ON THE STABILITY OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH LINEAR DRIFT

Ta Quoc Bao
Institute of Mathematics
18 Hoang Quoc Viet Road, 10307 Hanoi-Vietnam
e-mail: baotq@empirics.net

Abstract

The aim of this paper is to prove the equivalence of a stochastic differential equation with linear drift to a stochastic integral equation in an n -dimensional space. The asymptotic p-stability and asymptotic mean square satbility of the trivial random solution for the stochastic differential equation are also investigated by using properties of the Cauchy operator.

1 Introduction

In this paper, we consider the following stochastic differential equation in an n-dimensional space

$$
\begin{equation*}
d x(t)=A(t) x(t) d t+f(t, x(t)) d B_{t} \tag{1.1}
\end{equation*}
$$

where $\left(B_{t}, t \in R^{+}\right)$is an n-dimensional Brownian motion, $A(t)$ and $f(t, x)$ are a $n \times n$-matrix function. We prove the equivalence of the equation (1.1) to the following stochastic integral equation

$$
\begin{equation*}
x(t)=K\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} K(t, s) f(s, x(s)) d B_{s} \tag{1.2}
\end{equation*}
$$

where $K(t, s)$ is the Cauchy operator generated by a homogeneous linear equation of (1.1). From the equation (1.2), we can consider the problem of asymptotic p-stability and asymptotic mean square for the random solution of (1.1) by

Key words: stochastic differential equation, asymptotic p-stability. 2000 Mathematics Subject Classification: 60H15.
using propeties of the Cauchy operator. In section 2 we give some of the basic definitions and lemmas needed for studying the stochastic differential equation (1.1). The section 3 gives main results on the equivalence between equations (1.1) and (1.2), and to give conditions for the asymptotic p-stability, asymptotic mean square stability of the random solution of (1.1). Some examples of application will be given in section 4 .

2 Priliminaries

All stochastic processes in this section are supposed to be considered in a complete probability space (Ω, \mathcal{F}, P). Firstly we recall some following concepts and results needed for our main results.

Definition 2.1. A solution $x_{t} \equiv 0$ of Equation (1.1) is said to be p-stable $(p>0)$ if for any $\varepsilon>0$ there exists $r>0$ such that $\left\|x_{0}\right\|<r$ and $t>t_{0}$

$$
E\left\|x\left(t, \omega, t_{0}, x_{0}\right)\right\|^{p}<\varepsilon
$$

Definition 2.2. A solution $x_{t} \equiv 0$ of Equation (1.1) is said to be p-asymtotically stable if it is p-stable and x_{0} is small enough then

$$
E\left\|x\left(t, \omega, t_{0}, x_{0}\right)\right\|^{p} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

Definition 2.3. Let $\xi(t, \omega)$ be n-dimensional measuarable random process. Define

$$
\chi_{p}[\xi]=\chi_{p}[\xi(t, \omega)]=\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln E\|\xi(t, \omega)\|^{p}
$$

We call $\chi_{p}[\xi]$ the p-Liapunov exponent of process $\xi(t, \omega)$.
Lemma 2.1. For any fixed $p>0$, denote $\phi(p)$ the set of all p-Liapunov exponent of all non-trivial solutions of the following equation

$$
\begin{aligned}
& \frac{d x}{d t}=G(t, x, \xi) \\
& G(t, 0, \xi)=0 \\
& x\left(t_{0}\right)=x_{0}, \quad t \geq 0
\end{aligned}
$$

where ξ is a random process.
If $\sup _{t_{0}, x_{0}} \phi(p)<0$, then the solution $x \equiv 0$ of the above equation is p asymptotically stable.

The proof of this lemma can be found in [5].

