argument in [4] says that this generalized polynomial identity is also satisfied by Q, the Martindale quotients ring of R. It follows that $S=R C$ is a primitive ring with $\operatorname{soc}(R) \neq 0$ and $e H e$ is a simple central algebra finite dimensional over its center, for any minimal idempotent element $e \in S$ (see [12]). We may assume H non commutative, otherwise also R must be commutative. Moreover H satisfies the same generalized polynomial identities of R and Q. Since H is a simple ring, one of the following holds: either H does not contain any non-trivial idempotent element or H is generated by its idempotents.

Suppose $e^{2}=e \in H$ and pick $x_{1}=(1-e) h_{1}, x_{2}=h_{2} e$, for $h_{1}, h_{2} \in H$. By our assumption

$$
\begin{gathered}
\left.0=\left[a,\left[b,\left[(1-e) h_{1}, h_{2} e\right)\right]\right]-\left[(1-e) h_{1}, h_{2} e\right]\right]= \\
a b(1-e) h_{1} h_{2} e-a(1-e) h_{1} h_{2} e b-a(1-e) h_{1} h_{2} e-b(1-e) h_{1} h_{2} e a \\
+(1-e) h_{1} h_{2} e b a+(1-e) h_{1} h_{2} e a
\end{gathered}
$$

Now, right multiplying by $(1-e)$ and left multiplying by e, we have

$$
0=-e a(1-e) h_{1} h_{2} e b(1-e)-e b(1-e) h_{1} h_{2} e a(1-e)
$$

As a consequence of $[12$, theorem $2(\mathrm{a})]$, it follows that $e a(1-e)=\alpha e b(1-e)$, for some $\alpha \in C=Z(Q)$. By the primeness of H and since $\operatorname{char}(R) \neq 2$, $e a(1-e)=e b(1-e)=0$. In a similar fashion one has $(1-e) a e=0$. This implies that $[a, e]=0$ and since H is generated by its idempotents, we have $a \in C$.

On the other hand, if H does not contain any non-trivial idempotent element, then H is a finite dimensional division algebra over C and we may consider $a, b \in H=R C=Q$. If C is finite then H is a finite division ring, that is H is commutative, as well as R.

If C is infinite then $H \otimes_{C} F \cong M_{r}(F)$, the ring of $r \times r$ matrices over F, where F is the central closure of C. In this case, a Vandermoonde determinant argument shows that in $M_{r}(F)\left[a,\left[b,\left[x_{1}, x_{2}\right]\right]-\left[x_{1}, x_{2}\right]\right]=0$ is still an identity. As above, if $r \geq 2$, then $M_{r}(F)$ contains some non-trivial idempotent elements, so $a \in F$. Of course, if $r=1$, then H is commutative and we are done.

Now the proof of the following theorem is a consequence of Lemmas 1 and 2:

Theorem 1 Let a, b be elements of R such that $\left.\left[a,\left[b, f\left(r_{1}, . ., r_{n}\right)\right]\right]-f\left(r_{1}, . ., r_{n}\right)\right]=$ 0 for any $r_{1}, \ldots, r_{n} \in R$. Then either $a \in Z(R)$ or $f\left(x_{1}, . ., x_{n}\right)$ is central-valued on R.

Theorem 2 Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, with extended centroid C, d and δ nonzero derivations of $R, f\left(x_{1}, . ., x_{n}\right)$ a polynomial over K. If $\delta\left(d\left(f\left(r_{1}, . ., r_{n}\right)\right)-\right.$ $\left.f\left(r_{1}, . ., r_{n}\right)\right)=0$, for all $r_{1}, . ., r_{n} \in R$, then $f\left(x_{1}, . ., x_{n}\right)$ is central-valued on R.

Proof Assume that $f\left(x_{1}, . ., x_{n}\right)$ is not central on R. By Lemma 1 and Remark it follows that $\delta\left(d\left(\left[x_{1}, x_{2}\right]\right)-\left[x_{1}, x_{2}\right]\right)$ is a differential identity for R.

First suppose that δ and d are C-independent modulo $D_{\text {int }}$.
By assumption, for all $r_{1}, r_{2} \in R$

$$
\delta\left(d\left(\left[r_{1}, r_{2}\right]\right)-\left[r_{1}, r_{2}\right]\right)=0
$$

that is R satisfies the differential identity

$$
\begin{gathered}
\delta\left(\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]-\left[x_{1}, x_{2}\right]\right)= \\
{\left[\delta d\left(x_{1}\right), x_{2}\right]+\left[d\left(x_{1}\right), \delta\left(x_{2}\right)\right]+\left[\delta\left(x_{1}\right), d\left(x_{2}\right)\right]-\left[\delta\left(x_{1}\right), x_{2}\right]-\left[x_{1}, \delta\left(x_{2}\right)\right]}
\end{gathered}
$$

By Kharchenko's theorem [10] R satisfies the polynomial identity

$$
\left[y_{1}, x_{2}\right]+\left[z_{1}, t_{2}\right]+\left[t_{1}, z_{2}\right]-\left[t_{1}, x_{2}\right]-\left[x_{1}, t_{2}\right]
$$

in particular R satisfies any blendend component $\left[z_{1}, t_{2}\right]$ that is R is commutative, which contradicts the non-centrality of $f\left(x_{1}, . ., x_{n}\right)$.

