STRUCTURE OF ANN-CATEGORIES AND MAC LANE-SHUKLA COHOMOLOGY

Nguyen Tien Quang

Department of Mathematics Ha Noi University of Education, Viet Nam e-mail : nguyenquang272002@yahoo.com

Abstract

In this paper we study the structure of a class of categories having two operations which satisfy axioms analoguos to that of rings. Such categories are called "Ann-categories". We obtain the classification theorems for regular Ann-categories and Ann-functors by using Mac Lane-Shukla cohomology of rings. These results give new interpretations of the cohomology groups $H^3(R, M)$ and $H^2(R, M)$ of the rings R.

1 Introduction and Preliminaries

Monoidal categories and symetric monoidal categories were studied first by S. Mac Lane [8], J. Bénabou [1] and G. M. Kelly [3]. They are, respectively, categories \mathcal{A} together with a bifunctor $\otimes: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ and a system of natural equivalences of associativity-unitivity, or a system of natural equivalences of associativity-unitivity. A. Solian [14], H. X. Sinh [2] and K. H. Ulbrich [15], investigated \otimes -categories from the point of view of algebraic structure. They examined the monoidal categories whose all objects are invertible.

The problem of coherence always plays a fundamental role in the study of any class of \otimes -categories. From initial conditions, we have to prove that the morphisms generated by a given ones depend only on its source butt. The consideration of structures arose later in the papers of H. X. Sinh [2] and B. Mitchell [9]. Here we obtained deep results on the classification by the cohomology of groups.

By the other direction, M. Laplaza [4] considered the coherence of natural

⁽²⁰⁰⁰⁾ Mathematics Subject Classification: 05C07

equivalences of distributivity in a category having two operations \oplus and \otimes . In the papers of Laplaza, the distribution of *monomorphisms* together with the natural isomorphisms of the two symmetrical monoidal structures must satisfy 24 commutative diagrams, that form natural relations between them.

In this paper, we consider a class of Pic-categories (see H. X. Sinh [2]) in which the second operation and natural equivalences of distributivity are defined so that the analogous axioms of rings are verified. Such categories are called Anncategories. Coherence for Ann-categories was shown in [11].

Throughout we define invariants of Ann-category basing on construction of reduced Ann-categories and pre-sticked of the type (R, M). From this we obtain classification theorems for the regular Ann-categories and Ann-functors by using cohomology groups $H^3(R, M)$, $H^2(R, M)$ of the ring R. These theorems give a relation between the notion of Ann-category with the theory of cohomology of rings and the problem of extention of rings.

For convinience, the tensor product of two objects A and B is denoted by AB instead of $A \otimes B$, but for the morphisms we still write $f \otimes g$ to avoid confusion with the composition of morphisms.

The notions and results on monoidal categories are supposed to be familier to the readers (see [3, 5, 8] for example).

Recall that a *Pic-category* is a symmetric monoidal category \mathcal{A} (or a \otimes ACU-category \mathcal{A}) in which every object is invertible and every morphism is an isomorphism (see [2]).

Definition 1.1. An Ann-category is a category \mathcal{A} together with

- (i) Two bifunctors \oplus , \otimes : $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$.
- (ii) A fixed object $0 \in \mathcal{A}$ with natural isomorphisms a^+, c, g, d such that $(\mathcal{A}, \oplus, a^+, c, (0, g, d))$ is a Pic-category.
- (iii) A fixed object $1 \in A$ with natural isomorphisms a, l, r such that $(A, \otimes, a, (1, l, r))$ is a monoidal category (i. e. $a \otimes AU$ -category).
- (iv) Two natural isomorphisms \mathfrak{L} , \mathfrak{R}

$$\mathfrak{L}_{A,X,Y}:A(X\oplus Y)\to AX\oplus AY$$

$$\mathfrak{R}_{X,Y,A}: (X\oplus Y)A \to XA \oplus YA$$

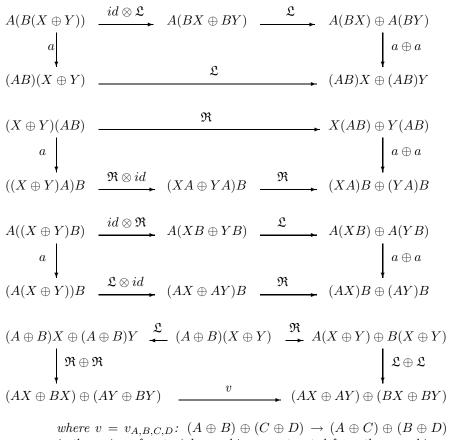
satisfying the following conditions

(Ann-1) For every object $A \in \mathcal{A}$, the pair of \oplus -functors (L^A, \check{L}^A) , (R^A, \check{R}^A) defined by

$$\begin{cases} L^A : X \to AX \\ \check{L}^A_{X,Y} = \mathfrak{L}_{A,X,Y} \end{cases} \begin{cases} R^A : X \to AX \\ \check{R}^A_{X,Y} = \mathfrak{R}_{X,Y,A} \end{cases}$$

are $\oplus AC$ -functors.

