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Abstract

Let R be an associate ring with identity. A right R-module M is
called mininjective if every homomorphism from a simple right ideal of
R to M can be extended to R. We now extend this notion to modules.
We call a module N an M -mininjective module if every homomorphism
from a simple M -cyclic submodule of M to N can be extended to M. In
this note, we characterize quasi-mininjective modules and show that for
a finitely generated quasi-minjective module M which is a Kasch module,
there is a bijection between the class of all maximal submodules of M and
the class of all minimal left ideals of its endomorphism ring S = End(M)
if and only if �SrM (K) = K for any simple left ideal K of S. The results
obtained by Nihcolson and Yousif in mininjective rings are generalized.

1. Introduction

Throughout this paper, R is an associative ring with identity and Mod-R de-
notes the category of unitary right R-modules. A right R-module M is called
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114 Mininjectivity and Kasch modules

principally injective if any homomorphism from a principal right ideal of R to
M can be extended to an R-homomorphism from R to M. This notion was
first introduced by Camillo [2] for commutative rings. Nicholson and Yousif
[9], [10] studied the structure of right p-injective and right mininjective rings.
Harada [4] called a right R-module M mininjective if every R-homomorphism
from a minimal right ideal of R to M is given by a left multiplication on an el-
ement of M. The nice structure of right mininjective and right p-injective rings
have drawn our attention to extend these notions to modules. We observe that
every principal right ideal I of a ring R can be considered as a homomorphic
image of R and vice-versa. We therefore use this fact to generalize the notion
of mininjectivity to M -mininjectivity for a given right R-module M.

Let M be a right R-module. A right R-module N is called M -principally
injective (briefly, M -p-injective) if every homomorphism from an M -cyclic sub-
module of M to N can be extended to a homomorphism from M to N (see
[12]). Equivalently, for any endomorphism ε of M, every homomorphism from
ε(M) to N can be extended to a homomorphism from M to N. N is called
principally injective (briefly p-injective) if N is R-principally injective. In this
note, we will introduce the notion of M -mininjective modules and give some
basic properties. Some recent results of Nicholson and Yousif obtained in [10]
are generalized.

Let M be a right R-module. Then a module N is called M -generated if
there is an epimorphism M (I) −→ N for some index set I. If the set I is finite,
then N is called finitely M -generated. In particular, N is called M -cyclic if
it is isomorphic to M/L for some submodule L ⊂ M. As usual, the socle and
radical of the module M are denoted by soc(M) and rad(M), respectively.
Also, we use the notations � and r to stand for the left and right annihilators,
respectively. All standard notations can be found in the text of Anderson and
Fuller [1].

2. Mininjectivity

Definition. Let M be a right R-module. A right R module N is called
M -mininjective if for every simple M -cyclic submodule X of M, any homo-
morphism from X to N can be extended to a homomorphism from M to N.

Examples of M -mininjective modules are plenty, for instance, any M -p-
injective module is M -mininjective. If N is a module with zero socle, then
N is M -mininjective and furthermore, if M has zero radical, then every right
R-module N is M -mininjective.

The proof of the following proposition is routine. We therefore omit its
proof.
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Proposition 2.1 Let M and N be R-modules.

(1) If N is M -mininjective, then N is X-mininjective for any M -cyclic sub-
module X of M.

(2) If N is M -mininjective and X � N, then X is M -mininjective.

Proposition 2.2 Let M be a right R-module and {Ni|i ∈ I} a family of M -
mininjective modules. Then

∏
i∈I Ni is M -mininjective.

Proof Let ϕ : s(M) → ∏
i∈I Ni be a homomorphism with s ∈ S = EndR(M)

and s(M) is simple. Then πiϕ is a homomorphism from s(M) to Ni for each
i ∈ I. By hypothesis and by the definition of product, there is ϕ : M → ∏

i∈I Ni

which extends ϕ, proving our claim. �

Proposition 2.3 Any direct sum of any family of M -mininjective modules is
again M -mininjective.

Proof Let ϕ : s(M) → ⊕i∈INi with s ∈ S = EndR(M), wheres(M) is simple
and each Ni is M -mininjective. Since ϕs(M) is simple, it is contained in a finite
direct sum ⊕i∈I0Ni, where I0 is a finite subset of I. Using Proposition 2.2, we
can find a homomorphism ϕ : M → ⊕i∈INi which extends ϕ, as required. �

The following proposition is clear.

Proposition 2.4 Let M be a right R-module and N an M -mininjective module.
If N is essential in a module K, then K is also M -mininjective.

