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Abstract

The paper deals with existence and uniqueness of the solution to a sys-
tem of delay-differential equations with infinitely many state-dependent
impulses. A simple transformation allows us to show that the problem
can be treated as a system of delay-differential equations without im-
pulse. The fixed point approach is then applied for an appropriate norm.
Ordinary differential equations with impulses can be seen as a special
case.

1 Introduction

The object of this paper is to present existence and uniqueness results for the
solution of a system of delay-differential equations with infinitely many state-
dependent impulses. This type of problem is characterized by jumps in the
solution of the system. It was brought to our attention by aerospace engineers
and appear for example in impulsive control problems.
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68 Delay-Differential Equations With...

The system is described as follows: let 0 < T < 400,

o(t) = f(t, o) + ,EZIN a;(z(7;))3(t = 75), te (0,17,
(2(0), z0) = (¢°, ¢*) = ® € MP = IR™ x LP(—h,0; IR"™),

(5)

where IN = {1,2,3,...} is the set of strictly positive integers and h, 0 < h <
~+00, is the memory of the system. Also, §(.) is the Dirac delta function at 0,
{;j}j ey and {r; }j oy are two sequences of strictly increasing real numbers
in [0, 7] such that 0 < 7; < 75, and a; : IR" — IR" is a given map for each
j€IN.

For any ¢, 0 < ¢t < T, the notation I(—h,t) = [—h,t] N IR allows us to
simultaneously deal with [—h, t] if the memory A is finite (h < +00) and (—o0, t]
if the memory h is infinite (h = +00). Also I<(—h,t) = {0 € I(—h,t)|f < t}.

The function z : [0,T] — IR™ is a vector valued function, and for any ¢
such that 0 < ¢ < T, x; is defined on I(—h,0) by

) = z(t+6) for —t<60<0,
= o' (t+60) for 0<—t.

Finally f:[0,T] x K(—h,0; IR") — IR" is a given mabp.

To describe K(—h,t; IR™) we need the following function spaces. Let
C(—h,t; IR™) be the space of vector valued continuous functions defined on
the interval I(—h,t),

Co(—h,t; IR™) = {qb € C(—h,t; IR™)

3Ky compact C I(—h,t) such that
$(@) =0 VO eI(—h,t)\Kp

3

and

Co(=h,t; IR") = {qb € C(—h,t; IR™)

Ve >0 3K, compact C I(—h,t)
such that |¢(0)| <€, V0 € I(—=h,t)\\K ]

Then

oy | C(=h,t; IR™) if h < +o0,
K(=h, t; IR") = { Co(—h, t: IR™) if h = o0,
and LP(—h,t; IR™) = LP(I(—h,t); IR™) for 1 < p < +o0.

The case of a system of ordinary differential equations has been studied
recently by Dubeau et al [3]. The principal result of this paper is a complement
to the existing literature (see for example [1], [2], [4], [5]) and generalizes the
result given in [3].
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2 Preliminary Results

A solution to the system (S) is a function of bounded variation which can be
written in the form
w(t) ="+ [y f(rx)dr + X ai(@(7) )X, 4oy (B, 0SEST,
JEIN (1)
x(t):¢1(t)a t€I<(—h,O)

We will further see that under certain assumptions, the expression (1) makes
sense not only for functions x; in K(—h,0; IR™) but also in LP(—h, 0; IR").

Suppose ® = (¢°, ¢') € MP = IR" x LP(—h,0; IR"), and consider the set
of functions

y(t) = ¢'(t) for teI<(=h,0),
Wi (®) = { y € LP(—h, T; IR") | ¥(0) = ¢°,
y|[0,T] e C(0,T; IR™)
Using the sequences {;j }j ey and {Tj}j ez we consider the following parti-

tion of the set IN. Let 79 =0,

INy={j€IN | 7h1<T7; <7k} (k=1,2,3.).

We introduce the family of functions {6;},_, defined on Wr(®) with values
in IR™ by

k—1
0;(y) =y(7; )+ > iobiy), jeINg, kelN,
=1

(where we use the notation > v, =0if m <n ), and for y € Wp(®) we define

on [0, T the following functions

Tyt) = D aj00;(y)Xp, oo (1),

JEIN

y(t) + Ty(t),
Ry(t) = ¢+ / f(r. [Fyls)dr.