(Ann-2) For any $A, B, X, Y \in \mathcal{A}$ the following diagrams are commutative



where $v = v_{A,B,C,D}$: $(A \oplus B) \oplus (C \oplus D) \to (A \oplus C) \oplus (B \oplus D)$ is the unique functorial morphism constructed from the morphisms a^+, c and id in the Pic-category (\mathcal{A}, \oplus) .

(Ann-3) The following diagrams are commutative

$$1(X \oplus Y) \xrightarrow{\mathfrak{L}} 1X \oplus 1Y \qquad (X \oplus Y)1 \xrightarrow{\mathfrak{R}} X1 \oplus Y1$$

$$\ell \downarrow \qquad \qquad \downarrow \ell \oplus \ell \qquad \qquad r \downarrow \qquad \qquad \downarrow r \oplus r$$

$$X \oplus Y = X \oplus Y \qquad \qquad X \oplus Y = X \oplus Y$$

Definition 1.2. Let \mathcal{A} and \mathcal{A}' be Ann-categories . An Ann-functor from \mathcal{A} to \mathcal{A}' is a functor $F: \mathcal{A} \to \mathcal{A}'$ together with natural isomorphisms \check{F} , \widetilde{F} such that: (F,\check{F}) is a $\oplus AC$ -functor, (F, \widetilde{F}) is a $\otimes A$ -functor and \check{F} , \widetilde{F} are compatible with natural equivalences of distributivity in the sense that the following two

 $diagrams \ are \ commutative$

(resp.

If F is an equivalence, then $(F, \breve{F}, \widetilde{F})$ is called an Ann-equivalence.

Proposition 1.3. Let \mathcal{A} be an Ann-category and $A \in \mathcal{A}$. Then there exist unique isomorphisms \hat{L}^A : $A \otimes 0 \to 0$, \hat{R}^A : $0 \otimes A \to 0$ so that $(L^A, \check{L}^A, \hat{L}^A)$ and $(R^A, \check{R}^A, \hat{R}^A)$ are symmetrical monoidal functors ($\oplus ACU$ -functor)

Proof. Since (\mathcal{A}, \oplus) is a Pic-category, each \oplus AC-functor is also a \oplus ACU-functor. \Box

Proposition 1.4. In any Ann-category \mathcal{A} , the isomorphisms \widehat{L}^A , \widehat{R}^A have the following properties:

(i) The family $\widehat{L}^- = \widehat{L}$ (resp. the family $\widehat{R}^- = \widehat{R}$) is a \oplus -morphism from the functor (R^0, \check{R}^0) (resp. (L^0, \check{L}^0)) to the functor $(\theta : A \mapsto 0, \check{\theta} = g_0^{-1})$ i. e. the following diagrams are commutative:

(ii) For any $A, B \in \mathcal{A}$, the following diagrams are commutative:

and
$$\widehat{R}^{XY} = \widehat{R}^Y (\widehat{R}^X \otimes id) a_{0,X,Y}$$
.

(*iii*) $L^1 = l_0, R^1 = r_0.$

2 The first two invariants of an Ann-category

Let \mathcal{A} be an Ann-category. Then the set $\Pi_0(\mathcal{A})$ of the isomorphic classes of objects of \mathcal{A} is a ring with the operations induced by the ones \oplus , \otimes in \mathcal{A} , and $\Pi_1(\mathcal{A}) = Aut(0)$ is an abelian group with operation denoted by +.

The following two Theorems on the structure of the Ann-categories can be found in [12].

Theorem 2.1. $\Pi_1(\mathcal{A})$ is an $\Pi_0(\mathcal{A})$ -bimodule where the left and right operations of the ring $\Pi_0(\mathcal{A})$ on the abeian group $\Pi_1(\mathcal{A})$ are defined respectively by

$$su = \lambda_X(u), \quad us = \rho_X(u), \quad X \in s \in \Pi_0(\mathcal{A}), \ u \in \Pi_1(\mathcal{A})$$

in which λ_X , ρ_X are the two maps $Aut(0) \rightarrow Aut(0)$ given by the following commutative diagrams:

the following theorem shows the invariableness of $\Pi_0(\mathcal{A})$ -bimodule $\Pi_1(\mathcal{A})$.

Theorem 2.2. Given two Ann-categories $\mathcal{A}, \mathcal{A}'$. Then any Ann-functor $(F, \check{F}, \widetilde{F})$: $\mathcal{A} \to \mathcal{A}'$ yields a ring homomorphism

$$F_0: \quad \Pi_0(\mathcal{A}) \to \Pi_0(\mathcal{A})$$
$$clX \mapsto clFX$$

and a group homomorphism

$$F_1: \quad \Pi_1(\mathcal{A}) \to \Pi_1(\mathcal{A})$$
$$u \mapsto \gamma_{F_0}^{-1}(Fu)$$

having the properties

$$F_1(su) = F_1(s)F_0(u)$$
 $F_1(us) = F_0(u)F_1(s)$

where γ_A : $Aut(0) \to Aut(0)$ is defined by $\gamma_A(u) = g_A(u \otimes id_A)g_A^{-1}$. Moreover, *F* is an Ann-equivalence if and only if F_0 , F_1 are isomorphisms.