3. Quasi-mininjective modules

A module M is said to be quasi-mininjective if M itself is M -mininjective.
A ring R is called a right self mininjective ring if RR is a quasi mininjective
module. The proof of the following lemma is straightforward.

Lemma 3.1 Every direct summand of a quasi-mininjective module is again
quasi-mininjective.

The following theorem is a characterization theorem for quasi-mininjective
modules.

Theorem 3.2 Let M be a right R-module and S = End(M). Then the following
conditions are equivalent.
(1) M is quasi-mininjective;
(2) If s(M) is simple, s ∈ S, then �S(kers) = Ss;
(3) If s(M) is simple and kers ⊂ kert, s, t ∈ S, t �= 0 then Ss = St;
(4) If s(M) is simple and γ : s(M) → M is a homomorphism, then γs ∈ Ss;
(5) �S(Imt ∩ kers) = �S(Imt) + Ss for all s, t ∈ S and s(M) is simple.
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Proof The proof of this theorem is similar to that given in [12]. However for
the sake of completeness, we provide the proof here.

(1) ⇒ (2). For any t ∈ �S(kers), we have t(kers) = 0. This implies that
kers ⊂ kert. Let s′ : M −→ s(M) and t′ : M −→ t(M) be the R-homomorphisms
induced by s and t respectively and ι1 : s(M) → M, ι2 : t(M) → M the embed-
dings. Since s′ is an epimorphism, there is an R-homomorphism ϕ : s(M) −→
t(M) such that ϕs′ = t′. Furthermore, since M is quasi-mininjective, there
exists an R-homomorphism u : M −→ M such that uι1 = ι2ϕ. Hence t = us
and therefore t ∈ Ss. This shows that �S(ker(s) ⊂ Ss. On the other hand, since
s ∈ �S(kers), we have Ss ⊂ �S(kers). Thus we have shown that SS = �S(ker(s)).

(2) ⇒ (3). Since ker(s) is maximal and kers ⊂ kert, ker(t) is maximal
if t �= 0 and hence t(M) must be simple. From ker(t) = ker(s) we have
�S(kers) = �S(kert), and thereby Ss = St by (2).

(3) ⇒ (1). Let s′ : M −→ s(M) be an R-homomorphism induced by s :
M −→ M and ι1 : s(M) −→ M. Let ϕ : s(M) −→ M. Then it is clear to
see that ϕs′ is an R-endomorphism of M and ker(s) ⊂ ker(ϕs′). By (3), we
have Sϕs′ = Ss and therefore ϕs′ = us for some u ∈ S. This shows that M is
quasi-mininjective.

(1) ⇔ (4) This part is clear.
(3) ⇒ (5). Let u ∈ �S(Imt∩ kers). Then u(Im(t)∩ ker(s)) = 0. This implies

that ker(st) ⊂ ker(ut). However it is noted that if st = 0, then we have Im(t) ⊂
ker(s). It hence follows that Ss ⊂ �S(Im(t)) and we are done. On the other
hand, if st �= 0, then st(M) is simple and by (3), we have ut = vst for some
v ∈ S. It follows that (u − vs)t = 0, and therefore u − vs ∈ �S(Im(t)), i.e.,
u ∈ �S(Im(t))+Ss. This shows that �S(Imt∩kers) ⊂ �S(Imt)+Ss. Conversely,
for any x ∈ �S(Im(t)) + Ss, we can write x in the form x = u + v, where
u(Im(t)) = 0 and v(ker(s)) = 0. It then follows that x ∈ �S(Im(t) ∩ ker(s)).
Thus �S(Im(t)) + Ss = �S(Im(t) ∩ ker(s)).

(5) ⇒ (2). This part is obvious by taking t = 1M , the identity map of M.
The cycle of proofs is now complete. �

If all simple M -cyclic submodules of a module M are direct summands (for
example, M has zero socle or M has zero radical), then M is quasi-mininjective.
In particular, every semiprime ring is right and left mininjective.

The following corollary includes Lemma 1.1 in [10] as its special case.

Corollary 3.3 The following conditions are equivalent for a ring R.

(1) R is right self minijective;
(2) If kR is simple, k ∈ R, then �r(k) = Rk;
(3) If kR is simple, r(a) ⊂ r(k), k, a ∈ R, a �= 0 then Ra = Rk;
(4) If kR is simple and γ : kR → R is R-linear, then γ(k) ∈ Rk;
(5) If kR is simple, then �(aR ∩ r(k)) = �(aR) + Rk for all a, k ∈ R.
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The next lemma shows that the conditions (C ′
2) and (C ′

3) which are similar
to that of (C1) and (C2) (see Mohamed and Müller, [8]) also hold in a quasi-
mininjective module.

Proposition 3.4 Let MR be a quasi mininjective module and s, t ∈ S =
End(MR). Then
(C ′

2) If K is a submodule of M and K � s(M) which is simple and s2 = s,
then K = t(M) for some t2 = t ∈ S.

(C ′
3) If s(M) �= t(M) are simple, s2 = s, t2 = t, then s(M) ⊕ t(M) = u(M)

for some u2 = u ∈ S.

Proof (C ′
2). Since s2 = s, s(M) must be a direct summand of M. Hence,

s(M) is M -mininjective and so is K. Therefore K is a direct summand of M
by Proposition 2.1.

(C ′
3). Let s(M) �= t(M) be simple with s2 = s ∈ S and t2 = t ∈ S.

Then we have s(M) ⊕ t(M) = s(M) ⊕ (1 − s)t(M). If (1 − s)t = 0, then we
are done. Otherwise, (1 − s)t(M) � t(M) and by the condition C ′

2, we have
(1−s)t(M) = u(M) for some u = u2 ∈ S. Then su = 0 and hence v = s+u−us
is an idempotent of S such that sv = s = vs and uv = u = vu. It follows that
s(M) ⊕ t(M) = v(M), proving our proposition. �

We now explore some more properties concerning quasi-mininjective mod-
ules. Let M be a right R-module and S = End(MR). Then we consider M as a
left S-module. We denote Sr(M) = soc(MR) and S�(M) = soc(SM). For the
sake of convenience, we just write socK (M) for the homogeneous component
of M containing the simple submodule K.

According to Wisbauer [13], a right R-module M is called a self generator if
it generates all its submodules. The following theorem describes the properties
of quasi-mininjective modules.

Theorem 3.5 Let M be a quasi-mininjective module and s, t ∈ S = End(MR).
Then the following statements hold.
(1) If s(M) is simple, then Ss is a simple left ideal of S.
(2) If s(M) � t(M) are simple, then Ss � St.
(3) If s(M) is simple, then Ss(M) = socs(M)(MR), a homogeneous compo-

nent of MR containing s(M), and Ss(M) is a simple submodule of left
S-module M.

(4) If M is a self generator, then Sr(M) ⊂ S�(M).

Proof (1). We first take any 0 �= t ∈ Ss. Then t = us for some u ∈ S. We
now show that St = Ss. Since ker(t) = ker(us) = s−1(ker(u)), we can see that
ker(s) ⊂ ker(t) and hence by Theorem 3.2, we have Ss = St. This means that
Ss is a simple left ideal of S.
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(2) Let f : s(M) −→ t(M) be an isomorphism and ι1 : s(M) −→ M and
ι2 : t(M) −→ M be embeddings. Let s′ : M −→ s(M) induced by s : M −→ M
(i.e., ι1s

′ = s). Since M is quasi mininjective, it is clear that the homomorphism
f : s(M) −→ t(M) can be extended to f̄ : M −→ M such that f̄ ι1 = ι2f. Let
σ : St −→ Ss be defined by σ(ut) = uf̄s, for every u ∈ S. Then σ is well
defined, since Im(f̄ s) ⊂ t(M) = Imt. Moreover, it is trivial to see that σ is
an S-homomorphism. For any v ∈ S, vι1 : s(M) −→ M can be extended to
an R-homomorphism ϕ : M −→ M such that ϕι2f = vι1. Consequently, we
have σ(ϕt) = ϕf̄s = ϕf̄ι1s

′ = ϕι2fs′ = vι1s
′ = vs. This shows that σ is an

epimorphism. It is clear that σ is a monomorphism, proving (2).
(3) Let A = socs(M)(MR). Then we always have Ss(M) ⊂ A. Now, let Y

be any simple submodule of MR and σ : s(M) → Y an isomorphism, s ∈ S.
Then σ can be extended to σ̄ : M → M such that σ̄s(M) = σs(M). Since
ker(s) = ker(σs) = ker(σ̄s), we have Ss = Sσ̄s by Theorem 3.2 (3). Hence
Y = σs(M) = σ̄s(M) ⊂ Ss(M), i.e., A ⊂ Ss(M). This shows that A = Ss(M).

We now show that A = Ss(M) is a simple left S-module. For this purpose,
we take any submodule B of SM such that 0 �= B ⊂ A. It is easy to see that if
X ⊂ B is a simple submodule of MR, then XR � s(M). Let Y be a submodule
of MR which is isomorphic to X. Then by letting γ : X → Y be an isomorphism,
we can find an R-homomorphism ϕ ∈ S such that Y = γ(X) = ϕ(X) ⊂ SB.
This shows that B = A and therefore SA is a simple left S-module.

(4) Since M is a self generator, every simple submodule X of M is of the
form s(M) for some s ∈ S. This implies that X is a subset of Ss(M) which is
a simple left S-module contained in soc(SM). This proves (4). �

As a corresponding result of Theorem 3.5, we obtain the following result
for right self mininjective rings.

Corollary 3.6 ([10], Theorem 1.14). Let R be a right self-mininjective ring.
Then
(1) If kR is simple, then Rk is a simple left ideal of R.

(2) If kR � mR are simple, then Rk � Rm.

(3) If kR is simple, then RkR is a homogeneous component of RR containing
kR and RkR is a simple left ideal of R.

(4) soc(RR) ⊂ soc(RR).

4. Mininjectivity and Kasch modules

For right R-modules M and N, let HomR(N, M) be a left S-module by con-
sidering the composition tu ∈ HomR(N, M) for every u ∈ HomR(N, M), and
t ∈ S. Then after some mild modifications of the arguments given in [10], we
obtain the following lemma.
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Lemma 4.1 If N = s(M), (s ∈ S = End(MR)) and T = ker(s), then
HomR(N, M) � �S(T ) = �S(ker(s)).

Proof Let b ∈ �S(T ) = �S(ker(s)) and consider s as an R-homomorphism
from M to s(M). Then ker(s) ⊂ ker(b) and therefore there exists a unique
R-homomorphism ξb : N → M such that ξbs = b. Now, it is easy to see that
b �→ ξb is an isomorphism �S(T ) → HomR(N, M) of left S-modules. �

By using Lemma 4.1, we now give a discription for quasi mininjective mod-
ules.

Theorem 4.2 Let M be a right R-module which is a self generator. Then the
following conditions are equivalent

(1) M is quasi-mininjective;
(2) HomR(N, M) is a simple or zero left S-module for all simple submodule

N of M ;
(3) �S(T ) is simple or zero for all maximal submodule T of M.

Proof (1) ⇒ (2). Let γ, δ ∈ HomR(N, M), where N � M/X is a simple
submodule of M and assume that γ �= 0. Then δγ−1 : γ(N) → M is a homo-
morphism. Since γ(N) is simple, δγ−1 can be extended to a homomorphism
ϕ : M → M such that ϕι = δγ−1 , where ι : γ(N) → M is the embedding.
Hence δ = ϕγ ∈ HomR(N, M). This shows that HomR(N, M) is a simple left
S-module.

(2) ⇒ (3). Let T be a maximal submodule of M. Then M/T is a simple
right R-module. Thus, by (2), HomR(M/T, M) is a simple left S-module. By
Lemma 4.1, we have �S(T ) � HomR(M/T, M) as a left S-modules. This proves
(3).

(3) ⇒ (1). Let γ : N = s(M) → M be a homomorphism, where s(M)
is simple, s ∈ S, ι : s(M) → M the embedding. If T = ker(s), then
HomR(N, M) � �S(T ) by Lemma 4.1. This shows that HomR(N, M) is simple
by (3). Thus, we have γ = ϕι ∈ HomR(N, M) for some ϕ ∈ S, proving (1).

By taking MR = RR we can re-obtain the following result of Nicholson and
Yousif on mininjective rings in [10].

Corollary 4.3 The following conditions are equivalent for a ring R

(1) R is right self mininjective;
(2) Hom(M, R) is simple or zero left ideal of R for all simple right ideal M

of R;
(3) �R(T ) is a simple or zero left ideal of R for all maximal right ideal T of

R.

By a subquotient of a module M, we mean a module of the form X/Y,
where X and Y are submodules of M with Y ⊂ X. Call a right R-module M
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a Kasch module if every simple subquotient of M can be embedded in M. For
a subset X ⊂ Hom(M, N), we denote ker(X) = ∩f∈Xker(f). It is clear that
ker(X) = rM (X) = {m ∈ M |Xm = 0}.
Theorem 4.4 Let MR be a quasi-mininjective module which is a Kasch module.
Consider the mapping

θ : T �→ �S(T )

from the set of maximal submodule T of M to the set of minimal left ideal of
S = End(MR). Then we have
(1) θ is an injection.
(2) If M is finitely generated, then θ is a bijection if and only if �SrM (K) = K

for all simple left ideals K of S. In this case, θ−1 is given by K �→ rM (K).

