ON J-RINGS AND PERIODIC RINGS

Howard E. Bell
Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
e-mail : hbell@spartan.ac.brocku.ca

Abstract

We characterize infinite J-rings by using conditions on infinite subsets and infinite subrings, and we give a sufficient conditon for a ring to be periodic.

1 Introduction

Let R be a ring, N its set of nilpotent elements, T its set of torsion elements, and $P(R)$ its prime radical. For each $x \in R$, denote by $A(x)$ and $<x>$ respectively the two-sided annihilator of x and the subring generated by x, and denote by S the set of zero divisors $a \in R$ for which $A(a) \neq\{0\}$. An element $x \in R$ is called periodic if there exist distinct positive integers m, n such that $x^{m}=x^{n}$; and x is called potent if there exists an integer $n>1$ such that $x^{n}=x$. The ring R is defined to be periodic if every element of R is periodic; and periodic rings in which every element is potent are called J-rings, in honor of Jacobson's famous theorem asserting commutativity of such rings. Finally, R is called reduced if $N=\{0\}$.

A number of theorems in the recent literature deduce certain elementwise conditions on infinite rings from corresponding partial conditions on infinite subsets - e.g. [2, Theorem 1.1] or [6, Theorem 4.1]. Our purpose is to prove results of this kind which characterize infinite J-rings, and to give sufficient conditions for certain rings to be periodic.
(2000) Mathematics Subject Classification: 05C07

2 Preliminaries

We mention some well-known and easily-established properties of potent elements and J-rings:
(i) If x and y are both potent, there exists a single n such that $x^{n}=x$ and $y^{n}=y$. Moreover, if $x^{n}=x$, then $x^{j+k(n-1)}=x^{j}$ for all positive integers j, k; and thus x^{n-1} is idempotent.
(ii) If R is a J-ring, then R is reduced and $R=T$.
(iii) If R is a reduced ring, then every periodic element is potent. Thus every reduced periodic ring is a J-ring.

We now state some known theorems which we shall require. The first two deal with FZS - rings - that is, rings in which every zero subring is finite.

Lemma 1 ([5], Lemma 1.6) If R is an FZS-ring and $x \in N$, then $A(x)$ is of finite index in R.

Lemma 2 ([8],Theorem 4) If R is a semiprime $F Z S$-ring, then $R=B \oplus C$, where B is reduced and C is a direct sum of finitely many total matrix rings over finite fields.

Lemma 3 ([3], Theorem 4) If R is an infinite ring which is not a domain, then S is infinite and S contains an infinite subring of R.

Our final lemma in this section is due to Chacron [7]; a proof is also found in [4].

Lemma 4 Let R be a ring with the property that for each $x \in R$, there exists a positive integer m and a polynomial $p(X) \in \mathbf{Z}[X]$ such that $x^{m}=x^{m+1} p(x)$. Then R is periodic.

3 Results on rings with infinite-subset conditions

Our first result, which is trivial but useful, is a characterization of periodic rings.

Theorem 5 If R is a ring such that every infinite subset of R contains a periodic element, then R is periodic.

Proof Suppose R is not periodic, and x is a nonperiodic element of R. Then $\left\{x, x^{2}, x^{3}, \ldots\right\}$ is an infinite subset containing no periodic element.

Theorem 6 Let R be an infinite ring which is not a domain. If every infinite subset of S contains a potent element, then R is a J-ring.

Proof Note first that R is an FZS-ring. We shall show that R is reduced. Suppose, on the contrary, that $u \in N \backslash\{0\}$ and $u^{k}=0 \neq u^{k-1}$. By Lemma 1, $A(u)$ is infinite; and since $A(u) \subseteq S$, every infinite subset of $A(u)$ contains a potent element. Therefore the set $\hat{A}(u)$ of all potent elements in $A(u)$ is infinite and hence $u+\hat{A}(u)$ is infinite; moreover $u+\hat{A}(u) \subseteq S$, since $u+\hat{A}(u) \subseteq$ $A\left(u^{k-1}\right)$. Thus there exists $a \in A(u)$ such that both a and $a+u$ are potent; and there exists $n>1$ such that $a^{n}=a,(a+u)^{n}=a+u$, and $u^{n}=0$. But then $a+u=(a+u)^{n}=a^{n}=a$, so $u=0-a$ contradiction; therefore R is reduced as claimed.

Since R is not a domain, S is infinite by Lemma 3 ; hence S contains a nonzero potent element and hence a nonzero idempotent e, which must be central because R is reduced. Thus $R=e R \oplus A(e)$, with both summands contained in S. If one of these summands is finite, it is a J-ring by (iii); and each infinite summand, of which there must be at least one, is a reduced periodic ring by Theorem 5 and hence a J-ring. But a direct sum of two J-rings is a J-ring, so we are finished.

Our final theorem in this section is stated in [1], but the proof given there is not correct.

Theorem 7 If R is an infinite ring in which every infinite subset contains a potent element, then R is a J-ring.

Proof If R is not a domain, it is a J-ring by Theorem 6. If R is a domain, it is clearly reduced; and it is periodic by Theorem 5 , hence is a J-ring.

4 Rings with conditions on infinite subrings

In this section we study a weaker condition - namely, that every infinite subring contains a nonzero potent element. A ring satisfying this condition will be called a PJS-ring (partially Jacobson subring ring).

It is clear that an infinite PJS-ring need not be a J-ring; one need only consider a ring $R_{1} \oplus R_{2}$, where R_{1} is an infinite J-ring and R_{2} is a finite ring which is not a J-ring. However, it follows from Proposition 4 and Lemma 8 of [3] that every infinite PJS-ring contains an infinite J-subring.

