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Abstract

We characterize infinite J-rings by using conditions on infinite subsets
and infinite subrings, and we give a sufficient conditon for a ring to be
periodic.

1 Introduction

Let R be a ring, N its set of nilpotent elements, T its set of torsion elements,
and P (R) its prime radical. For each x ∈ R, denote by A(x)and < x >
respectively the two-sided annihilator of x and the subring generated by x, and
denote by S the set of zero divisors a ∈ R for which A(a) �= {0}. An element
x ∈ R is called periodic if there exist distinct positive integers m, n such that
xm = xn; and x is called potent if there exists an integer n > 1 such that
xn = x. The ring R is defined to be periodic if every element of R is periodic;
and periodic rings in which every element is potent are called J-rings, in honor
of Jacobson’s famous theorem asserting commutativity of such rings. Finally,
R is called reduced if N = {0}.

A number of theorems in the recent literature deduce certain elementwise
conditions on infinite rings from corresponding partial conditions on infinite
subsets - e.g. [2, Theorem 1.1] or [6, Theorem 4.1]. Our purpose is to prove
results of this kind which characterize infinite J-rings, and to give sufficient
conditions for certain rings to be periodic.
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2 Preliminaries

We mention some well-known and easily-established properties of potent ele-
ments and J-rings:
(i) If x and y are both potent, there exists a single n such that xn = x and
yn = y. Moreover, if xn = x, then xj+k(n−1) = xj for all positive integers j,
k; and thus xn−1 is idempotent.

(ii) If R is a J-ring, then R is reduced and R = T .
(iii) If R is a reduced ring, then every periodic element is potent. Thus

every reduced periodic ring is a J-ring.
We now state some known theorems which we shall require. The first two

deal with FZS - rings – that is, rings in which every zero subring is finite.

Lemma 1 ([5], Lemma 1.6) If R is an FZS-ring and x ∈ N , then A(x) is of
finite index in R.

Lemma 2 ([8],Theorem 4) If R is a semiprime FZS-ring, then R = B ⊕ C,
where B is reduced and C is a direct sum of finitely many total matrix rings
over finite fields.

Lemma 3 ([3], Theorem 4) If R is an infinite ring which is not a domain,
then S is infinite and S contains an infinite subring of R.

Our final lemma in this section is due to Chacron [7]; a proof is also found
in [4].

Lemma 4 Let R be a ring with the property that for each x ∈ R, there exists
a positive integer m and a polynomial p(X) ∈ Z[X] such that xm = xm+1p(x).
Then R is periodic.

3 Results on rings with infinite-subset conditions

Our first result, which is trivial but useful, is a characterization of periodic
rings.

Theorem 5 If R is a ring such that every infinite subset of R contains a
periodic element, then R is periodic.

Proof Suppose R is not periodic, and x is a nonperiodic element of R. Then
{x, x2, x3, ...} is an infinite subset containing no periodic element. �

Theorem 6 Let R be an infinite ring which is not a domain. If every infinite
subset of S contains a potent element, then R is a J-ring.
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Proof Note first that R is an FZS-ring. We shall show that R is reduced.
Suppose, on the contrary, that u ∈ N�{0} and uk = 0 �= uk−1. By Lemma 1,
A(u) is infinite; and since A(u) ⊆ S, every infinite subset of A(u) contains a
potent element. Therefore the set Â(u) of all potent elements in A(u) is infinite
and hence u + Â(u) is infinite; moreover u + Â(u) ⊆ S, since u + Â(u) ⊆
A(uk−1). Thus there exists a ∈ A(u) such that both a and a + u are potent;
and there exists n > 1 such that an = a, (a + u)n = a + u, and un = 0. But
then a + u = (a + u)n = an = a, so u = 0 − a contradiction; therefore R is
reduced as claimed.

Since R is not a domain, S is infinite by Lemma 3; hence S contains a
nonzero potent element and hence a nonzero idempotent e, which must be
central because R is reduced. Thus R = eR ⊕ A(e), with both summands
contained in S. If one of these summands is finite, it is a J-ring by (iii);
and each infinite summand, of which there must be at least one, is a reduced
periodic ring by Theorem 5 and hence a J-ring. But a direct sum of two J-rings
is a J-ring, so we are finished. �

Our final theorem in this section is stated in [1], but the proof given there
is not correct.

Theorem 7 If R is an infinite ring in which every infinite subset contains a
potent element, then R is a J-ring.