Lemma 2.2. Let $\chi_{p}\left[\xi_{i}\right]$ be the p-Liapunov exponent of processes $\xi_{i}(t, \omega), 0 \leq$ $i \leq n$, we have following assertions:

$$
\begin{equation*}
\chi_{p}\left[\sum_{0 \leq i \leq n} \xi_{i}\right] \leq \max _{0 \leq i \leq n} \chi_{p}\left[\xi_{i}\right] \tag{i}
\end{equation*}
$$

(ii) if $\xi(\omega), \eta(\omega)$ are independent random proceses, then

$$
\chi_{p}(\xi \eta) \leq \chi_{p}(\xi)+\chi_{p}(\eta)
$$

(iii) if c is a positive constant, then

$$
\chi_{p}(c \xi)=\chi_{p}(\xi)
$$

The proof of Lemma 2.2 can be seen directly from the above definitions. We now consider the following ordinary differential equation in an n - dimensional space

$$
\begin{align*}
& d x_{t}=A(t) x_{t} d t \tag{1.3}\\
& x\left(t_{0}\right)=x_{0}
\end{align*}
$$

where $x, x_{0} \in \mathbb{R}^{n}, t \in\left[t_{0}, \infty\right), A(t)=\left(a_{i, j}(t)\right)_{n \times n}$ with $a_{i, j}(t)$ are continuous functions, for every $t \in\left[t_{0}, \infty\right)$ and $i, j=1,2, \ldots, n$.

Lemma 2.3. Consider the matrix equation

$$
\begin{align*}
& d u_{t}=A(t) u_{t} d t \tag{1.4}\\
& u\left(t_{0}\right)=I
\end{align*}
$$

where I is a unit matrix. If $A(t)$ is continuous matrix for every $t \in\left[t_{0}, \infty\right)$ then we have the following assertions
(i) there exists a unique solution $u(t)$ of (1.4).
(ii) there exists an inverse operator $u^{-1}(t)$ and it is a solution of the following matrix equation

$$
\begin{align*}
& d w_{t}=-w_{t} A(t) d t \tag{1.5}\\
& w\left(t_{0}\right)=I
\end{align*}
$$

Definition 2.4. We call $K(t, s)=u(t) u^{-1}(s),\left(t \geq s \geq t_{0}\right)$ the Cauchy operator of the linear equation (1.3), where $u(t)$ and $u^{-1}(s)$ are the solution of equations (1.4) and (1.5).

We see that, if A is a constant matrix, then $u(t)=e^{A t}$ and $u^{-1}(s)=e^{-A s}$. Therefore $K(t, s)=e^{A(t-s)}$.

On the stability of solutions of stochastic differential equation...

Lemma 2.4. Assume that $K(t, s)$ is the Cauchy operator of the linear equation (1.3), we have the following assertions
(i) $K(t, t)=I$ for every $t \in\left[t_{0}, \infty\right)$,
(ii) $K(t, s)=K(t, \tau) \cdot K(\tau, s)$ for every $t_{0} \leq s \leq \tau \leq t$.

This Lemma can be proved directly from Definition 2.4 and Lemma 2.3.
Lemma 2.5. Suppose that all eigenvalues of the constant matrix A have negative real parts. Then there exist constants $\alpha, \beta>0$ such that:

$$
|K(t, s)|=\left|e^{A(t-s)}\right|<\beta e^{-\alpha(t-s)} \quad \text { for every } \quad t \geq t_{0}
$$

3 Main results

Let (Ω, \mathcal{F}, P) be a complete probability space. Suppose that $\left(\mathcal{F}_{t}, t \in R^{+}\right)$is a family of increasing subalgebras of \mathcal{F}, i.e. $\mathcal{F}_{s} \subset \mathcal{F}_{t} \subset \mathcal{F}$ for all $s<t$. Let B_{t} be an n-dimensional standard Brownian motion adapted to \mathcal{F}_{t}. Futhermore, we assume that the Equation (1.1) satisfies the following conditions
(i) $A(t)=\left(a_{i, j}(t)\right)_{n \times n}$ is continuous matrix for every $t \in \mathbb{R}^{+}$and $i, j=$ $1,2, \ldots n$, that is $a_{i, j}(t)$ are continuous functions for every $t \in \mathbb{R}^{+}$.
(ii) $f(t, x)$ is matrix function defined and continuous for every $t \in \mathbb{R}^{+}$and $x \in \mathbb{R}^{n}$.
(iii) $x(0)=x_{0}$ is $\mathcal{F}_{0}-$ measurable.

Theorem 3.1. With the conditions (i)-(iii), the equation (1.1) is equivalent to the following sochastic integral equation

$$
\begin{equation*}
x(t)=K(t, 0) x_{0}+\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s} \tag{1.2}
\end{equation*}
$$

where $K(t, s)$ is the Cauchy operator generated by the homogeneous linear equation of the equation (1.1).