Fy(t)

In the following proposition it is shown that the existence of a solution to
(S) is equivalent to the existence of a fixed point for the operator R.

Proposition 1 For each solution x € BV (0, T; IR™) of the system (S), there
exists a function y € Wp(®) such that

x=Fy andy=Ry.
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Conversely if y € Wy (®) is such y = Ry, then the solution x € BV (0,T; IR")
of the system (S) is x = Fy.
Proof If x is a solution of the original problem we have
="+ [y f(r,2,)dT + 2 @i (@(7; ) Xry 4oy (), 0<E<T
(=60, teIS(h0).
Define y € Wr(®) by

o'(t),  teI<(=h,0),
y(t) = {¢0—|—f0 f(ryz)dr, te€[0,T].

Thus by recurrence we have,

2(T;) = YT+ Y @l@(T))Xpr, 400 (T5)

i€IN
= 05(y)
for all j € IN. Then
z(t) = ¢° —|—/ f(r,zy) dT—|—ZaJ Xir,,4o00) (t)
jEIN
= yt)+ D 00X}, 100 ()
JEIN

= Fyt)
and
o) ="+ [ 5.1 Flir = Ryt
0
Conversely, if y € Wp(®) and y = Ry, let us define x(t) = Fy(t). Then
z(t) = y(t) +Ty()
= ¢+ / [, [Fyl-)dr + Z aj o 6( 7,+oo)(t)-

jEIN

Thus, by recurrence, we have x( ;) =0;(y) for all j € IN and finally

t) =¢°+ / flr,z)dr + Zaj X[r; 4o0) (t)

jEIN
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is a solution of the original problem. O

According to this result, one is brought back to find a fixed point y = Ry
or, which is equivalent, to find a continuous solution y on [0, T'] of the following
delay-differential equation

o [0 =F(y), te0.T)
(B) {<y<o> 0) = (¢°.6') = B € M? = IR" x LP(~h,0; IR"),
with
Fty) = f(t[Fy)
= fty+ D 00X, 1oo)t):
JEIN

3 The Main Result
The main result of this paper is the following theorem.

Theorem 2 Let ¢° € IR™ and ¢' € LP(—h,0; IR") where 1 < p < +oo and

0 < h < +oc0. Suppose that

(a) the map f : [0, T]x K(—h,0; IR™) — IR™ satisfies the following conditions:
(h) for all ¢ € K(—h,0;IR™), the function

t— f(t,9):[0,7] — IR"

is Lebesgue mesurable,
(h2) there exists a nonnegative function n(.) € L*(0,T;IR) such that for
any ¢1, ¢ € K(—h,0;IR")

1£t,60) — 1t 02)| < 10) 161 — Dl o)
(hs) the map
t — f(t,0):[0,T) — IR"

is integrable,
(hy) there exists a nonnegative increasing function m(t) such that for any
t >0, and any z1, 22 € Co(—h, t; IR™)

/ (5. (22)s) — (s, (z1))] ds < mi(t)( / l22(s) — 21 (3)” ds)'7?;
0 —h

(b) the maps a; : IR™ — IR™ (j € IN) satisfy the following conditions
(hs) > 1o (0)] < +oo0,

JEIN
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(he) there exists a sequence of nonnegative real numbers {\;}jeiv such that
A= > N <+oo and for any j € IN, and any x1,x2 € IR™

JEIN

loj(21) — aj(w2)] < Aj |21 — 225

(c) the sequences {Tj}jeIN and {7’~j}jeIN are strictly increasing sequences in
[0,T] and

(h7) 0 < 7; < ; for any j € IN.
Therefore
(1) the solution y of (R) exists and is unique in W1(0,T; IR™); moreover
if y(; 00, 07) is the solution of (R) for the initial condition ®; = (¢7,b;) |
1 = 1,2, then there exists a constant C1(T) such that