Proof If R is not a domain, it is a J-ring by Theorem 6. If R is a domain, it
is clearly reduced; and it is periodic by Theorem 5, hence is a J-ring. �

4 Rings with conditions on infinite subrings

In this section we study a weaker condition - namely, that every infinite subring
contains a nonzero potent element. A ring satisfying this condition will be
called a PJS-ring (partially Jacobson subring ring).

It is clear that an infinite PJS-ring need not be a J-ring; one need only
consider a ring R1 ⊕ R2, where R1 is an infinite J-ring and R2 is a finite ring
which is not a J-ring. However, it follows from Proposition 4 and Lemma 8 of
[3] that every infinite PJS-ring contains an infinite J-subring.

Our next theorem provides a complete characterization of J-rings.

Theorem 8 A ring R is a J-ring if and only if R is a reduced PJS-ring.

Proof Our condition is obviously necessary, so we proceed to establish suffi-
ciency. Let R be a reduced PJS-ring. Since finite reduced rings are J-rings,
we may assume that R is infinite.

We show first that R = T . Suppose, on the contrary, that a ∈ R�T . Then
< a > is infinite, so there exists a nonzero potent element n1a

j1 + · · ·+ nsa
js ;

and it follows that there exist a relation
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(4.1) m1a
k1 + · · ·+ mta

kt = 0,
where m1, m2, ..., mt ∈ Z \ {0} and 1 ≤ k1 < k2 < ... < kt. We may assume
without loss that k1 is minimal among all such relations. If k1 > 1, then
ac = 0, where c = m1a

k1−1 + · · · + mta
kt−1. But this implies c2 = 0 = c,

contradicting the minimality of k1; therefore k1 = 1 and (4.1) takes the form

m1a = aq(a),

where q(X) ∈ XZ[X]. Taking b = q(a), we have b /∈ T and b2 = m1b; thus
< b > is isomorphic to the subring of Z generated by m1. Now if m1 �= ±1,
< b > cannot contain a nonzero potent element; and if m1 = ±1, < 2b > cannot
contain a nonzero potent element. Therefore our assumption that a ∈ R�T
must be false, and R = T .

For each prime p, let Rp denote the p-primary component of R; and note
that, since R is reduced, pRp = {0}. Let 0 �= a ∈ R. Then a = a1 + a2 +
· · ·+ ak, where 0 �= ai ∈ Rpi for primes p1, p2, ..., pk. Let b be a typical ai and
q the corresponding pi. If < b > is finite there exist positive integers m, n with
m < n such that bm = bn. If < b > is infinite, then there exists a nonzero
potent element c = n1b

k1 +n2b
k2 + · · ·+nsb

ks , where each nj � 0(mod q) and
k1 < k2 < · · · < ks; therefore, there exists f(X) ∈ XZ[X] with lowest degree
term n1X

k1 , such that f(b) = 0. Taking m1 ∈ Z such that n1m1 ≡ 1(mod q),
we have m1f(b) = 0, so XZ[X] contains a co-monic polynomial g(X) (i.e. a
polynomial with lowest-degree coefficient equal to 1) such that g(b) = 0.

We have shown that for each ai, there is co-monic gi(X) ∈ XZ[X] for which
gi(ai) = 0. Therefore G(X) = Πgi(X) is co-monic and G(a) = 0. It follows
by Lemma 4 that R is periodic; and since R is reduced, R is a J-ring. �

Theorem 9 Let R be reduced ring. If R is a not a domain and every infinite
subring of R which is contained in S contains a nonzero potent element, then
R is a J-ring.

Proof If R is finite, there is nothing to prove, since R is reduced. Therefore,
assume R is infinite, in which case Lemma 3 guarantees that S contains an
infinite subring and hence a nonzero idempotent e. As in the proof of Theorem
6, e is central and R = eR ⊕ A(e), with each summand contained in S. Now
each infinite summand is a J-ring by Theorem 8; and if either summand is
finite, it is a J-ring. Therefore R is a J-ring. �

Our final theorem may be regarded as an extension of Theorem 8.

Theorem 10 If R is a ring such that every infinite subring contains a non-
nilpotent periodic element, then R is periodic.

Proof Let R̄ = R
P(R) . It is easy to see that R̄ inherits the given hypothesis,

which implies that R̄ is an FZS-ring. Moreover, R̄ is semiprime; hence by
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Lemma 2, R̄ = B ⊕ C, where B is reduced and C is finite. Now B is a J-ring
by Theorem 8, and C is periodic; hence R̄ is periodic. Since P (R) is a nil
ideal, it follows by Lemma 4 that R is periodic. �
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