Proof. Suppose that $x(t)$ satisfies the equation (1.1). Put

$$
y(t)=g(t, x)=K(\tau, t) x(t)
$$

Then we have

$$
y_{q}(t)=g_{q}(t, x(t))=\sum_{i=1}^{n} K_{q i}(\tau, t) x_{i}(t)
$$

An application of multi-dimensional Ito formula yields

$$
\begin{aligned}
d y_{q}(t) & =\frac{\partial g_{q}}{\partial t} d t+\sum_{i=1}^{n} \frac{\partial g_{q}}{\partial X_{i}} d x_{i} \\
& =\sum_{i=1}^{n} \frac{\partial K_{q i}(\tau, t)}{\partial t} x_{i}(t) d t+\sum_{i=1}^{n} K_{q i}(\tau, t) d x_{i}(t)
\end{aligned}
$$

It follows from (1.1) that

$$
d x_{i}(t)=\sum_{i=1}^{n} a_{i j}(t) x_{i}(t) d t+\sum_{i=1}^{n} f_{i j}(t, x(t)) d B_{t}^{i}
$$

Thus, we have

$$
\begin{aligned}
d y_{q}(t)= & \sum_{i=1}^{n} \frac{\partial K_{q i}(\tau, t)}{\partial t} x_{i}(t) d t+\sum_{i=1}^{n} K_{q i}(\tau, t) \\
& +\left(\sum_{i=1}^{n} a_{i j}(t) x_{i}(t) d t+\sum_{i=1}^{n} f_{i j}(t, x(t)) d B_{t}^{i}\right)
\end{aligned}
$$

From the definition of $K(t, s)$, we have

$$
K(\tau, t)=u(\tau) u^{-1}(t)
$$

We can see that

$$
\begin{aligned}
\frac{\partial K(\tau, t)}{\partial t} & =u(\tau) \frac{\partial u^{-1}(t)}{\partial t} \\
& =-u(\tau) u^{-1}(t) A(t) \\
& =-K(\tau, t) A(t)
\end{aligned}
$$

and

$$
\frac{\partial K_{q i}(\tau, t)}{\partial t}=-\sum_{j=1}^{n} K_{q j}(\tau, t) a_{j i}(t)
$$

Hence

$$
\begin{aligned}
d y_{q}(t)= & -\sum_{i, j=1}^{n} K_{q i}(\tau, t) a_{i j}(t) x_{i}(t) d t+\sum_{j, i=1}^{n} K_{q i}(\tau, t) a_{i j}(t) x_{j}(t) d t \\
& +\sum_{i=1}^{n} \sum_{j=1}^{n} K_{q i}(\tau, t) f_{i j}(t, x(t)) d B_{t}^{j} \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n} K_{q i}(\tau, t) f_{i j}(t, x(t)) d B_{t}^{j}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
y_{q}(t) & =y_{q}(0)+\sum_{i=1}^{n} \sum_{j=1}^{n} \int_{t_{0}}^{t} K_{q i}(\tau, s) f_{i j}(s, x(s)) d B_{s}^{j} \\
y(t) & =y(0)+\int_{0}^{t} K(\tau, s) f(s, x(s)) d B_{s} .
\end{aligned}
$$

So

$$
K(\tau, t) x(t)=K(\tau, 0) x_{0}+\int_{0}^{t} K(\tau, s) f(s, x(s)) d B_{s}
$$

Multiplying $K(t, \tau)$ to the above equality, we obtain

$$
K(t, \tau) K(\tau, t) x(t)=K(t, \tau) K(\tau, 0) x_{0}+\int_{0}^{t} K(t, \tau) K(\tau, s) f(s, x(s)) d B_{s}
$$

By using the assertion (i) of Lemma 2.5, we have

$$
x(t)=K(t, 0) x_{0}+\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}
$$

Thus, $x(t)$ is a solution of the equation (1.2).
It is easily to prove the sufficient condition of Theorem by using properties of the Cauchy operator $K(t, s)$ and the multi-dimensional Ito formula. The proof is now complete.