Proof (1) If T is a maximal submodule of M, then �S(T ) �= 0, since M is a
Kasch module. Hence �S(T ) is simple by Theorem 4.2. Since T ⊂ ker(�S(T )) �=
M, we have T = ker(�S(T )) because T is maximal. This shows that θ is
injective.

(2) If θ is surjective and K is a minimal left ideal of S, then we can write
K = �S(T ), where T is maximal in M. Then �SrM(K) = K follows. Conversely,
suppose that �SrM(K) = K for all simple left ideals K of S. Since M is
finitely generated, rM(K) ⊂ T for some maximal submodule T of M. and
hence K = �SrM (K) ⊃ �S(T ) �= 0, since M is a Kasch module. Therefore,
K = �S(T ) because K is simple. This leads to rM(K) = rM �S(T ) ⊃ T.
Thereby, by the maximality of T in M, we have rM (K) = T. In other words,
we have shown that θ is surjective. �

Corollary 4.5 ([10], Theorem 3.2) Let R be a right mininjective ring which is
right Kasch, and consider the map

θ : T �→ �(T )

from the set of maximal right ideals T of R to the set of minimal left ideals of
R. Then
(1) θ is an injection.
(2) θ is a bijection if and only if �r(K) = K for all simple left ideals K of

R. In this case, θ−1 is given by K �→ r(K).

We call a right R-module minsymmetric if s(M) is simple, and s ∈ S,
then Ss is simple. R is called right minsymmetric if RR is symmetric as a
right R-module. Clearly, every quasi-mininjective module is minsymmetric by
Theorem 3.5, and hence every right self mininjective ring is right symmetric,
as every right R-module with zero socle or zero radical is minsymmetric. We
now formulate a characterization theorem for quasi minsymmetric modules.
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Theorem 4.6 Let M be a right R-module. Then M is minsymmetric if and
only if s(M) is simple, for s ∈ S implies that �S(s(M) ∩ ker(t)) = �S(s) + St
for all t ∈ S.

Proof ⇒ . Suppose that s(M) is simple and t ∈ S. If ts = 0, then t ∈ �S(s) =
�S(s(M)), hence St ⊂ �S(s(M)). On the other hand, by ts = 0 we see that
s(M) ⊂ ker(t) and therefore �S(s(M) ∩ ker(t)) = �S(s(M)) = �S(s). Since M
is minsymmetric, Ss is simple, and so �S(s) is a maximal left ideal of S.

If ts �= 0, then t /∈ �S(s) and hence �S(s)+St = S. But in this case we have
s(M) ∩ ker(t) = 0, since s(M) is simple. This shows that �S(s(M) ∩ ker(t)) =
�S(s) + St for all t ∈ S.

(2) ⇒ (1). Let s ∈ S such that s(M) is simple. Then for any t /∈ �S(s), we
have s(M) ∩ ker(t) = 0. Since �S(s(M) ∩ ker(t)) = �S(s) + St for all t ∈ S, we
have �S(s) + St = S by (2). This shows that �S(s) is maximal and hence M is
quiasi-mininjective by Theorem 4.2. Now by Theorem 3.5, M is minsymmetric.
This completes the proof. �

By taking MR = RR again, we see that a ring R is right minsymmetric if
and only if �R(kR∩ rR(a)) = �R(k)+Ra for all k, a ∈ R with kR is simple (see
[10]).

Acknowledgment. Nguyen Van Sanh gratefully acknowledges the support of
the Faculty of Science, The Chinese University of Hong Kong, for his visit to
Hong Kong.

References

[1] F.W. Anderson and K.R. Fuller, ”Rings and Categories of Modules”, Grad-
uate Texts in Math. No.13, Springer-Verlag, New York, Heidelberg, Berlin,
1974.

[2] V. P. Camillo, Commutative rings whose principal ideals are annihilators
Portugal. Math. 46 (1) (1989), 33-37.

[3] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, ”Extending mod-
ules”, Pitman, London, 1994.

[4] M. Harada, Self mini-injective rings, Osaka J. Math, 19 (1982), 587-597.
[5] F. Kasch, “Moduln und Ringe”, Stuttgart, 1977.
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