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Abstract

Let K be a commutative ring with unity, R a prime K-algebra of char-
acteristic different from 2, with extended centroid C, d and δ non-zero
derivations of R, f(x1, .., xn) a polynomial over K . If δ(d(f(r1, .., rn)) −
f(r1, .., rn)) = 0, for all r1, .., rn ∈ R, then f(x1, .., xn) is central-valued
on R. We also examine the case when R is a two-torsion free semiprime
ring, n = 2 and f(x1, x2) = [x1, x2]k, the k-th commutator in two vari-
ables, for k a fixed positive integer.

Let K be a commutative ring with unity, R a prime K-algebra of character-
istic different from 2, with center Z(R) and extended centroid C. Recall that
an additive mapping d of R into itself is a derivation if d(xy) = d(x)y + xd(y)
for all x, y ∈ R. This result is included in a line of investigation concerning
the relationship between the structure of R anf the behaviour of some deriva-
tion defined on R. In this context, by considering appropriate conditions on
the subset P (d, S) = {d(s) − s/s ∈ S}, where S is a suitable subset of R,
it is possible to formulate many results obtained in literature. For istance
the result of Bell and Daif in [2] states that if S = {[x1, x2]/x1, x2 ∈ I},
for I a non-zero ideal of a semiprime ring R, then P (d, S) = 0 implies that
I is central in R. Later Hongan proved that the same conclusion holds if
P (d, S) ⊆ Z(R) [9]. Recently we proved that in a prime ring R, if for any
a ∈ P (d, S) there exists n = n(a) ≥ 1 such that an = 0, then R is commutative
[6]. In an other recent paper we also considered the following situation: let
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P (d, f(R)) = {d(f(x1, .., xn)) − f(x1 , .., xn)/x1, .., xn ∈ R}, such that am = 0,
for all a ∈ P (d, f(I)) and m a fixed integer. Under this assumption, we showed
that f(x1, .., xn) is an identity for R [7]. In this note we will assume that
f(x1 , .., xn) is not necessarily multilinear and there exists a non-zero derivation
δ of R such that δ(a) = 0, for all a ∈ P (d, f(R)). We will prove that this condi-
tion forces f(x1, .., xn) to be central in R. It is well known that this conclusion
says that the set P (d, f(R)) is rather large in R.

In the first part we study the case δ(P (d, f(R))) = 0, where both δ and d
are inner derivation: more precisely there exist a, b ∈ R such that δ(x) = [a, x]
and d(x) = [b, x], for all x ∈ R.

Then we extend our result to arbitrary derivations.
Finally, in the last part of the paper we examine the case when R is a

two-torsion free semiprime ring, k ≥ 1 is a fixed integer and the polynomial
f is the k-th commutator [x1, x2]k, which is defined as follows: for k = 1,
[x1, x2]1 = [x1, x2] = x1x2 − x2x1 and for k ≥ 2, [x1, x2]k = [[x1, x2]k−1, x2].

We begin with the following easy result:

Lemma 1 If f(x1, .., xn) is not central in R then there exists a non-zero ideal
M of R such that δ(d([x1, x2]) − [x1, x2]) = 0 for all x1 ∈ M , x2 ∈ R.

Proof Let G the additive subgroup generated by the set

f(R) = {f(r1, .., rn)/r1, .., rn ∈ R} �= 0.

Of course δ(d(g) − g) = 0, for all g ∈ G. Since f(x1, .., xn) is not central in R,
by [5] and char(R) �= 2, it follows that there exists a non-central Lie ideal L of
R such that L ⊆ G. Moreover, by [8, pp. 4-5] there exists a non-zero ideal M
of R such that [M, R] ⊆ L, and we are done. ��
Remark 1 In all that follows we will always assume that the polynomial f is not
central in R. then there exists M an ideal of R such that δ(d([x1, x2])−[x1, x2])
is a differential identity for M . Since R and M satisfy the same differential
identities (see [11]), δ(d([x1, x2]) − [x1, x2]) is also a differential identity for R.

Lemma 2 Let a, b be elements of R such that [a, [b, [r1, r2]] − [r1, r2]] = 0 for
any r1, r2 ∈ R. Then a ∈ Z(R).

Proof Our assumption says that R satisfies the generalized polynomial iden-
tity

[a, [b, [x1, x2]]− [x1, x2]] =

[a, b[x1, x2] − [x1, x2]b− [x1, x2]] =

ab[x1, x2] − a[x1, x2]b− a[x1, x2] − b[x1, x2]a + [x1, x2]ba + [x1, x2]a.
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The argument in [4] says that this generalized polynomial identity is also sat-
isfied by Q, the Martindale quotients ring of R. It follows that S = RC is a
primitive ring with soc(R) �= 0 and eHe is a simple central algebra finite di-
mensional over its center, for any minimal idempotent element e ∈ S (see [12]).
We may assume H non commutative, otherwise also R must be commutative.
Moreover H satisfies the same generalized polynomial identities of R and Q.
Since H is a simple ring, one of the following holds: either H does not contain
any non-trivial idempotent element or H is generated by its idempotents.