Our next theorem provides a complete characterization of J-rings.
Theorem 8 A ring R is a J-ring if and only if R is a reduced PJS-ring.
Proof Our condition is obviously necessary, so we proceed to establish sufficiency. Let R be a reduced PJS-ring. Since finite reduced rings are J-rings, we may assume that R is infinite.

We show first that $R=T$. Suppose, on the contrary, that $a \in R \backslash T$. Then $<a>$ is infinite, so there exists a nonzero potent element $n_{1} a^{j_{1}}+\cdots+n_{s} a^{j_{s}}$; and it follows that there exist a relation

$$
\begin{equation*}
m_{1} a^{k_{1}}+\cdots+m_{t} a^{k_{t}}=0, \tag{4.1}
\end{equation*}
$$

where $m_{1}, m_{2}, \ldots, m_{t} \in \mathbf{Z} \backslash\{0\}$ and $1 \leq k_{1}<k_{2}<\ldots<k_{t}$. We may assume without loss that k_{1} is minimal among all such relations. If $k_{1}>1$, then $a c=0$, where $c=m_{1} a^{k_{1}-1}+\cdots+m_{t} a^{k_{t}-1}$. But this implies $c^{2}=0=c$, contradicting the minimality of k_{1}; therefore $k_{1}=1$ and (4.1) takes the form

$$
m_{1} a=a q(a),
$$

where $q(X) \in X \mathbf{Z}[X]$. Taking $b=q(a)$, we have $b \notin T$ and $b^{2}=m_{1} b$; thus $\langle b\rangle$ is isomorphic to the subring of \mathbf{Z} generated by m_{1}. Now if $m_{1} \neq \pm 1$, $\langle b\rangle$ cannot contain a nonzero potent element; and if $m_{1}= \pm 1,\langle 2 b\rangle$ cannot contain a nonzero potent element. Therefore our assumption that $a \in R \backslash T$ must be false, and $R=T$.

For each prime p, let R_{p} denote the p-primary component of R; and note that, since R is reduced, $p R_{p}=\{0\}$. Let $0 \neq a \in R$. Then $a=a_{1}+a_{2}+$ $\cdots+a_{k}$, where $0 \neq a_{i} \in R_{p_{i}}$ for primes $p_{1}, p_{2}, \ldots, p_{k}$. Let b be a typical a_{i} and q the corresponding p_{i}. If $\langle b\rangle$ is finite there exist positive integers m, n with $m<n$ such that $b^{m}=b^{n}$. If $\langle b\rangle$ is infinite, then there exists a nonzero potent element $c=n_{1} b^{k_{1}}+n_{2} b^{k_{2}}+\cdots+n_{s} b^{k_{s}}$, where each $n_{j} \not \approx 0(\bmod q)$ and $k_{1}<k_{2}<\cdots<k_{s}$; therefore, there exists $f(X) \in X \mathbf{Z}[X]$ with lowest degree term $n_{1} X^{k_{1}}$, such that $f(b)=0$. Taking $m_{1} \in \mathbf{Z}$ such that $n_{1} m_{1} \equiv 1(\bmod q)$, we have $m_{1} f(b)=0$, so $X \mathbf{Z}[X]$ contains a co-monic polynomial $g(X)$ (i.e. a polynomial with lowest-degree coefficient equal to 1) such that $g(b)=0$.

We have shown that for each a_{i}, there is co-monic $g_{i}(X) \in X \mathbf{Z}[X]$ for which $g_{i}\left(a_{i}\right)=0$. Therefore $G(X)=\Pi g_{i}(X)$ is co-monic and $G(a)=0$. It follows by Lemma 4 that R is periodic; and since R is reduced, R is a J-ring.

Theorem 9 Let R be reduced ring. If R is a not a domain and every infinite subring of R which is contained in S contains a nonzero potent element, then R is a J-ring.

Proof If R is finite, there is nothing to prove, since R is reduced. Therefore, assume R is infinite, in which case Lemma 3 guarantees that S contains an infinite subring and hence a nonzero idempotent e. As in the proof of Theorem $6, e$ is central and $R=e R \oplus A(e)$, with each summand contained in S. Now each infinite summand is a J-ring by Theorem 8; and if either summand is finite, it is a J-ring. Therefore R is a J-ring.

Our final theorem may be regarded as an extension of Theorem 8.
Theorem 10 If R is a ring such that every infinite subring contains a nonnilpotent periodic element, then R is periodic.

Proof Let $\bar{R}=\frac{R}{P(R)}$. It is easy to see that \bar{R} inherits the given hypothesis, which implies that \bar{R} is an FZS-ring. Moreover, \bar{R} is semiprime; hence by

Lemma $2, \bar{R}=B \oplus C$, where B is reduced and C is finite. Now B is a J-ring by Theorem 8, and C is periodic; hence \bar{R} is periodic. Since $P(R)$ is a nil ideal, it follows by Lemma 4 that R is periodic.

References

[1] A. Abdollahi and B. Taeri, A combinatorial condition on infinite rings, in Proceedings of the 31st Iranian Mathematics Conference (2000), 23-27.
[2] A. Abdollahi and B. Taeri, On a class of infinite rings, Algebra Colloq., 8(2001), 153-157.
[3] H.E. Bell, Infinite subrings of infinite rings and near-rings, Pacific J. Math., 59(1975), 345-358.
[4] H.E. Bell, On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hungar., 36(1980), 293-302.
[5] H.E. Bell, On zero subrings and periodic subrings, Internat. J. Math. \& Math. Sci., 28(2001), 413-417.
[6] H.E. Bell, A.A. