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Abstract

The aim of this paper is to prove the equivalence of a stochastic dif-
ferential equation with linear drift to a stochastic integral equation in an
n-dimensional space. The asymptotic p-stability and asymptotic mean
square satbility of the trivial random solution for the stochastic differ-
ential equation are also investigated by using properties of the Cauchy
operator.

1 Introduction

In this paper, we consider the following stochastic differential equation in an
n-dimensional space

dx(t) = A(t)x(t)dt+ f(t, x(t))dBt, (1.1)

where (Bt, t ∈ R+) is an n-dimensional Brownian motion, A(t) and f(t, x) are
a n× n-matrix function. We prove the equivalence of the equation (1.1) to the
following stochastic integral equation

x(t) = K(t, t0)x0 +
∫ t

t0

K(t, s)f(s, x(s))dBs , (1.2)

where K(t, s) is the Cauchy operator generated by a homogeneous linear equa-
tion of (1.1). From the equation (1.2), we can consider the problem of asymp-
totic p-stability and asymptotic mean square for the random solution of (1.1) by
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using propeties of the Cauchy operator. In section 2 we give some of the basic
definitions and lemmas needed for studying the stochastic differential equation
(1.1). The section 3 gives main results on the equivalence between equations
(1.1) and (1.2), and to give conditions for the asymptotic p-stability, asymp-
totic mean square stability of the random solution of (1.1). Some examples of
application will be given in section 4.

2 Priliminaries

All stochastic processes in this section are supposed to be considered in a com-
plete probability space (Ω,F , P ). Firstly we recall some following concepts and
results needed for our main results.

Definition 2.1. A solution xt ≡ 0 of Equation (1.1) is said to be p-stable
(p > 0) if for any ε > 0 there exists r > 0 such that ||x0|| < r and t > t0

E||x(t, ω, t0, x0)||p < ε.

Definition 2.2. A solution xt ≡ 0 of Equation (1.1) is said to be p-asymtotically
stable if it is p-stable and x0 is small enough then

E||x(t, ω, t0, x0)||p → 0 as t → ∞.

Definition 2.3. Let ξ(t, ω) be n-dimensional measuarable random process.
Define

χp[ξ] = χp[ξ(t, ω)] = lim
t→∞

1
t

lnE||ξ(t, ω)||p.

We call χp[ξ] the p-Liapunov exponent of process ξ(t, ω) .

Lemma 2.1. For any fixed p > 0, denote φ(p) the set of all p-Liapunov expo-
nent of all non-trivial solutions of the following equation

dx

dt
= G(t, x, ξ)

G(t, 0, ξ) = 0
x(t0) = x0, t ≥ 0

where ξ is a random process.
If supt0,x0

φ(p) < 0, then the solution x ≡ 0 of the above equation is p-
asymptotically stable.

The proof of this lemma can be found in [5].
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Lemma 2.2. Let χp[ξi] be the p-Liapunov exponent of processes ξi(t, ω), 0 ≤
i ≤ n , we have following assertions:
(i)

χp

[ ∑
0≤i≤n

ξi

]
≤ max

0≤i≤n
χp[ξi],

(ii) if ξ(ω), η(ω) are independent random proceses, then

χp(ξη) ≤ χp(ξ) + χp(η),

(iii) if c is a positive constant, then

χp(cξ) = χp(ξ).

The proof of Lemma 2.2 can be seen directly from the above definitions. We
now consider the following ordinary differential equation in an n- dimensional
space

dxt = A(t)xtdt, (1.3)
x(t0) = x0,

where x, x0 ∈ R
n, t ∈ [t0,∞), A(t) = (ai,j(t))nxn with ai,j(t) are continuous

functions, for every t ∈ [t0,∞) and i, j = 1, 2, ..., n.

Lemma 2.3. Consider the matrix equation

dut = A(t)utdt, (1.4)
u(t0) = I,

where I is a unit matrix. If A(t) is continuous matrix for every t ∈ [t0,∞)
then we have the following assertions

(i) there exists a unique solution u(t) of (1.4).
(ii) there exists an inverse operator u−1(t) and it is a solution of the fol-

lowing matrix equation

dwt = −wtA(t)dt, (1.5)
w(t0) = I.

Definition 2.4. We call K(t, s) = u(t)u−1(s), (t ≥ s ≥ t0) the Cauchy op-
erator of the linear equation (1.3), where u(t) and u−1(s) are the solution of
equations (1.4) and (1.5).

We see that, if A is a constant matrix, then u(t) = eAt and u−1(s) = e−As.
Therefore K(t, s) = eA(t−s).
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Lemma 2.4. Assume that K(t, s) is the Cauchy operator of the linear equation
(1.3), we have the following assertions

(i) K(t, t) = I for every t ∈ [t0,∞),

(ii) K(t, s) = K(t, τ ).K(τ, s) for every t0 ≤ s ≤ τ ≤ t.

This Lemma can be proved directly from Definition 2.4 and Lemma 2.3.

Lemma 2.5. Suppose that all eigenvalues of the constant matrix A have neg-
ative real parts. Then there exist constants α, β > 0 such that:

|K(t, s)| = |eA(t−s)| < βe−α(t−s) for every t ≥ t0.

3 Main results

Let (Ω,F , P ) be a complete probability space. Suppose that (Ft, t ∈ R+) is a
family of increasing subalgebras of F , i.e. Fs ⊂ Ft ⊂ F for all s < t. Let Bt

be an n-dimensional standard Brownian motion adapted to Ft. Futhermore,
we assume that the Equation (1.1) satisfies the following conditions

(i) A(t) = (ai,j(t))nxn is continuous matrix for every t ∈ R
+ and i, j =

1, 2, ...n, that is ai,j(t) are continuous functions for every t ∈ R
+.

(ii) f(t, x) is matrix function defined and continuous for every t ∈ R
+ and

x ∈ R
n.

(iii) x(0) = x0 is F0 −measurable.

Theorem 3.1. With the conditions (i)-(iii), the equation (1.1) is equivalent
to the following sochastic integral equation

x(t) = K(t, 0)x0 +
∫ t

0

K(t, s)f(s, x(s))dBs, (1.2)

where K(t, s) is the Cauchy operator generated by the homogeneous linear equa-
tion of the equation (1.1).

Proof. Suppose that x(t) satisfies the equation (1.1). Put

y(t) = g(t, x) = K(τ, t)x(t).

Then we have

yq(t) = gq(t, x(t)) =
n∑

i=1

Kqi(τ, t)xi(t).

An application of multi-dimensional Ito formula yields

dyq(t) = ∂gq

∂t
dt+

∑n
i=1

∂gq

∂Xi
dxi

=
∑n

i=1
∂Kqi(τ,t)

∂t
xi(t)dt+

∑n
i=1Kqi(τ, t)dxi(t).
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It follows from (1.1) that

dxi(t) =
n∑

i=1

aij(t)xi(t)dt+
n∑

i=1

fij(t, x(t))dBi
t.

Thus, we have

dyq(t) =
∑n

i=1
∂Kqi(τ,t)

∂t
xi(t)dt+

∑n
i=1Kqi(τ, t)

+
(∑n

i=1 aij(t)xi(t)dt+
∑n

i=1 fij(t, x(t))dBi
t

)
.

From the definition of K(t, s), we have

K(τ, t) = u(τ )u−1(t).

We can see that
∂K(τ,t)

∂t
= u(τ )∂u−1(t)

∂t

= −u(τ )u−1(t)A(t)

= −K(τ, t)A(t),

and
∂Kqi(τ, t)

∂t
= −

n∑
j=1

Kqj(τ, t)aji(t).

Hence

dyq(t) = −∑n
i,j=1Kqi(τ, t)aij(t)xi(t)dt+

∑n
j,i=1Kqi(τ, t)aij(t)xj(t)dt

+
∑n

i=1

∑n
j=1Kqi(τ, t)fij(t, x(t))dBj

t

=
∑n

i=1

∑n
j=1Kqi(τ, t)fij(t, x(t))dBj

t ,

which implies that

yq(t) = yq(0) +
∑n

i=1

∑n
j=1

∫ t

t0
Kqi(τ, s)fij(s, x(s))dBj

s ,

y(t) = y(0) +
∫ t

0
K(τ, s)f(s, x(s))dBs .

So

K(τ, t)x(t) = K(τ, 0)x0 +
∫ t

0

K(τ, s)f(s, x(s))dBs .

Multiplying K(t, τ ) to the above equality, we obtain

K(t, τ )K(τ, t)x(t) = K(t, τ )K(τ, 0)x0 +
∫ t

0

K(t, τ )K(τ, s)f(s, x(s))dBs .
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By using the assertion (i) of Lemma 2.5, we have

x(t) = K(t, 0)x0 +
∫ t

0

K(t, s)f(s, x(s))dBs.

Thus, x(t) is a solution of the equation (1.2).
It is easily to prove the sufficient condition of Theorem by using properties

of the Cauchy operator K(t, s) and the multi-dimensional Ito formula. The
proof is now complete.

Corollary 3.1. A solution of the following stochastic differential equation

dx(t) = A(t)x(t)dt+ f(t)dBt,

can be expressed in the form

x(t) = K(t, 0)x0 +
∫ t

0

K(t, s)f(s)dBs.

Theorem 3.2. Consider the stochastic differential equation (1.1). Assume
that:
(i) there exist constants α, β > 0 such that

||K(t, s)|| ≤ βe−α(t−s).

(ii) the matrix function f(t, x) satisfies Lipschitz condition

||f(t, x) − f(t, y)|| < l||x− y||,

and ||f(t, x)|| ≤ h(t)||x||, where h(t) is a positive function.
(iii) limt→∞ 1

t

∫ t

0
h2(s)ds < α

β2 .

Then the trivial solution x(t, ω) ≡ 0 of the equation (1.1) is asymptotically
stable in mean square.

Proof. As an application of Theorem (3.1), we can write

x(t) = K(t, 0)x0 +
∫ t

0

K(t, s)f(s, x(s))dBs.

Therefore

||x(t)||2 = ||K(t, 0)x0 +
∫ t

0
K(t, s)f(s, x(s))dBs ||2

≤ 2
(
||K(t, 0)||2.||x0||2 + || ∫ t

0
K(t, s)f(s, x(s))dBs||2

)
,

E||x(t)||2 ≤ 2||K(t, 0)||2.E||x0||2 + 2
∫ t

0
||K(t, s)||2.E||f(s, x(s))||2ds.
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From (i) and (ii), we have

E||x(t)||2 ≤ 2β2e−2αt.E||x0||2 + 2β2

∫ t

0

e−2α(t−s).h2(s)E||x(s))||2ds,

which implies that

e2αtE||x(t)||2 ≤ 2β2.E||x0||2 + 2β2

∫ t

0

e2αs.h2(s)E||x(s)||2ds.

If we put
φ(t) = e2αtE||x(t)||2,

C = 2β2.E||x0||2 > 0,

then we can see that

φ(t) ≤ C + 2β2

∫ t

0

h2(s)φ(s)ds.

An application of Gronwall lemma yields

φ(t) ≤ C.e2β2 ∫ t
0 h2(s)ds.

Hence

E||x(t)||2 ≤ C.
e2β2 ∫ t

0 h2(s)ds

e2αt
,

lnE||x(t)||2 ≤ lnC + 2β2

∫ t

0

h2(s)ds− 2αt.

By using the assertion (iii) of Lemma 2.2 we get

lim
t→∞ ln

1
t
E||x(t)||2 ≤ 2β2 lim

t→∞
1
t

∫ t

0

h2(s)ds− 2α.

Then it follows from the condition (iii) that

lim
t→∞ ln

1
t
E||x(t)||2 < 0.

Thus, the trivial solution of the equation(1.1) is asymptotically stable in mean
square.

Corollary 3.2. Consider the equation (1.1). Assume that A is a constant
matrix whose all eigenvalues have negative real parts, the matrix function f(t, x)
satisfies condition (ii) of Theorem 3.2, and

lim
t→∞

1
t

∫ t

0

h2(s)ds = 0.

Then the trivial solution of the equation (1.1) is asymptotically stable in mean
square.
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Proof. By Lemma 2.5, there exist constants α, β > 0 such that

||K(t, s)|| ≤ βe−α(t−s).

Because

lim
t→∞

1
t

∫ t

0

h2(s)ds < 0.

Therefore

lim
t→∞

1
t

∫ t

0

h2(s)ds <
α

β2
.

Thus, the trivial solution of the equation (1.1) is asymptotically stable in mean
square.

Theorem 3.3. Consider the stochastic differential equation (1.1). Assume
that
(i) there exist constants α, β > 0 such that

||K(t, s)|| ≤ βe−α(t−s).

(ii) the matrix function f(t, x) satisfies Lipschitz condition and ||f(t, x)|| ≤
h(t)||x||, where h(t) is a positive function.
(iii) limt→∞ 1

t

∫ t

0 h
2p(s)sp−1ds < 2αp

22p−1β2p[p(2p−1)]p for every p ∈ N,

Then the solution x(t, ω) ≡ 0 of the equation (1,1) is asymptotically stable in
order 2p.

Proof. As an application of Theorem 3.1, we can write

x(t) = K(t, 0)X0 +
∫ t

0

K(t, s)f(s, x(s))dBs ,

which implies that

||x(t)||2p ≤ 22p−1||K(t, 0)||2p.||x0||2p + 22p−1||
∫ t

0

K(t, s)f(s, x(s))dBs||2p,

E||x(t)||2p ≤ 22p−1||K(t, 0)||2p.E||x0||2p +22p−1E||
∫ t

0

K(t, s)f(s, x(s))dBs||2p.

Therefore, we have (refer to [2])

E||x(t)||2p ≤ 22p−1||K(t, 0)||2p.E||x0||2p

+22p−1[p(2p− 1)]tp−1
∫ t

0
||K(t, s)||2pE||f(s, x(s))||2pds.

From the conditions (i) and (ii), we get

E||x(t)||2p ≤ 22p−1β2pe−2αpt.E||x0||2p

+22p−1β2p[p(2p− 1)]tp−1
∫ t

0
e−2αp(t−s)E||x(s))||2ph2p(s)ds.
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Now, we can consider t on [t0,∞], t0 > 0. If we put

ϕ(t) = e2αtE||x(t)||2p
tp−1 .

C = 22p−1β2pE||x0||2p.

D = 22p−1β2p[p(2p− 1)]p,

then we see that

ϕ(t) ≤ C

tp−1
0

+D

∫ t

t0

h2p(s)sp−1ϕ(s)ds.

An application of Gronwall lemma yields

ϕ(t) ≤ C

tp−1
0

e
D
∫ t

t0
h2p(s)sp−1ds

.

Hence

E||x(t)||2p ≤ Ce−2αt

tp−1
0

tp−1e
D
∫ t

t0
h2p(s)sp−1ds

,

which implies that

1
t

lnE||x(t)||2p ≤ 1
t

ln(C/tp−1
0 ) + (p− 1)

ln t
t

+
D

t

∫ t

t0

h2p(s)sp−1ds− 2α,

By applying Lemma 2.2, we obtain

lim
t→∞

1
t

lnE||x(t)||2p ≤ 22p−1β2p[p(2p− 1)]p. lim
t→∞

1
t

∫ t

0

h2p(s)sp−1ds− 2α.

The condition (iii) implies that

lim
t→∞

1
t

lnE||x(t)||2p < 0.

Thus, the trivial solution of the equation (1.1) is asymptotically stable in order
2p.

Corollary 3.3. Consider the equation (1.1). Assume that A is a constant ma-
trix whose all eigenvalues have negative real part, the function f(t, x) satisfies
the condition (ii) of Theorem (3.3), and

lim
t→∞

1
t

∫ t

0

h2p(s)sp−1ds = 0 for every p ∈ N.

Then the trivial solution of the equation (1.1) is asymptotically stable in order
2p.
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Theorem 3.4. Consider the stochastic differential equation (1.1). Asume that,
(i) there exist constants α, β > 0 such that

||K(t, s)|| ≤ βe−α(t−s).

(ii) the matrix function f(t, x) is continuous with respect to t, x, and satisfies
Lipschitz condition

||f(t, x) − f(t, y)|| < l||x− y||.
(iii)

lim
t→∞

1
t

∫ t

0

e2αs||f(s, 0)||2ds < 2α.

(iv)
α > 2l2.

Then the trivial solution x(t, ω) ≡ 0 of the equation (1,1) is asymptotically
stable in mean square.

Proof. Applying the Theorem 3.1, we can write

x(t) = K(t, 0)X0 +
∫ t

0

K(t, s)f(s, x(s))dBs ,

which implies that

E||x(t)||2 ≤ 2||K(t, 0)||2.E||x0||2 + 2
∫ t

0

||K(t, s)||2.E||f(s, x(s))||2ds.

We have
||f(t, x)||2 = ||f(t, x)− f(t, 0) + f(t, 0)||2

≤ 2||f(t, x)− f(t, 0)||2 + 2||f(t, 0)||2

≤ 2l2||x||2 + 2||f(t, 0)||2.
Hence

E||x(t)||2 ≤ 2e−2αtE||x0||2 + 4l2
∫ t

0
e−2α(t−s)E||x(s)||2ds

+4
∫ t

0
e−2α(t−s)||f(s, 0||2ds.

If we put
ϕ(t) = e2αtE||x(t)||2,

ψ(t) = 2E||X0||2 + 4
∫ t

0
e2αs||f(s, 0||2ds.

,

then we can see that

ϕ(t) ≤ ψ(t) + 4l2
∫ t

0

ϕ(s)ds.
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By the Gronwall lemma, it yields

ϕ(t) ≤ ψ(t) + 4l2
∫ t

0 e
4l2sψ(s)ds

≤ 2E||x0||2 + 4
∫ t

0 e
2αs||f(s, 0||2ds+ 8l2E||x0||2

∫ t

0 e
4l2sds

+16l2
∫ t

0
e4l2s(

∫ s

0
e2ατ ||f(τ, 0)||2dτ )ds.

Therefore

E||x(t)||2 ≤ 2E||x0||2e−2αt + 8l2E||x0||2e−2αt( 1
4l2 e

4l2t − 1)
+4e−2αt

∫ t

0
e2αs||f(s, 0||2ds

+16l2e−2αt
∫ t

0
e4l2s(

∫ s

0
e2ατ ||f(τ, 0)||2dτ )ds.

Put

M1 = lim
t→∞

1
t

ln
(

8l2x2
0e

−2αt(
1

4l2
e4l2t − 1)

)
,

M2 = lim
t→∞

1
t

ln
(
4e−2αt

∫ t

0

e2αs||f(s, 0||2ds),
M3 = lim

t→∞
1
t

ln
(
16l2e−2αt

∫ t

0

e4l2s(
∫ s

0

e2ατ ||f(τ, 0)||2dτ ))ds.
In taking account of conditions (iii) and (iv) of the theorem and lemma 2.2, we
get

lim
t→∞

1
t

lnE||x(t)||2 ≤ max(−2α,M1,M2,M3),

and M1 ≤ 4l2 − 2α < 0,M2 < 0. The negativity of M1 and M2 implies that of
M3. Therefore

lim
t→∞

1
t

lnE||x(t)||2 < 0.