Hence $\Pi_0(\mathcal{A})$ and $\Pi_1(\mathcal{A})$ are the first two invariants of an Ann-category.

3 Reduced Ann-categories

In preparing to define the third invariant of Ann-categories, we construct reduced Ann-categories. Let \mathcal{A} be an Ann-category. The reduced category \mathcal{S} in constructed from $\Pi_0(\mathcal{A})$ and $\Pi_1(\mathcal{A})$ as follows: its objects are the elements of $\Pi_0(\mathcal{A})$, its morphisms are the automorphisms of the form (s, u) with $s \in \Pi_0(\mathcal{A})$, $u \in \Pi_1(\mathcal{A})$ i. e.

$$Aut(s) = \{s\} \times \Pi_1(\mathcal{A})$$

The composition law of morphisms is reduced by addition in $\Pi_1(\mathcal{A})$. We shall use the transmission of structures (see [10]) to change \mathcal{S} into an Anncategory which is equivalent to \mathcal{A} . Choose for every $s \in \Pi_0(\mathcal{A})$ a representant $X_s \in \mathcal{A}$ such that $X_0 = 0$, $X_1 = 1$ and then, for every pair $s, t \in \Pi_0(\mathcal{A})$, two families of isomorphisms

$$\varphi_{s,t}: X_s \oplus X_t \to X_{s+t}, \qquad \psi_{s,t}: X_s X_t \to X_{st}$$

such that

$$\begin{aligned} \varphi_{0,t} &= g_{X_t}, \qquad \varphi_{s,0} = d_{X_s} \\ \psi_{1,t} &= 1_{X_t}, \qquad \psi_{s,1} = r_{X_s}, \qquad \psi_{0,t} = \widehat{R}^{X_t}, \qquad \psi_{0,s} = \widehat{L}^{X_s} \end{aligned}$$

Defining the functor $H : \mathcal{S} \to \mathcal{A}$ by $H(s) = X_s$, $H(s, u) = \gamma_{X_s}(u)$ and putting $\check{H} = \varphi^{-1}$, $\tilde{H} = \psi^{-1}$ we can use the theorem of transmission of structures (see [10]) to obtain \mathcal{S} to be an Ann-category with the two operations in the explicit forms:

$$s \oplus t = s + t$$
 (sum in ring $\Pi_0(\mathcal{A})$) (1)

$$(s,u) \oplus (t,v) = (s+t,u+v) \tag{2}$$

$$s \otimes t = st$$
 (product in ring $\Pi_0(\mathcal{A})$) (3)

$$(s,u) \otimes (t,v) = (st, sv + ut) \tag{4}$$

and with the natural equivalences induced by that of \mathcal{A} . \mathcal{S} is called the reduced Ann-category of \mathcal{A} . We now have:

Theorem 3.1. In the reduced Ann-category S of A, the natural equivalences of unitivity of the two operations \oplus , \otimes are identities, and the natural equivalences ξ , η , α , λ , ρ induced from a^+ , c, a, \mathfrak{L} , \mathfrak{R} by $(H, \check{H}, \widetilde{H})$ are functions having the values in $\Pi_1(A)$ and satisfying the following relations

1.
$$\xi(y, z, t) - \xi(x + y, z, t) + \xi(x, y + z, t) - \xi(x, y, z + t) + \xi(x, y, z) = 0$$

2.
$$\xi(0, y, z) = \xi(x, 0, t) = \xi(x, y, 0) = 0$$

3.
$$\xi(x, y, z) - \xi(x, z, y) + \xi(z, x, y) - \eta(x, z) + \eta(x + y, z) - \eta(y, z) = 0$$