Corollary 3.1. A solution of the following stochastic differential equation

$$
d x(t)=A(t) x(t) d t+f(t) d B_{t}
$$

can be expressed in the form

$$
x(t)=K(t, 0) x_{0}+\int_{0}^{t} K(t, s) f(s) d B_{s}
$$

Theorem 3.2. Consider the stochastic differential equation (1.1). Assume that:
(i) there exist constants $\alpha, \beta>0$ such that

$$
\|K(t, s)\| \leq \beta e^{-\alpha(t-s)}
$$

(ii) the matrix function $f(t, x)$ satisfies Lipschitz condition

$$
\|f(t, x)-f(t, y)\|<l\|x-y\|
$$

and $\|f(t, x)\| \leq h(t)\|x\|$, where $h(t)$ is a positive function.
(iii) $\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s<\frac{\alpha}{\beta^{2}}$.

Then the trivial solution $x(t, \omega) \equiv 0$ of the equation (1.1) is asymptotically stable in mean square.

Proof. As an application of Theorem (3.1), we can write

$$
x(t)=K(t, 0) x_{0}+\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}
$$

Therefore

$$
\begin{aligned}
\|x(t)\|^{2} & =\left\|K(t, 0) x_{0}+\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}\right\|^{2} \\
& \leq 2\left(\|K(t, 0)\|^{2} \cdot\left\|x_{0}\right\|^{2}+\left\|\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}\right\|^{2}\right) \\
E\|x(t)\|^{2} & \leq 2\|K(t, 0)\|^{2} \cdot E\left\|x_{0}\right\|^{2}+2 \int_{0}^{t}\|K(t, s)\|^{2} \cdot E\|f(s, x(s))\|^{2} d s
\end{aligned}
$$

From (i) and (ii), we have

$$
\left.E\|x(t)\|^{2} \leq 2 \beta^{2} e^{-2 \alpha t} . E\left\|x_{0}\right\|^{2}+2 \beta^{2} \int_{0}^{t} e^{-2 \alpha(t-s)} \cdot h^{2}(s) E \| x(s)\right) \|^{2} d s
$$

which implies that

$$
e^{2 \alpha t} E\|x(t)\|^{2} \leq 2 \beta^{2} \cdot E\left\|x_{0}\right\|^{2}+2 \beta^{2} \int_{0}^{t} e^{2 \alpha s} \cdot h^{2}(s) E\|x(s)\|^{2} d s
$$

If we put

$$
\begin{aligned}
\phi(t) & =e^{2 \alpha t} E\|x(t)\|^{2} \\
C & =2 \beta^{2} \cdot E\left\|x_{0}\right\|^{2}>0
\end{aligned}
$$

then we can see that

$$
\phi(t) \leq C+2 \beta^{2} \int_{0}^{t} h^{2}(s) \phi(s) d s
$$

An application of Gronwall lemma yields

$$
\phi(t) \leq C \cdot e^{2 \beta^{2} \int_{0}^{t} h^{2}(s) d s}
$$

Hence

$$
\begin{gathered}
E\|x(t)\|^{2} \leq C \cdot \frac{e^{2 \beta^{2} \int_{0}^{t} h^{2}(s) d s}}{e^{2 \alpha t}} \\
\ln E\|x(t)\|^{2} \leq \ln C+2 \beta^{2} \int_{0}^{t} h^{2}(s) d s-2 \alpha t
\end{gathered}
$$

By using the assertion (iii) of Lemma 2.2 we get

$$
\varlimsup_{t \rightarrow \infty} \ln \frac{1}{t} E\|x(t)\|^{2} \leq 2 \beta^{2} \varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s-2 \alpha
$$

Then it follows from the condition (iii) that

$$
\varlimsup_{t \rightarrow \infty} \ln \frac{1}{t} E\|x(t)\|^{2}<0
$$

Thus, the trivial solution of the equation(1.1) is asymptotically stable in mean square.

Corollary 3.2. Consider the equation (1.1). Assume that A is a constant matrix whose all eigenvalues have negative real parts, the matrix function $f(t, x)$ satisfies condition (ii) of Theorem 3.2, and

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s=0
$$

Then the trivial solution of the equation (1.1) is asymptotically stable in mean square.

Proof. By Lemma 2.5, there exist constants $\alpha, \beta>0$ such that

$$
\|K(t, s)\| \leq \beta e^{-\alpha(t-s)}
$$

Because

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s<0
$$

Therefore

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s<\frac{\alpha}{\beta^{2}} .
$$

Thus, the trivial solution of the equation (1.1) is asymptotically stable in mean square.

Theorem 3.3. Consider the stochastic differential equation (1.1). Assume that
(i) there exist constants $\alpha, \beta>0$ such that

$$
\|K(t, s)\| \leq \beta e^{-\alpha(t-s)}
$$

(ii) the matrix function $f(t, x)$ satisfies Lipschitz condition and $\|f(t, x)\| \leq$ $h(t)\|x\|$, where $h(t)$ is a positive function.
(iii) $\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2 p}(s) s^{p-1} d s<\frac{2 \alpha p}{2^{2 p-1} \beta^{2 p}[p(2 p-1)]^{p}} \quad$ for every $p \in \mathbb{N}$,

Then the solution $x(t, \omega) \equiv 0$ of the equation $(1,1)$ is asymptotically stable in order $2 p$.

Proof. As an application of Theorem 3.1, we can write

$$
x(t)=K(t, 0) X_{0}+\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}
$$

which implies that

$$
\begin{gathered}
\|x(t)\|^{2 p} \leq 2^{2 p-1}\|K(t, 0)\|^{2 p} \cdot\left\|x_{0}\right\|^{2 p}+2^{2 p-1}\left\|\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}\right\|^{2 p} \\
E\|x(t)\|^{2 p} \leq 2^{2 p-1}\|K(t, 0)\|^{2 p} . E\left\|x_{0}\right\|^{2 p}+2^{2 p-1} E\left\|\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}\right\|^{2 p} .
\end{gathered}
$$

Therefore, we have (refer to [2])

$$
\begin{aligned}
E\|x(t)\|^{2 p} & \leq 2^{2 p-1}\|K(t, 0)\|^{2 p} \cdot E\left\|x_{0}\right\|^{2 p} \\
& +2^{2 p-1}[p(2 p-1)] t^{p-1} \int_{0}^{t}\|K(t, s)\|^{2 p} E\|f(s, x(s))\|^{2 p} d s .
\end{aligned}
$$

From the conditions (i) and (ii), we get

$$
\begin{aligned}
E\|x(t)\|^{2 p} & \leq 2^{2 p-1} \beta^{2 p} e^{-2 \alpha p t} \cdot E\left\|x_{0}\right\|^{2 p} \\
& \left.+2^{2 p-1} \beta^{2 p}[p(2 p-1)] t^{p-1} \int_{0}^{t} e^{-2 \alpha p(t-s)} E \| x(s)\right) \|^{2 p} h^{2 p}(s) d s
\end{aligned}
$$

Now, we can consider t on $\left[t_{0}, \infty\right], t_{0}>0$. If we put

$$
\begin{aligned}
\varphi(t) & =\frac{e^{2 \alpha t} E\|x(t)\|^{2} p}{t^{p-1}} \\
C & =2^{2 p-1} \beta^{2 p} E\left\|x_{0}\right\|^{2 p} \\
D & =2^{2 p-1} \beta^{2 p}[p(2 p-1)]^{p}
\end{aligned}
$$

then we see that

$$
\varphi(t) \leq \frac{C}{t_{0}^{p-1}}+D \int_{t_{0}}^{t} h^{2 p}(s) s^{p-1} \varphi(s) d s
$$

An application of Gronwall lemma yields

$$
\varphi(t) \leq \frac{C}{t_{0}^{p-1}} e^{D \int_{t_{0}}^{t} h^{2 p}(s) s^{p-1} d s}
$$

Hence

$$
E\|x(t)\|^{2 p} \leq \frac{C e^{-2 \alpha t}}{t_{0}^{p-1}} t^{p-1} e^{D \int_{t_{0}}^{t} h^{2 p}(s) s^{p-1} d s}
$$

which implies that

$$
\frac{1}{t} \ln E\|x(t)\|^{2 p} \leq \frac{1}{t} \ln \left(C / t_{0}^{p-1}\right)+(p-1) \frac{\ln t}{t}+\frac{D}{t} \int_{t_{0}}^{t} h^{2 p}(s) s^{p-1} d s-2 \alpha
$$

By applying Lemma 2.2, we obtain

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln E\|x(t)\|^{2 p} \leq 2^{2 p-1} \beta^{2 p}[p(2 p-1)]^{p} \cdot \varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2 p}(s) s^{p-1} d s-2 \alpha
$$

The condition (iii) implies that

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln E\|x(t)\|^{2 p}<0
$$

Thus, the trivial solution of the equation (1.1) is asymptotically stable in order $2 p$.
Corollary 3.3. Consider the equation (1.1). Assume that A is a constant matrix whose all eigenvalues have negative real part, the function $f(t, x)$ satisfies the condition (ii) of Theorem (3.3), and

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2 p}(s) s^{p-1} d s=0 \quad \text { for every } \quad p \in \mathbb{N}
$$

Then the trivial solution of the equation (1.1) is asymptotically stable in order $2 p$.

Theorem 3.4. Consider the stochastic differential equation (1.1). Asume that, (i) there exist constants $\alpha, \beta>0$ such that

$$
\|K(t, s)\| \leq \beta e^{-\alpha(t-s)}
$$

(ii) the matrix function $f(t, x)$ is continuous with respect to t, x, and satisfies Lipschitz condition

$$
\|f(t, x)-f(t, y)\|<l\|x-y\| .
$$

(iii)

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} e^{2 \alpha s}\|f(s, 0)\|^{2} d s<2 \alpha .
$$

(iv)

$$
\alpha>2 l^{2}
$$

Then the trivial solution $x(t, \omega) \equiv 0$ of the equation $(1,1)$ is asymptotically stable in mean square.

Proof. Applying the Theorem 3.1, we can write

$$
x(t)=K(t, 0) X_{0}+\int_{0}^{t} K(t, s) f(s, x(s)) d B_{s}
$$

which implies that

$$
E\|x(t)\|^{2} \leq 2\|K(t, 0)\|^{2} \cdot E\left\|x_{0}\right\|^{2}+2 \int_{0}^{t}\|K(t, s)\|^{2} \cdot E\|f(s, x(s))\|^{2} d s
$$

We have

$$
\begin{aligned}
\|f(t, x)\|^{2} & =\|f(t, x)-f(t, 0)+f(t, 0)\|^{2} \\
& \leq 2\|f(t, x)-f(t, 0)\|^{2}+2\|f(t, 0)\|^{2} \\
& \leq 2 l^{2}\|x\|^{2}+2\|f(t, 0)\|^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
E\|x(t)\|^{2} \leq & 2 e^{-2 \alpha t} E\left\|x_{0}\right\|^{2}+4 l^{2} \int_{0}^{t} e^{-2 \alpha(t-s)} E\|x(s)\|^{2} d s \\
& +4 \int_{0}^{t} e^{-2 \alpha(t-s)} \| f\left(s, 0 \|^{2} d s\right.
\end{aligned}
$$

If we put

$$
\begin{aligned}
\varphi(t) & =e^{2 \alpha t} E\|x(t)\|^{2} \\
\psi(t) & =2 E\left\|X_{0}\right\|^{2}+4 \int_{0}^{t} e^{2 \alpha s} \| f\left(s, 0 \|^{2} d s\right.
\end{aligned}
$$

then we can see that

$$
\varphi(t) \leq \psi(t)+4 l^{2} \int_{0}^{t} \varphi(s) d s
$$

By the Gronwall lemma, it yields

$$
\begin{aligned}
\varphi(t) \leq & \psi(t)+4 l^{2} \int_{0}^{t} e^{4 l^{2} s} \psi(s) d s \\
\leq & 2 E\left\|x_{0}\right\|^{2}+4 \int_{0}^{t} e^{2 \alpha s} \| f\left(s, 0\left\|^{2} d s+8 l^{2} E\right\| x_{0} \|^{2} \int_{0}^{t} e^{4 l^{2} s} d s\right. \\
& +16 l^{2} \int_{0}^{t} e^{4 l^{2} s}\left(\int_{0}^{s} e^{2 \alpha \tau}\|f(\tau, 0)\|^{2} d \tau\right) d s
\end{aligned}
$$

Therefore

$$
\begin{aligned}
E\|x(t)\|^{2} \leq 2 E \| & x_{0}\left\|^{2} e^{-2 \alpha t}+8 l^{2} E\right\| x_{0} \|^{2} e^{-2 \alpha t}\left(\frac{1}{4 l^{2}} e^{4 l^{2} t}-1\right) \\
& +4 e^{-2 \alpha t} \int_{0}^{t} e^{2 \alpha s} \| f\left(s, 0 \|^{2} d s\right. \\
& +16 l^{2} e^{-2 \alpha t} \int_{0}^{t} e^{4 l^{2} s}\left(\int_{0}^{s} e^{2 \alpha \tau}\|f(\tau, 0)\|^{2} d \tau\right) d s
\end{aligned}
$$

Put

$$
\begin{aligned}
M_{1} & =\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln \left(8 l^{2} x_{0}^{2} e^{-2 \alpha t}\left(\frac{1}{4 l^{2}} e^{4 l^{2} t}-1\right)\right) \\
M_{2} & =\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln \left(4 e^{-2 \alpha t} \int_{0}^{t} e^{2 \alpha s} \| f\left(s, 0 \|^{2} d s\right)\right. \\
M_{3} & =\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln \left(16 l^{2} e^{-2 \alpha t} \int_{0}^{t} e^{4 l^{2} s}\left(\int_{0}^{s} e^{2 \alpha \tau}\|f(\tau, 0)\|^{2} d \tau\right)\right) d s
\end{aligned}
$$

In taking account of conditions (iii) and (iv) of the theorem and lemma 2.2, we get

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln E\|x(t)\|^{2} \leq \max \left(-2 \alpha, M_{1}, M_{2}, M_{3}\right)
$$

and $M_{1} \leq 4 l^{2}-2 \alpha<0, M_{2}<0$. The negativity of M_{1} and M_{2} implies that of M_{3}. Therefore

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln E\|x(t)\|^{2}<0
$$

Thus, the trivial solution of the equation $(1,1)$ is asymptotically stable in mean square.

4 Examples

Example 1. We consider the following equation

$$
\binom{d x_{1}}{d x_{2}}=\left(\begin{array}{ll}
1 & -1 \\
3 & -2
\end{array}\right)\binom{x_{1}}{x_{2}} d t+\left(\begin{array}{ll}
e^{-t} x_{1} & \frac{x_{1}+x_{2}}{\sqrt[4]{t+1}} \\
\frac{x_{1}-x_{2}}{\sqrt[4]{t+1}} & e^{-t} x_{2}
\end{array}\right)\binom{d B_{1}}{d B_{2}}
$$

we have

$$
A=\left(\begin{array}{ll}
1 & -1 \\
3 & -2
\end{array}\right)
$$

We see that $\operatorname{Re}\left(\alpha_{1}, \alpha_{2}\right)=-1<0$, where α_{1}, α_{2} are eigenvalues of the matrix A .

$$
\|f(t, x)\|^{2}=e^{-2 t}\|x\|^{2}+\frac{2}{\sqrt{t+1}}\|x\|^{2}=\left(e^{-2 t}+\frac{2}{\sqrt{t+1}}\right)\|x\|^{2}
$$

Therefore

$$
h^{2}(t)=e^{-2 t}+\frac{2}{\sqrt{t+1}}
$$

which implies that

$$
\begin{aligned}
\int_{0}^{t} h^{2}(s) d s=\int_{0}^{t}\left(e^{-2 s}+\frac{2}{\sqrt{s+1}}\right) d s & =\left.\left(-\frac{1}{2} e^{-2 s}+4 \sqrt{s+1}\right)\right|_{0} ^{t} \\
& =-\frac{1}{2} e^{-2 s}+4 \sqrt{s+1}-\frac{7}{2}
\end{aligned}
$$

and

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s=0
$$

Thus, the solution $x(t, \omega) \equiv 0$ of the above equation is asymptotically stable in mean square.

Example 2. We consider the following equation
$\binom{d x_{1}}{d x_{2}}=\left(\begin{array}{ll}1 & -5 \\ 2 & -3\end{array}\right)\binom{x_{1}}{x_{2}} d t+\left(\begin{array}{cc}e^{-\alpha t} \sqrt{\left|x_{1}\right| \cdot\left|x_{2}\right|} & \frac{\sin t}{\sqrt{t+1}}\left(x_{1}+x_{2}\right) \\ \frac{\cos t}{\sqrt{t+1}}\left(x_{1}-x_{2}\right) & e^{-\alpha t}\left(x_{1}+x_{2}\right)\end{array}\right)\binom{d B_{1}}{d B_{2}}$
$(\alpha>0)$.
Put

$$
A=\left(\begin{array}{ll}
1 & -5 \\
2 & -3
\end{array}\right)
$$

Let λ_{1}, λ_{2} be eigenvalues of the matrix A . We have

$$
\begin{gathered}
\operatorname{Re}\left(\lambda_{1}, \lambda_{2}\right)<0 \\
\|f(t, x)\|^{2} \leq\left(\frac{3}{2} e^{-2 \alpha t}+\frac{1}{t+1}\right)\|x\|^{2} .
\end{gathered}
$$

Therefore

$$
h^{2}(t)=\frac{3}{2} e^{-2 \alpha t}+\frac{1}{t+1} .
$$

We see that

$$
\int_{0}^{t} h^{2}(s) d s=\int_{0}^{t}\left(\frac{3}{2} e^{-2 \alpha t}+\frac{1}{t+1}\right) d s=-\frac{3}{4} e^{-2 \alpha t}+\ln (t+1)+\frac{3}{4}
$$

hence

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s=0
$$

which implies the asymptotical stability in mean square of the solution $x(t, \omega) \equiv$ 0 .

Example 3.

$\binom{d x_{1}}{d x_{2}}=\left(\begin{array}{ll}0 & -3 \\ 1 & -2\end{array}\right)\binom{x_{1}}{x_{2}} d t+\left(\begin{array}{cc}e^{-k t} \sin \left|x_{1}\right| & \ln \left(\frac{\left|x_{1}+x_{2}\right|}{\sqrt{t^{n}+1}}+1\right. \\ \ln \left(\frac{\left|x_{1}-x_{2}\right|}{\sqrt{t^{n}+1}}+1\right) & \sin \left(\left|x_{2}\right| e^{-k t}\right)\end{array}\right)\binom{d B_{1}}{d B_{2}}$
$(k>0, n>1)$,
we have

$$
\begin{gathered}
\|f(t, x)\|^{2}=e^{-2 k t} \sin ^{2}\left|x_{1}\right|+\sin ^{2}\left(\left|x_{2}\right| e^{-k \emptyset}+\ln ^{2}\left(\frac{\left|x_{1}-x_{2}\right|}{\sqrt{t^{n}+1}}+1\right)+\ln ^{2}\left(\frac{\left|x_{1}+x_{2}\right|}{\sqrt{t^{n}+1}}+1\right)\right. \\
\|f(t, x)\|^{2} \leq\left(e^{-2 k t}+\frac{4}{t^{n}+1}\right)\|x\|^{2}
\end{gathered}
$$

Hence

$$
h^{2}(t)=e^{-2 k t}+\frac{4}{t^{n}+1}
$$

Because $n>1$, we see that

$$
\int_{0}^{\infty} h^{2}(s) d s=\int_{0}^{\infty} e^{-2 k s} d s+4 \int_{0}^{\infty} \frac{1}{s^{n}+1} d s<\infty
$$

which implies that

$$
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} h^{2}(s) d s=0
$$

So, the $x(t, \omega) \equiv 0$ of the above equation is asymptotically stable in mean square.

References

[1] Bernt ØKsendal, Stochastic Differential Equations, Springer-verlang Berlin-Heidelberg-NewYork, 1992.
[2] I.I.Gihman, A.V.Skorohod, Stochastic Differential Equations, SpringerVerlag Berlin -Heidelberg- New York, 1972.
[3] Morozan, T, Stability of some linear stochastic systems, J. Differential Equations 3 (1967), 153-169.
[4] Morozan, T, Stability of linear systems with random parameter, J. Differential Equations 3 (1967), 170-178.
[5] Tran Van Nhung, Liapunov's exponent of a stochastic process and the stability of the system of linear differential equation with random matrixes, Bull. Math. Soc. Sci. Math. R. S Roumanie(N.S) 23 (71) (1979), No. 3, 311-321.