Thus, the trivial solution of the equation (1,1) is asymptotically stable in mean
square.

4 Examples

Example 1. We consider the following equation

(
dx1

dx2

)
=
(

1 −1
3 −2

)(
x1

x2

)
dt+

(
e−tx1

x1+x2
4√t+1

x1−x2
4√t+1

e−tx2

)(
dB1

dB2

)
,

we have

A =
(

1 −1
3 −2

)
.
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We see that Re(α1, α2) = −1 < 0, where α1, α2 are eigenvalues of the matrix A.

‖f(t, x)‖2 = e−2t‖x‖2 +
2√
t + 1

‖x‖2 =
(
e−2t +

2√
t+ 1

)
‖x‖2.

Therefore
h2(t) = e−2t +

2√
t+ 1

,

which implies that

∫ t

0
h2(s)ds =

∫ t

0

(
e−2s + 2√

s+1

)
ds =

(
− 1

2e
−2s + 4

√
s+ 1

)
|t0

= −1
2e

−2s + 4
√
s+ 1 − 7

2 ,

and

lim
t→∞

1
t

∫ t

0

h2(s)ds = 0.

Thus, the solution x(t, ω) ≡ 0 of the above equation is asymptotically stable in
mean square.

Example 2. We consider the following equation

(
dx1

dx2

)
=
(

1 −5
2 −3

)(
x1

x2

)
dt+

(
e−αt

√|x1|.|x2| sin t√
t+1

(x1 + x2)
cos t√
t+1

(x1 − x2) e−αt(x1 + x2)

)(
dB1

dB2

)

(α > 0).
Put

A =
(

1 −5
2 −3

)
.

Let λ1, λ2 be eigenvalues of the matrix A. We have

Re(λ1 , λ2) < 0,

‖f(t, x)‖2 ≤ (3
2
e−2αt +

1
t+ 1

)‖x‖2.

Therefore
h2(t) =

3
2
e−2αt +

1
t + 1

.

We see that∫ t

0

h2(s)ds =
∫ t

0

(3
2
e−2αt +

1
t+ 1

)
ds = −3

4
e−2αt + ln(t+ 1) +

3
4
,

hence

lim
t→∞

1
t

∫ t

0

h2(s)ds = 0,
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which implies the asymptotical stability in mean square of the solution x(t, ω) ≡
0.

Example 3.

(
dx1

dx2

)
=
(

0 −3
1 −2

)(
x1

x2

)
dt+

⎛
⎜⎜⎜⎜⎝

e−kt sin |x1| ln

(
|x1+x2|√

tn+1
+ 1

)

ln

(
|x1−x2|√

tn+1
+ 1

)
sin
(|x2|e−kt

)

⎞
⎟⎟⎟⎟⎠
(
dB1

dB2

)

(k > 0, n > 1),
we have

‖f(t, x)‖2=e−2kt sin2 |x1|+sin2
(|x2|e−kt

)
+ln2

(
|x1 − x2|√
tn + 1

+1

)
+ln2

(
|x1 + x2|√
tn + 1

+1

)

‖f(t, x)‖2 ≤
(
e−2kt +

4
tn + 1

)
‖x‖2.

Hence
h2(t) = e−2kt +

4
tn + 1

.

Because n > 1, we see that∫ ∞

0

h2(s)ds =
∫ ∞

0

e−2ksds+ 4
∫ ∞

0

1
sn + 1

ds <∞,

which implies that

lim
t→∞

1
t

∫ t

0

h2(s)ds = 0.

So, the x(t, ω) ≡ 0 of the above equation is asymptotically stable in mean
square.
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