4.
$$\eta(x, y) + \eta(y, x) = 0$$

5. $x\eta(y,z) - \eta(xy,xz) = \lambda(x,y,z) - \lambda(x,z,y)$ 6. $\eta(x, y)z - \eta(xz, yz) = \rho(x, y, z) - \rho(y, x, z)$ 7. $x\xi(y, z, t) - \xi(xy, xz, xt) =$ $\lambda(x, z, t) - \lambda(x, y + z, t) + \lambda(x, y, z + t) - \lambda(x, y, z)$ 8. $\xi(x, y, z)t - \xi(xt, yt, zt) =$ $\rho(y, z, t) - \rho(x + y, z, t) + \rho(x, y + z, t) - \rho(x, y, t)$ 9.
$$\begin{split} \rho(x,y,z+t) &- \rho(x,y,z) - \rho(x,y,t) + \lambda(x,z,t) \\ &+ \lambda(y,z,t) - \lambda(x+y,z,t) = -\xi(xz+xt,yz,yt) \end{split}$$
 $+\xi(xz, xt, yz) - \eta(xt, yz) + \xi(xz + yz, xt, yt) - \xi(xz, yz, xt)$ 10. $\alpha(x, y, z+t) - \alpha(x, y, z) - \alpha(x, y, t) =$ $x\lambda(y,z,t) + \lambda(x,yz,yt) - \lambda(xy,z,t)$ 11. $\alpha(x, y + z, t) - \alpha(x, y, t) - \alpha(x, z, t) =$ $x\rho(y, z, t) - \rho(xy, xz, t) + \lambda(x, yt, zt) - \lambda(x, y, z)t$ 12. $\alpha(x+y, z, t) - \alpha(x, z, t) - \alpha(y, z, t) =$ $-\rho(x, y, z)t - \rho(xz, yz, t) + \rho(x, y, zt)$ 13. $x\alpha(y, z, t) - \alpha(xy, z, t) + \alpha(x, yz, t)$ $-\alpha(x, y, zt) + \alpha(x, y, z)t = 0$ 14. $\alpha(1, y, z) = \alpha(x, 1, z) = \alpha(x, y, 1) = 0$ 15. $\alpha(0, y, z) = \alpha(x, 0, t) = \alpha(x, y, 0) = 0$ 16. $\lambda(1, y, z) = \lambda(0, y, z) = \lambda(x, 0, z) = \lambda(x, y, 0) = 0$ 17. $\rho(x, y, 1) = \rho(0, y, z) = \rho(x, 0, z) = \rho(x, y, 0) = 0$ for $x, y, z, t \in \Pi_0(A)$.

For the two choices of different representants (X_s, φ, ψ) , we can prove the followings:

Proposition 3.2. If S with (X_s, φ, ψ) and S' with (X'_s, φ', ψ') are two reduced Ann-categories of A, then there exists an Ann-equivalence $(F, \check{F}, \check{F}): S \to S'$, with F = id.

If we substitute $\Pi_0(\mathcal{A})$ by a ring R and $\Pi_1(\mathcal{A})$ by an R-bimodule M, we can construct an Ann-category \mathcal{I} with the operations \oplus , \otimes defined by the relations (3.1)-(3.4) and the natural equivalences

$$a^+ = \xi, c = \eta, a = \alpha, \mathfrak{L} = \lambda, \mathfrak{R} = \rho$$

satisfying the relations in the theorem 3.1. This Ann-category \mathcal{I} is called an Ann-category of type (R, M).

If the function η satisfies the regular condition $\eta(x, x) = 0$, the family $(\xi, \eta, \alpha, \lambda, \rho)$ is a 3-cocycle of the ring R with coefficients in the R-bimodule M in the Mac Lane-Shukla sense (see theorem 4.3). In particular, when $\lambda = 0, \rho = 0, \xi = 0$ we have $\eta = 0$ and hence α becomes a normal 3-cocycle of the \mathbb{Z} -algebra R in the Hochshild sense (see [10]).

Any ring R with the unit $1 \neq 0$ may be considered as an Ann-category of the type (R, 0). Hence we have proved the following theorem:

Theorem 3.3. Any Ann-category is an Ann-equivalence to an Ann-category of the type (R, M).

4 Cohomology classification of the regular Anncategories

According to theorem 3.3 we have only to consider the classification of the Ann-categories having the first two common invariants.

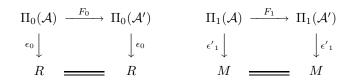
Definition 4.1. Let R be a ring with unit, M be an R – bimodule considered as a ring with the null multiplication. An Ann-category \mathcal{A} is called having pre-stick of the type (R, M) if there exists a pair of ring isomorphisms (ϵ_0, ϵ_1)

$$\epsilon_0: R \longrightarrow \Pi_0(\mathcal{A}), \quad \epsilon_1: M \longrightarrow \Pi_1(\mathcal{A})$$

satisfying the conditions:

$$\epsilon_1(su) = \epsilon_0(s)\epsilon_1(u), \quad \epsilon_1(us) = \epsilon_1(u)\epsilon_0(s), \quad s \in \mathbb{R}, u \in \mathbb{M}.$$

A morphism between two Ann-categories $\mathcal{A}, \mathcal{A}'$ having the same pre-stick of the type (R, M) is an Ann-functor $(F, \check{F}, \widetilde{F}) : \mathcal{A} \longrightarrow \mathcal{A}'$ such that the following diagrams are commutative



in which F_0, F_1 are two ring morphisms induced from $(F, \breve{F}, \widetilde{F})$. It follows directly from the definition that F is an equivalence.

The two Ann-categories $\mathcal{A}, \mathcal{A}'$ are called congruences if there exists a morphism $(F, \check{F}, \widetilde{F})$ between them.

Definition 4.2. An Ann-category \mathcal{A} having a natural equivalence c of commutativity so that $c_{X,X} = id$ is called a regular Ann-category.

For the regular Ann-categories we can define its third invariant, that is an element of Mac Lane - Shukla cohomology group $H^3(R, M)$ of the ring R.

Recall that the cohomology of an algebra Λ with coefficients in an Λ -bimodule coincides with the Mac Lane cohomology of the ring $R = \Lambda$, considered as a \mathbb{Z} -algebra. We have

$$H^*(R,M) = H^*(\sum_{n \ge 0} Hom_{\mathbb{Z}}(U^n,M))$$

where U is a graded differential algebra and a free resolution over \mathbb{Z} of R. The differential δ over graded module $\sum Hom_{\mathbb{Z}}(U^n, M)$ is defined by the relation $\delta f = g + h$, where

$$g(u_1, ..., u_n) = -\sum_{i=1}^n (-1)^{e_{i-1}} f(u_1, ..., du_i, ..., u_n),$$

$$h(u_1, ..., u_n) = u_1 f(u_2, ..., u_{n+1}) + \sum_{i=1}^n (-1)^{e_i} f(u_1, ..., u_i u_{i+1}, ..., u_{n+1}) + (-1)^{e_{n+1}} f(u_1, ..., u_n) u_{n+1},$$

$$e_0 = 0, e_i = i + degu_1 + \dots + degu_i$$
 (see [13]).

Theorem 4.3. A 3-cochain $f = \langle \zeta, \eta, \alpha, \lambda, \rho \rangle$ of the ring R with coefficients in the R-bimodule M is a 3-cocycle if and only if $(\zeta, \eta, \alpha, -\lambda, \rho)$ is a family of natural equivalences of a regular Ann-category of the type (R, M).

Proof. The essence of the proof is to compute the group $\mathbb{Z}^3(R, M)$ by choosing a convenient resolution of the ring R (as a \mathbb{Z} -algebra), different from the two resolutions of Shukla and Mac Lane. For the additional structure of R, we consider the complex of abelian groups:

$$0 \longrightarrow B_4 \xrightarrow{d_4} B_3 \xrightarrow{d_3} B_2 \xrightarrow{d_2} B_1 \xrightarrow{d_1} B_0 \xrightarrow{\nu} R \longrightarrow 0$$

in which

$$B_{0} = \mathbb{Z}(\dot{R}), \quad B_{1} = \mathbb{Z}(\dot{R} \times \dot{R}), \quad B_{2} = \mathbb{Z}(\dot{R} \times \dot{R} \times \dot{R}) \oplus \mathbb{Z}(\dot{R} \times \dot{R})$$
$$B_{3} = \mathbb{Z}(\dot{R} \times \dot{R} \times \dot{R} \times \dot{R}) \oplus \mathbb{Z}(\dot{R} \times \dot{R} \times \dot{R}) \oplus \mathbb{Z}(\dot{R} \times \dot{R}) \oplus \mathbb{Z}(\dot{R} \times \dot{R}) \oplus \mathbb{Z}(\dot{R})$$
$$B_{4} = Kerd_{3}, \quad \dot{R} = R \setminus \{0\}$$

 $(\mathbb{Z}(\dot{R}^i), i = 1, 2, 3, 4 \text{ are the free abelian groups generated by the set } \dot{R}^i)$. The morphisms are given by:

$$\begin{split} \nu[x] &= x, \quad x \in \dot{R} \\ d_1[x,y] &= [y] - [x+y] + [x] \\ d_2[x,y,z] &= [x,z] - [x+y,z] + [x,y+z] - [x,y] \\ d_2[x,y] &= [x,y] - [y,x] \\ d_3[x,y,z,t] &= [y,z,t] - [x+y,z,t] + [x,y+z,t] - [x,y,z+t] + [x,y,z] \\ d_3[x,y,z] &= [x,y,z] - [x,z,y] + [z,x,y] + [x+y,z] - [x,z] - [y,z] \\ d_3[x,y] &= [x,y] + [y,x] \\ d_3[x] &= [x,y] + [y,x] \end{split}$$

 $d_4 = i$ is the natural embedding.

We now define a distributive multiplication in $B = \sum B_i$ such that B becomes a graded differential algebra over \mathbb{Z} . A 3-cochain f is an element of a direct sum

$$Hom_{\mathbb{Z}}(B_{2}, M) \oplus Hom_{\mathbb{Z}}(B_{1} \otimes B_{0}, M) \oplus Hom_{\mathbb{Z}}(B_{0} \otimes B_{1}, M) \\ \oplus Hom_{\mathbb{Z}}(B_{0} \otimes B_{0} \otimes B_{0}, M)$$

This implies that f is defined by a family of mappings

$$\begin{aligned} \zeta(x,y,z) &= f([x,y,z]) \\ \eta(x,y) &= f([x,y]) \\ \lambda(x,y,z) &= f([x] \otimes [y,z]) \\ \rho(x,y,z) &= f([x,y] \otimes [z]) \\ \alpha(x,y,z) &= f([x] \otimes [y] \otimes [z]) \end{aligned}$$

From the formula of differentiation of the above resolution we complete the proof. $\hfill \Box$

Theorem 4.4 (Classification theorem). There exists a bijection between the set of the congruence classes of pre-sticked regular Ann-categories of the type (R, M) and the cohomology group $H^3(R, M)$ of the ring R, with coefficients in the R-bimudule M.