[ 01, 61) = 55 02, 62) [y 0,1y < C1(T) [ @1 — o
where
121l = 11(@% )| = [ + "] Lo (0,1

(2) the solution x of (S) exists, is unique in BV (0,T; IR™) and is given by

z(t) =y(t) + Z ;0 05(Y)X[r, 4o0)(1):
JEIN

moreover if x(.; 4y, ¢7) is the solution of (S) for the initial condition ®; =
(69, ¢1), i = 1,2, then there exists a constant Co(T) > 0 such that

o5 6%, 61) — (5 6% )| o 0. < CalT) |1 — Dol
The proof of this theorem is based on some standard lemmas and technical

results that are presented in the next section.

4 Technical Results

Let us start this section with two technical lemmas whose proofs are similar to
those given in the case without delay by Dubeau et al [3]. Let us recall that

A= Z )\j < +00.
JEIN

Lemma 3 Let ®; = (¢),¢}) , i = 1,2. For any y; € W (®;), i = 1,2, and
j € IN, we have

lloj © 8;(y1) — i 0 85 (y2)ll < Aje™ llyn = w2ll ooz, ) -
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Lemma 4 The function y =0 is in Wr(0) and we have

> a0 b;(0) < et > fay(0)].

JEIN JEIN

The next two lemmas will also be used in the proof of the main result. For
the proofs see [1].

Lemma 5 Let 1 <p < +00,0<T <40 and 0 < h < +o00. Suppose that hy-
potheses (h1), (h2), (hs), and (hq) are satisfied, and for any z € C.(—h,T; IR™)
define the map f. € L*(0,T; IR") by

fo(t) = [(t, 2), 0<t<T.
Then the map
2 — f.: Co(=h, T; IR™) — L'(0,T; IR™)
has a continuous extension to a map from LP(—h,T; IR™) to L*(0,T; IR"), and
for any t € [0, T] and all z1, zo0 € LP(—h, T; IR"™), we have:

/0 [£(8, (22)s) = f(s, (21)s) | ds <m(t) [|z2 = 21l o gy -0

Lemma 6 Let 0 < a < 1,1 < p < 400 and ¢ > 0 be three given constants,
then
(i) the map

9a(t) = exp [(g)p 2] ., t>0

is increasing and > 1;
(ii) for any t > 0,

cllgall oo, < @ga(t);
(ii) for any T >0 and any z € C(0,T; IR"),
ol .0y = sup {J2(t)/ga(t)] : ¢ € [0,TT}
is a morm equivalent to the usual one
2/l ¢,y = sup {l=(t)| : ¢ € [0, T}

and we have

1
9a(T) Izllcom < 17l 0. < 12lleo,r)
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(iv) for any T > 0 and any z € L>°(0,T; IR™)
[2[| oo 0,7y = esssup {[z(t)/ga(t)] : t € [0, TT}
is a morm equivalent to the usual one
]| oo 0,7y = esssup {[z(t)] : ¢ € [0, T},

and we have

1
m HxHLm(o,T) < HxHLgo((LT) < HxHLm(o,T)'

5 Proof of the Main Result

Proof of (1). Let ® = (¢°, ¢*) be given. For any y € Wy(®) the map

t—y(t) + D ;0 0;(Y)X[r, oo (t)
JEIN

is L? integrable on I(—h,T'), being the sum of a function in LP(—h,T; IR™)
and a function of bounded variation. In fact, by Lemma 3, we have for any
y € Wp(®),j € IN and any t € I(—h,T)

IN

5 0 050X, 10y (D] <l 0 05(y) = @ 0 0;(0)] + I © 0,(0)]

IN

Aje lll o,z + la 0 0;(0)]-

Then

S | 0 05)Xr, o0y )] A 8l oy + D g 0 050)]
jEIN jEIN

and by Lemma 4

> a5 0 05X, ooy ] S A Wl oy + ¢ S Ty O)].
jEIN jEIN

Using hypothesis (hq), (h2), (hs3), (hs4), and Lemma 5, the map

t— f(t (4 Y 00 (W)Xr, 4o0))t)
jEIN

is L' integrable on [0,7] and f(f Fr (g + 3 aj 0 0i(Y)X[r, 4oo))r)dT is well

JEIN
defined.
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Let ®; = (¢, ¢7) and y; € W (®;) for i = 1,2, and consider

_ ¢11(t)5 tEI<(—h,O),
Ryi(t) = { ) + fg F(r,y;)dr, telo,T].

Then, for any ¢ € [0, 7] we have
(Ryr = Ry2)(t) = (41 — ¢2) +/O [F(7,y1) — F(7,y2)]dT,

Ry1 — Ryz| (t)

IN

|¢?—-¢%<+j€If(n[fyﬂf)—JTTnyﬂfﬂdT
and by Lemma 5

Ry — Ry (t) < |67 — &3] +m(t) | Fyr — Fuall o _py) -

But we also have

IN

1Fy1 = Fvall oo v = v2llo—nay + 1Ty — Tyl oo,

IN

||¢i - ¢§||L1’(—h70) +lly — yQHLP(O,t)
+ | Ty — jy2||Lp(0,t) :

[e3

P
For any o, 0 < a < 1, let us introduce the map g, (t) = exp [(m(T)) ﬂ
Hence we have

t
Yy — Y2
m(t) ly1 — vell oo = m(t)(/o 9§(7)|m|pd7)”p
< m® o - wllo, 0.0 I9al o0

and by Lemma 6, with ¢ = m(T), we have
m(t) [ly1 = v2ll o 0.6y < agalt) llyr — v2llc, 0.0) -
Also
m(t) | Tyr = Ty2ll o0,y < 9o ) 1Ty1 = TY2ll L 0,) -
But

\Tyr = T2l (1) <D laj005(y1) — @ 0 0;(42) Xo, 4o0) (7)

JEIN
A
< > oxneM v - welcon
JEIN
< At llyr — 92||c(0,7) .
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Then
Ty — Ty2| (1) AeAHyl — %2llen
9o(T) - 9o (T)
< At llyr — y2||ca(077) .
Consequently
[Ty = Ty2ll pee0,0) < Ae™ |y — Y2lle 0,0) - (2)
Therefore

|Ry1 - Ry?| (t) < |¢(1] - ¢(2)| + m(t) ||¢i - qb%”L?(—h,O)
+aga(t)(1+ Ae™) lyr — v2lle, 0.0) -
If (I)l = (I)Q we have
[Ry1 — Rya| () < aga(t)(1+ Ae™) [lyr — v2lle 0.0 -
Then
Ry1 — Ryzllc, o,m) < (1 + Ae™) flyr — v2llcoo,7) »

and we have a contraction for o small enough. The map R has a fixed point
which is the unique solution of (R).

Moreover, as go(t) > 1 and m(t) is an increasing function, for ®; =
(69, ¢1),i=1,2, we have

Ruy1 — Ry (¢
Pn =2l <ot = 8]+ () o1 = 04

+a(l+ AeA) llyr — yQHCQ(O,t) )
then
Ry1 — Ryzllc, o, = |67 — @3] +m(T) |61 — ¢§||Lp(_h70)
+a(l+ Ae®) g1 — pallo, 0
For y; solution of (R), we have y; = Ry;. Then
Iy = allo, oy (1 — a1+ Aeh) < [6) — 45
+m(T) ||¢% - ¢%||L:ﬂ(_h70) (3)

and by Lemma 6

(T
lyr — yQHC(O,T) < (1— ag( (—|—)A€A)) [|¢(1] - ¢(2)|

(D) |6}~ 63| o) (4)
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Therefore
Tga(T) 0 0
ly1 — yQHLl(O,T) < (1—a(l _|_A€A)) [|¢1 o ¢2|
+m(T) ||¢i - ¢§||Lp(_h70)]' (5)
For the derivative we have
T
I P L TR ALCL

T
/0 F(t, 1) — F(t, y2)| dt

< m(T) [Fyr = Fyall po -1y
< m(T)[HQﬁ - Q%HLP(_M) + v = ve2llpoory +
Ty — ijHLP(O,T)]
< m(T)[Hﬁbi - ¢§||Lp(_h70) + aga(T)[[[y1 — yQHCQ(O,T)

1Ty = Tyl oo 0, (6)
The result is obtained by combining relations (2), (3), (5), and (6) .

Proof of (2). The solution z is given by
x(t) = Fy(t) = y(t) + Ty(t)
with y = Ry. It is a function of bounded variation since
Var(x; [0, T]) < Var(y; [0, T]) + Var(Jy; [0, T)).

But the two terms on the righthand side are bounded since

T
Var(y;[0,T]) < /0 |F(7,y)| dr

T T
< [ueFE) - sl [ s o))l
T
< D)1y + [ 10 dr
<

T
m(D) 1Yl Lo —n.1y + 1TV o (=] +/0 |f(r,0)|dr.
But,

||~7?J||Lp(_h,T) <TVP ijHLOO(O,T) J
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and
1T oy < D logobi(y) —a;00;(0) + Y laj 00;(0)]
jeIN jeIN
< AMyllgor et D 1o (0)],
JEIN

Then the result follows.

Let z;(.) = z(.;¢#Y,67) be the solution of (S) with the initial condition
Q; = (¢?5¢11) (Z = 152)5 then

|1 — x2HLoo(o,T) < lyr — y2Hc(o,T) + Ty — jy2HLm(o,T) .

The result is then obtained by combining (2), (3), (4) and using inequalities
given in Lemma 6(ii). O

6 A Particular Case: Systems Without Delay

The following system of ordinary differential equations with impulses, consid-
ered in [3],

) a(t) = g(t, (1) + > oj(z(ry))o(t—7;),  te[0,T],
(5")

iEIN
x(0) = 29, a

with g : [0, T] x IR" — IR", is a particular case of system (S). Indeed, let

h =0, set 7; = 7, and define the map f by f(t,$) = g(t,(0)), then the
system (.9) is exactely (S”) and the main result can be stated as follows:

Theorem 7 Let 20 € IR and suppose
(a) the map g : [0, T] x IR™ — IR™ verifies the following conditions:

(hy) for any x € IR™, the map t — g(t,x) is Lebesque measurable,

(hh) there exists a monnegative function n(.) € L*(0,T;IR) such that, for
any x1,x2 € IR™

lg(t, 21) — g(t, 22)| < n(t) |z1 — 22,
(hy) the map
t — g(t,0):1]0,T] — IR"

is integrable;
(b) the maps a; : IR" — IR™ (j € IN) verify the following conditions:

(hy) > e (0)] < +oo,
JEIN
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(hs) there exists a sequence of nonnegative real numbers {\;}jeiv such that

A= > N <+oo and for any j € IN, and any x1,x2 € IR™
JEIN

|O‘j(x1) - O4]’(332)| < )\j |x1 — x2| .

Then
(1) there exists a unique solution y in W1-1(0,T; IR™) to

y(t) = G(t,y), te€][0,T]
R/ y( 3 3 3 3
@ {502
where
G(t,y) = g(t, [Fy)(1) = gt y() + D ;0 0;(1)X(r,,400) (1))
JEIN

Moreover if y(.; x9) is the solution of (R') for the initial condition z9 (i = 1,2),
then there exists a constant C{(T) such that

[y 29) = y(5 29|y 0.7y < CLUT) [ = 23]

(2) there exists a unique solution x in BV (0,T; IR™) of (S') and it is given by

2(t) = y(t) + D> ;0 05(y)Xr, oo (1)-

JEIN

Moreover if x(.;2%) is the solution of (S’) for the initial condition x¥, there
exists a constant C4(T) > 0 such that

J(:0) = 232D .7y < CHI) |28 — 2]

Proof For f defined by f(t, ¢) = g(t, ¢(0)), hypotheses (h}), (hS), (h5) become
(h1), (h2), (h3), the hypothesis (h4) is directly obtained from (h}), (h}) and
(hf) are equivalent to (hs) and (he), and (h7) is always satisfied. O

Remark 8 If we replace ®; = (¢7, ¢;) by (5,0) in the expressions of Ci(T),i =
1,2, given in the main result, we obtain the expressions given in the paper of
Dubeau et al [3]. O
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