Suppose e2 = e ∈ H and pick x1 = (1 − e)h1, x2 = h2e, for h1, h2 ∈ H . By
our assumption

0 = [a, [b, [(1− e)h1, h2e)]] − [(1− e)h1, h2e]] =

ab(1 − e)h1h2e − a(1 − e)h1h2eb − a(1 − e)h1h2e − b(1− e)h1h2ea

+(1 − e)h1h2eba + (1 − e)h1h2ea.

Now, right multiplying by (1 − e) and left multiplying by e, we have

0 = −ea(1 − e)h1h2eb(1 − e) − eb(1 − e)h1h2ea(1 − e).

As a consequence of [12, theorem 2 (a)], it follows that ea(1− e) = αeb(1− e),
for some α ∈ C = Z(Q). By the primeness of H and since char(R) �= 2,
ea(1 − e) = eb(1 − e) = 0. In a similar fashion one has (1 − e)ae = 0. This
implies that [a, e] = 0 and since H is generated by its idempotents, we have
a ∈ C.

On the other hand, if H does not contain any non-trivial idempotent el-
ement, then H is a finite dimensional division algebra over C and we may
consider a, b ∈ H = RC = Q. If C is finite then H is a finite division ring, that
is H is commutative, as well as R.

If C is infinite then H ⊗C F ∼= Mr(F ), the ring of r × r matrices over F ,
where F is the central closure of C. In this case, a Vandermoonde determinant
argument shows that in Mr(F ) [a, [b, [x1, x2]]− [x1, x2]] = 0 is still an identity.
As above, if r ≥ 2, then Mr(F ) contains some non-trivial idempotent elements,
so a ∈ F . Of course, if r = 1, then H is commutative and we are done. ��

Now the proof of the following theorem is a consequence of Lemmas 1 and
2:

Theorem 1 Let a, b be elements of R such that [a, [b, f(r1, .., rn)]]−f(r1, .., rn)] =
0 for any r1, ..., rn ∈ R. Then either a ∈ Z(R) or f(x1, .., xn) is central-valued
on R.

Theorem 2 Let K be a commutative ring with unity, R a prime K-algebra
of characteristic different from 2, with extended centroid C, d and δ non-
zero derivations of R, f(x1, .., xn) a polynomial over K. If δ(d(f(r1, .., rn)) −
f(r1 , .., rn)) = 0, for all r1, .., rn ∈ R, then f(x1, .., xn) is central-valued on R.
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Proof Assume that f(x1, .., xn) is not central on R. By Lemma 1 and Re-
mark it follows that δ(d([x1, x2]) − [x1, x2]) is a differential identity for R.

First suppose that δ and d are C-independent modulo Dint.
By assumption, for all r1, r2 ∈ R

δ(d([r1, r2]) − [r1, r2]) = 0

that is R satisfies the differential identity

δ([d(x1), x2] + [x1, d(x2)] − [x1, x2]) =

[δd(x1), x2] + [d(x1), δ(x2)] + [δ(x1), d(x2)]− [δ(x1), x2] − [x1, δ(x2)].

By Kharchenko’s theorem [10] R satisfies the polynomial identity

[y1, x2] + [z1, t2] + [t1, z2]− [t1, x2]− [x1, t2]

in particular R satisfies any blendend component [z1, t2] that is R is commu-
tative, which contradicts the non-centrality of f(x1 , .., xn).

Let now δ and d C-dependent modulo Dint . There exist γ1, γ2 ∈ C, such
that γ1δ + γ2d ∈ Dint, and, by Theorem 1, it is clear that at most one of the
two derivations can be inner.

Suppose γ1 = 0 and γ2 �= 0; then, for some non-central element q ∈ Q,
d = dq is the inner derivation induced by q and δ is an outer derivation.

By the assumptions, δ([q, [r1, r2]]− [r1, r2]) = 0, for all r1, r2 ∈ R, that is R
satisfies the differential identity

δ([q, [x1, x2]]− [x1, x2]) =

[δ(q), [x1, x2]] + [q, [δ(x1), x2]] + [q, [x1, δ(x2)]]

−[δ(x1), x2]− [x1, δ(x2)].