Proof. Consider the resolution that is shown in the proof of the theorem 4.3. If $f = \langle \zeta, \eta, \alpha, \lambda, \rho \rangle$ is 3-coboundary, $f = \delta g$, with g is a pair of mappings

$$\begin{array}{rcl} \mu & : & B_1 \longrightarrow M \\ \\ \nu & : & B_0 \otimes B_0 \longrightarrow M \end{array}$$

we have the following relations

$$\begin{aligned} -\zeta(x,y,z) &= \mu(y,z) - \mu(x+y,z) + \mu(x,y+z) - \mu(x,y) \\ -\eta(x,y) &= \mu(x,y) - \mu(y,x) = ant\mu(x,y) \\ \alpha(x,y,z) &= x\nu(y,z) - \nu(xy,z) + \nu(x,yz) - \nu(x,y)z \\ -\lambda(x,y,z) &= \nu(x,y+z) - \nu(x,y) - \nu(x,z) + x\mu(y,z) - \mu(xy,xz) \\ \rho(x,y,z) &= \nu(x+y,z) - \nu(x,z) - \nu(y,z) - \mu(x,y)z + \mu(xz,yz) \end{aligned}$$

These relations imply what we have to prove.

This theorem leads to the investigation of application of the Ann-category concept into the theory of ring extensions. The classification theorem in the general case is still an open problem.

5 Ann-functors and low dimension cohomology groups of rings

In this section given problem is that of finding whether there is Ann-functor between two Ann-categories and, if so, how many. Since each Ann-category is Ann-equivalent to one Ann-category of the type (R, M) so the solution of problem for a class of Ann-categories of the type (R, M) is enough.

If $f = \langle \zeta, \eta, \alpha, \lambda, \rho \rangle$ is a 3-cocycle in $\mathbb{Z}^3(R, M)$ the structure $(\zeta, \eta, \alpha, -\lambda, \rho)$ of Ann-category (R, M) is denoted by \hat{f} . Moreover, if

...~

$$F = (F, \check{F}, \check{F}) : (R, M, \hat{f}) \longrightarrow (R', M', \hat{f}')$$

is an Ann-functor, this functor is a pair of ring homomorphisms (F_0, F_1) compatible with actions of bimodule. So sometimes F is denoted by (F_0, F_1) . R'-bimodule M may be changed into R-bimodule by the homomorphism F_0 ,

 $m'r = mF(r), \quad rm' = F(r)m', \quad r \in R, m' \in M'.$

Because $f \in \mathbb{Z}^3(R, M)$ and $f' \in \mathbb{Z}^3(R', M')$, F induces canonically 3-cocycles

$$f_*, {f'}^* \in \mathbb{Z}^3(R, M').$$

For axample

$$\zeta_*(x, y, z) = F(\zeta(x, y, z))$$
$$\zeta'^*(x, y, z) = \zeta'(Fx, Fy, Fz).$$

Isomorphisms \breve{F}, \widetilde{F} are mappings $R \times R \longrightarrow M'$

$$\begin{array}{rcl} \mu(x,y) &=& \breve{F}_{x,y} &:& F(x+y) &\longrightarrow & Fx+Fy\\ \nu(x,y) &=& \widetilde{F}_{x,y} &:& F(xy) &\longrightarrow & (Fx)(Fy) \end{array}$$

These mappings, according to definition, satisfy diagrams in definition 1.2. On the other hand, $\langle \mu, \nu \rangle$ is a 2-cochain of ring cohomology. From a calculation of $H^3(R, M)$ we have

$$f_* - {f'}^* = \delta < \mu, \nu > \tag{5}$$

Theorem 5.1. Let $\mathcal{I} = (R, M, \hat{f}), \ \mathcal{I}' = (R', M', \hat{f}')$ be two regular Anncategories and

$$F = (F_0, F_1) : \mathcal{I} \longrightarrow \mathcal{I}'$$

be a functor that satisfies the condition (5.1). Then F is an Ann-functor if and only if $H_*(f) - H^*(f') = 0$ in $H^3(R, M')$. In this case, we can say that Ann-functor $(F, \tilde{F}, \tilde{F})$ is induced by the functor F.

Proof. If $(F, \check{F}, \widetilde{F})$ is an Ann-functor with $\check{F} = \mu, \widetilde{F} = \nu$, the condition (5.1) gives equation

$$H_*(f) - H^*(f') = 0$$

Conversely, the equation $H_*(f) - H^*(f') = 0$ automatically implies $f_* - f'^* = \delta g$, there $g = \langle \mu, \nu \rangle$ is a 2-cochain. Let $\check{F} = \mu, \tilde{F} = \nu$, we have an Ann-functor $(F, \check{F}, \tilde{F})$.

Definition 5.2. An Ann-functor $F : (R, M, f) \longrightarrow (R', M', f')$ is called regular if F satisfies condition $f_* = f'^*$.

In case there exists a regular Ann-functor F, we have the following theorem

Theorem 5.3. (i) There exists a bijection between the set of the congruence classes of regular Ann-functors induced by a pair (F_0, F_1) and the cohomology group $H^2(R, M')$ of the ring R with coefficients in the R-bimodule M'.

(ii) If $F: (R, M, f) \longrightarrow (R', M', f')$ is an Ann-functor, there exists a bijection

$$Aut(F) \longrightarrow \mathbb{Z}^1(R, M')$$

between the group of automorphisms of Ann-functor F and the group $\mathbb{Z}^1(R', M')$.

Proof. (i) Let $(F, \breve{F}, \widetilde{F})$ be a regular Ann-functor

$$(F, \check{F}, F) : (R, M, f) \longrightarrow (R', M', f)$$

Then

$$f_* - f'^* = \delta < \mu, \nu >= 0$$

where $\breve{F} = \mu, \widetilde{F} = \nu$. It means $\langle \mu, \nu \rangle$ is 2-cocycle. Suppore that $(G, \breve{G}, \widetilde{G})$ is another regular Ann-functor

pore that
$$(G, G, G)$$
 is another regular Ann-functor

$$(G, \check{G}, \widetilde{G}) : (R, M, f) \longrightarrow (R', M', f)$$

and $\alpha: F \longrightarrow G$ is an Ann-morphism. Then, by to definition, the following diagrams are commutative

where $x, y \in R$. Also from the definition we have

$$\alpha_x \otimes \alpha_y = (Fx)\alpha_y + \alpha_x(Fy) = x\alpha_y + \alpha_x y$$

 \mathbf{SO}

$$\begin{split} \breve{G}_{x,y} - \breve{F}_{x,y} &= \alpha_x - \alpha_{x+y} + \alpha_y \\ \widetilde{G}_{x,y} - \widetilde{F}_{x,y} &= x\alpha_y - \alpha_{x+y} + \alpha_x y. \end{split}$$

Because $g = \langle \breve{F}, \widetilde{F} \rangle$, $g' = \langle \breve{G}, \widetilde{G} \rangle$ are 2-cocycles and α is 1-cochain and by a calculation of $H^2(R, M)$ we have

$$g' - g = \delta \alpha \tag{6}$$

Equation (5.2) proves the existance of a correspondence from a class of regular Ann-functors $\operatorname{cls}(F, \check{F}, \widetilde{F})$ to a class of cohomologies $g + B^2(R, M')$, $g = \langle \check{F}, \widetilde{F} \rangle$. Moreover this correspondence is an injection. We now prove that it is a projection. In fact, let $g = \langle \mu, \nu \rangle$ be any 2-cocycle. Then we can directly verify that (F, μ, ν) is a regular Ann-functor (R, M, f) to (R', M', f) corresponding to 2-cocycle g, proving (i).

(*ii*) Let

$$F = (F, \mu, \nu) : (R, M, f) \longrightarrow (R', M', f)$$

be an Ann-functor and $\alpha \in Aut(F)$. Then the equation (5.2) becomes $\delta(\alpha) = 0$, i.e. $\alpha \in \mathbb{Z}^1(R, M')$, proving (ii).

6 Ann-category and theory of the extensions of rings

In this section, we establish a direct relation between theory of the extensions of rings and theory of Ann-categories. According to Mac Lane [7] we call a *bimultiplication* of a ring A a pair of mappings $a \mapsto \sigma a, a \mapsto a\sigma$ of A into itself which satisfy the rules

$$\begin{aligned} \sigma(a+b) = \sigma a + \sigma b &, & (a+b)\sigma = a\sigma + b\sigma \\ \sigma(ab) = & (\sigma a)b &, & (ab)\sigma = & a(b\sigma) \\ & a(\sigma b) &= & (a\sigma)b \end{aligned}$$

for all elements $a, b \in A$. The sum $\sigma + \nu$ and the product $\sigma \nu$ of two bimultiplications σ and ν are defined by the equations

$$\begin{aligned} (\sigma+\nu)a = &\sigma a + \nu a \quad , \quad a(\sigma+\nu) = &a\sigma + a\nu \\ (\sigma\nu)a = &\sigma(\nu a) \quad , \qquad a(\sigma\nu) = &(a\sigma)\nu \end{aligned}$$

for all a in A.

The set of all bimultiplications of A is a ring denoted by M_A . For each element c of A, a bimultiplication μ_c is defined by

$$\mu_c a = ca, \quad a\mu_c = ac, \quad a \in A$$

We call μ_c an inner bimultiplication. Clearly $\mu: A \longrightarrow M_A$ is a ring homomorphism and the image μA of this homomorphism is a two-sided ideal in M_A . The quotient ring $P_A = M_A/\mu A$ is called the ring of outer bimultiplications of A and ring homomorphism $\theta: R \longrightarrow P_A$ is called regular if $\theta(1) = 1$ and two any elements of $\theta(R)$ are permutable (the bimultiplications σ and ν are called permutable if $\sigma(a\nu) = (\sigma a)\nu$ and $\nu(a\sigma) = (\nu a)\sigma$ for every a in A). Then

$$C_A = \{c \in A | ca = ac = 0, \forall a \in A\}$$

is called *bicenter* of A, and C_A is a R-bimodule under the operations

$$xc = (\theta x)c, \quad cx = c(\theta x), \quad c \in C_A, x \in A.$$

The "Extention problem" of rings requires finding the exact sequence of rings

$$0 \longrightarrow A \longrightarrow S \longrightarrow R \longrightarrow 1$$

induces homomorphism $\theta : R \longrightarrow P_A$.

Let $\sigma : R \longrightarrow M_A$ be a mapping such that $\sigma(x) \in \theta x, x \in R$ and $\sigma(0) = 0$, $\sigma(1) = 1$. Then we define two mappings

$$\begin{array}{cccc} f:R\times R & \longrightarrow & A\\ g:R\times R & \longrightarrow & A \end{array}$$

such that

$$\mu f(x,y) = \sigma(x+y) - \sigma(x) - \sigma(x) \mu g(x,y) = \sigma(xy) - \sigma(x)\sigma(x)$$

for all $x, y \in R$. The ring structure of M_A implies mappings $\zeta, \alpha, \lambda, \rho : M_A^3 \longrightarrow C_A$ and $\eta : M_A^2 \longrightarrow C_A$

$$\begin{split} \zeta(x,y,z) &= f(x,y) - f(x+y,z) + f(x,y+z) - f(x,y) \\ \eta(x,y) &= f(x,y) - f(y,x) \\ \alpha(x,y,z) &= xg(y,z) - g(x,y,z) + g(x,y,z) - g(x,y)z \\ \lambda(x,y,z) &= xf(y,z) - f(xy,xz) + g(x,y+z) - g(x,y) - g(x,z) \\ \rho(x,y,z) &= f(x,y)z - f(xz,yz) + g(x+y,z) - g(x,z) - g(y,z) \end{split}$$

We call the family $(\zeta, \eta, \alpha, \lambda, \rho)$ of the above mappings an obstruction of the regular homomorphism θ . We can prove that if all these mappings are null, the homomorphism $\theta : R \longrightarrow P_A$ can be realized by a ring extention. It is the ring

$$S = \{(a, r) \mid a \in A, r \in R\}$$

with operations

$$(a_1, r_1) + (a_2, r_2) = (a_1 + a_2 + f(r_1, r_2), r_1 + r_2) (a_1, r_1)(a_2, r_2) = (r_1 a_2 + a_1 r_2 + g(r_1 r_2), r_1 r_2)$$

In the general case we have

Proposition 6.1. If $(\zeta, \eta, \alpha, \lambda, \rho)$ is an obstruction of the regular homomorphism $\theta : R \longrightarrow P_A$, it is a family of natural equivalences of Ann-categories of the type (R, C_A) .

Proof. We can verify directly that ζ , η , α , λ , ρ satisfy the relations in the proposition 3.1.

References

- J. Bénabou, Catégories avec multiplication, C. R. Acad. Sci. Paris, 256, 9 (1963), 1887-1890.
- [2] H. X. Sinh, *Gr-categories*, Thèse, Paris (1975).
- [3] G. M. Kelly, On Mac Lane conditions for coherence of natural associativities, commutativities, etc, J. Algebra, 4 (1964), 397-402.
- [4] M. L. Laplaza, Coherence for distributivity, Lecture Notes in Math, 281 (1972), 29-65.
- [5] M. L. Laplaza, Coherence for Categories with Group Structure: an alternative approach, J. Algebra, 84 (1983), 305-323.
- [6] S. Mac Lane, Homologie des anneaux et des modules, Colloque de Topologie algebrique, Louvain (1956), 55-88.
- [7] S. Mac Lane, Extensions and Obstruction for rings, Illinois J. Mathematics, 2 (1958), 316-345.

- [8] S. Mac Lane, Natural associativity and commutativity, Rice University studies, 49, 4 (1963), 28-46.
- B. Mitchell, Low dimensional group cohomology and monoidal structure, Amer. J. Math. 105 (1983), 1049-1066.
- [10] N. T. Quang, Introduction to Ann-categories, J. Math. Hanoi, 15, 4 (1987), 14-24.
- [11] N. T. Quang, Coherence for Ann-categories, J. Math Hanoi, 16, 1(1988), 17-26.
- [12] N. T. Quang, On the structure of the Ann-categories, Scientific information, Hanoi University of Education, D(1987), 12-18.
- [13] U. Shukla, Cohomologie des algebras associatives, Thèse, Paris (1960).
- [14] A. Solial, Group dans une categorie, C. R. Acad. Sci. 275, 3 (1972), 155-159.
- [15] K. H. Ulbrich, Kohärenz un kategorien mit Grouppenstruktur, J. Algebra, 72, 2 (1981), 279-295.