Let now δ and d C-dependent modulo $D_{\text {int }}$. There exist $\gamma_{1}, \gamma_{2} \in C$, such that $\gamma_{1} \delta+\gamma_{2} d \in D_{\text {int }}$, and, by Theorem 1, it is clear that at most one of the two derivations can be inner.

Suppose $\gamma_{1}=0$ and $\gamma_{2} \neq 0$; then, for some non-central element $q \in Q$, $d=d_{q}$ is the inner derivation induced by q and δ is an outer derivation.

By the assumptions, $\delta\left(\left[q,\left[r_{1}, r_{2}\right]\right]-\left[r_{1}, r_{2}\right]\right)=0$, for all $r_{1}, r_{2} \in R$, that is R satisfies the differential identity

$$
\begin{gathered}
\delta\left(\left[q,\left[x_{1}, x_{2}\right]\right]-\left[x_{1}, x_{2}\right]\right)= \\
{\left[\delta(q),\left[x_{1}, x_{2}\right]\right]+\left[q,\left[\delta\left(x_{1}\right), x_{2}\right]\right]+\left[q,\left[x_{1}, \delta\left(x_{2}\right)\right]\right]} \\
-\left[\delta\left(x_{1}\right), x_{2}\right]-\left[x_{1}, \delta\left(x_{2}\right)\right]
\end{gathered}
$$

As above, by Kharchenko's result, R satisfies the generalized polynomial identity

$$
\begin{gathered}
{\left[\delta(q),\left[x_{1}, x_{2}\right]\right]+\left[q,\left[y_{1}, x_{2}\right]\right]+\left[q,\left[x_{1}, y_{2}\right]\right]} \\
-\left[y_{1}, x_{2}\right]-\left[x_{1}, y_{2}\right]
\end{gathered}
$$

In particular R satisfies the blended component

$$
\left[q,\left[y_{1}, x_{2}\right]\right]-\left[y_{1}, x_{2}\right]
$$

and by [2] (see also [6]) it follows that R is commutative, a contradiction again.
Suppose now $\gamma_{2}=0$ and $\gamma_{1} \neq 0$; then, for some non-central element $q \in Q$, $\delta=d_{q}$ is the inner derivation induced by q and d is an outer derivation.

In this case, for all $a \in I, r_{1}, r_{2} \in R$, we have:

$$
\left[q, d\left(\left[r_{1}, r_{2}\right]\right)-\left[r_{1}, r_{2}\right]\right]=0
$$

that is R satisfies the differential identity

$$
\left[q,\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]-\left[x_{1}, x_{2}\right]\right]
$$

and, as above using the Kharchenko's theorem, R satisfies the following generalized polynomial identity

$$
\left[q,\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]-\left[x_{1}, x_{2}\right]\right]
$$

as well as the blended component

$$
\left[q,\left[x_{1}, x_{2}\right]\right]
$$

In this situation, since $q \notin C$, many results in literature sate that R is commutative (see for example Lemma 2 in [3]), a contradiction.

Finally we may assume that both γ_{1} and γ_{2} are non-zero. So $\delta=\gamma d+d_{q}$, with $0 \neq \gamma \in C$ and $q \in Q$.

Therefore, for all $r_{1}, r_{2} \in R$

$$
\left(\gamma d+d_{q}\right)\left(d\left(\left[r_{1}, r_{2}\right]\right)-\left[r_{1}, r_{2}\right]\right)=0
$$

In this case R satisfies the differential identity

$$
\begin{gathered}
=\gamma\left(\left[d^{2}\left(x_{1}\right), x_{2}\right]+2\left[d\left(x_{1}\right), d\left(x_{2}\right)\right]+\left[x_{1}, d^{2}\left(x_{2}\right)\right]-\left[d\left(x_{1}\right), x_{2}\right]-\left[x_{1}, d\left(x_{2}\right)\right]\right)+ \\
{\left[q,\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]-\left[x_{1}, x_{2}\right]\right]}
\end{gathered}
$$

and so the Kharchenko's theorem provides that

$$
\begin{gathered}
=\gamma\left(\left[z_{1}, x_{2}\right]+2\left[y_{1}, y_{2}\right]+\left[x_{1}, z_{2}\right]-\left[y_{1}, x_{2}\right]-\left[x_{1}, y_{2}\right]\right)+ \\
{\left[q,\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]-\left[x_{1}, x_{2}\right]\right]}
\end{gathered}
$$

is a polynomial identity on R.
Hence R satisfies the blended component $2 \gamma\left[y_{1}, y_{2}\right]$ and this implies that R is commutative, a contradiction.

Finally, if d is Q-inner, then δ is also Q-inner and we end up by Theorem 1.
All the previous contradictions say that $f\left(x_{1}, . ., x_{n}\right)$ must be central in R.

We conclude this note studying the case when R is a two-torsion free semiprime ring and the polynomial f is the k-th commutator $\left[x_{1}, x_{2}\right]_{k}$. First we fix the following result which depends by Theorem 2 :

Corollary 1 Let R be a prime ring of characteristic different from 2 , d and δ non-zero derivations of R. If $\delta\left(d\left(\left[r_{1}, r_{2}\right]_{k}\right)-\left[r_{1}, r_{2}\right]_{k}\right)=0$, for all $r_{1}, r_{2} \in R$ and $k \geq 1$ a fixed integer, then R is commutative.

Proof It follows trivially by the fact that if $\left[x_{1}, x_{2}\right]_{k}$ is central in R, then R is commutative.

Remark 2 Notice that in Theorem 2 and Corollary 1, the assumption that d is a non-zero derivation can be removed. In fact, if $d=0$ the hypothesis $\delta\left(f\left(x_{1}, . ., x_{n}\right)\right)=0$ drives us to the same conclusion, i.e. $f\left(x_{1}, . ., x_{n}\right)$ must be central in R.

Now we are ready to prove the semiprime-version of Corollary 1:
Theorem 3 Let R be a two-torsion free semiprime ring, d and δ non-zero derivations of R. If $\delta\left(d\left(\left[r_{1}, r_{2}\right]_{k}\right)-\left[r_{1}, r_{2}\right]_{k}\right)=0$, for all $r_{1}, r_{2} \in R$ and $k \geq 1$ a fixed integer, then $[\delta(R), R]=(0)$.

Proof Let C the extended centroid of R and U the left Utumi quotient ring of R, then $Z(U)=C$. We need to mention that the definition, the axiomatic formulation and the properties of this quotient ring can be found in [1].

It is known that any derivation of R can be uniquely extended in U and moreover R an U satisfy the same differential identities (see [11]). Therefore $\delta\left(d\left(\left[r_{1}, r_{2}\right]\right)-\left[r_{1}, r_{2}\right]\right)=0$, for all $r_{1}, r_{2} \in U$. Let M be any maximal ideal of the complete Boolean algebra of idempotents of C, denoted by B. We know that $M U$ is a prime ideal of U. Let $\bar{\delta}$ and \bar{d} the derivations respectively induced by δ and d in $\bar{U}=\frac{U}{M U}$. Thus $\bar{\delta}$ and \bar{d} satisfy in \bar{U} the same property of δ and d on U. By Corollary 1 and Remark 2 , for all M maximal ideal of B, either $\delta(U) \subseteq M U$ or $[U, U] \subseteq M U$. In any case $\delta(U)[U, U] \subseteq \cap_{M} M U=(0)$. Without loss of generality we have $\delta(R)[R, R]=0$. In particular

$$
0=\delta(R)\left[R^{2}, R\right]=\delta(R) R[R, R]+\delta(R)[R, R] R=\delta(R) R[R, R] .
$$

Therefore $[R, \delta(R)] R[R, \delta(R)]=0$ and, by semiprimeness of $R,[R, \delta(R)]=0$, that is $\delta(R) \subseteq Z(R)$.

References

[1] K.I. Beidar, W.S. Martindale, V. Mikhalev, "Rings with generalized identities", Pure and Applied Math., Dekker, New York, 1996.
[2] H.E. Bell, M.N. Daif, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. (1) 15 (1992), 205-206.
[3] J. Bergen, I.N. Herstein, J.W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
[4] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. (3) 103 (1988), 723-728.
[5] C.L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. (1) 59 (1987), 98-106.
[6] V. De Filippis, On a subset with nilpotent values in a prime ring with derivation, Boll. UMI (8) 5-B (2002), 833-838.
[7] V. De Filippis, Right ideals and derivations on multilinear polynomials, Rend. Sem. Mat. Univ. Padova 105 (2001), 171-183.
[8] I.N. Herstein, "Topics in ring theory", University of Chicago Press (1969), Chicago.
[9] M. Hongan, A note on semiprime rings with derivation, Int. J. Math. Math. Sci. (2) 20 (1997), 413-415.
[10] V.K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155-168.
[11] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Acad. Sinica (1) 20 (1992), 27-38.
[12] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.