As above, by Kharchenko’s result, R satisfies the generalized polynomial
identity

[δ(q), [x1, x2]] + [q, [y1, x2]] + [q, [x1, y2]]

−[y1, x2]− [x1, y2].

In particular R satisfies the blended component

[q, [y1, x2]] − [y1, x2]

and by [2] (see also [6]) it follows that R is commutative, a contradiction again.
Suppose now γ2 = 0 and γ1 �= 0; then, for some non-central element q ∈ Q,

δ = dq is the inner derivation induced by q and d is an outer derivation.
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In this case, for all a ∈ I, r1, r2 ∈ R, we have:

[q, d([r1, r2]) − [r1, r2]] = 0

that is R satisfies the differential identity

[q, [d(x1), x2] + [x1, d(x2)] − [x1, x2]]

and, as above using the Kharchenko’s theorem, R satisfies the following gener-
alized polynomial identity

[q, [y1, x2] + [x1, y2]− [x1, x2]]

as well as the blended component

[q, [x1, x2]].

In this situation, since q /∈ C, many results in literature sate that R is commu-
tative (see for example Lemma 2 in [3]), a contradiction.

Finally we may assume that both γ1 and γ2 are non-zero. So δ = γd + dq,
with 0 �= γ ∈ C and q ∈ Q.

Therefore, for all r1, r2 ∈ R

(γd + dq)(d([r1, r2]) − [r1, r2]) = 0.

In this case R satisfies the differential identity

= γ([d2(x1), x2] + 2[d(x1), d(x2)] + [x1, d
2(x2)] − [d(x1), x2] − [x1, d(x2)])+

[q, [d(x1), x2] + [x1, d(x2)] − [x1, x2]]

and so the Kharchenko’s theorem provides that

= γ([z1, x2] + 2[y1, y2] + [x1, z2] − [y1, x2] − [x1, y2])+

[q, [y1, x2] + [x1, y2]− [x1, x2]]

is a polynomial identity on R.
Hence R satisfies the blended component 2γ[y1, y2] and this implies that R

is commutative, a contradiction.
Finally, if d is Q-inner, then δ is also Q-inner and we end up by Theorem 1.
All the previous contradictions say that f(x1, .., xn) must be central in R.

��

We conclude this note studying the case when R is a two-torsion free
semiprime ring and the polynomial f is the k-th commutator [x1, x2]k. First
we fix the following result which depends by Theorem 2:
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Corollary 1 Let R be a prime ring of characteristic different from 2, d and δ
non-zero derivations of R. If δ(d([r1, r2]k) − [r1, r2]k) = 0, for all r1, r2 ∈ R
and k ≥ 1 a fixed integer, then R is commutative.

Proof It follows trivially by the fact that if [x1, x2]k is central in R, then R
is commutative.

Remark 2 Notice that in Theorem 2 and Corollary 1, the assumption that
d is a non-zero derivation can be removed. In fact, if d = 0 the hypothesis
δ(f(x1 , .., xn)) = 0 drives us to the same conclusion, i.e. f(x1, .., xn) must be
central in R.

Now we are ready to prove the semiprime-version of Corollary 1:

Theorem 3 Let R be a two-torsion free semiprime ring, d and δ non-zero
derivations of R. If δ(d([r1, r2]k) − [r1, r2]k) = 0, for all r1, r2 ∈ R and k ≥ 1
a fixed integer, then [δ(R), R] = (0).

Proof Let C the extended centroid of R and U the left Utumi quotient ring
of R, then Z(U) = C. We need to mention that the definition, the axiomatic
formulation and the properties of this quotient ring can be found in [1].

It is known that any derivation of R can be uniquely extended in U and
moreover R an U satisfy the same differential identities (see [11]). Therefore
δ(d([r1, r2])−[r1, r2]) = 0, for all r1, r2 ∈ U . Let M be any maximal ideal of the
complete Boolean algebra of idempotents of C, denoted by B. We know that
MU is a prime ideal of U . Let δ and d the derivations respectively induced
by δ and d in U = U

MU
. Thus δ and d satisfy in U the same property of δ

and d on U . By Corollary 1 and Remark 2, for all M maximal ideal of B,
either δ(U) ⊆ MU or [U, U ] ⊆ MU . In any case δ(U)[U, U ] ⊆ ∩MMU = (0).
Without loss of generality we have δ(R)[R, R] = 0. In particular

0 = δ(R)[R2, R] = δ(R)R[R, R] + δ(R)[R, R]R = δ(R)R[R, R].

Therefore [R, δ(R)]R[R, δ(R)] = 0 and, by semiprimeness of R, [R, δ(R)] = 0,
that is δ(R) ⊆ Z(R). ��
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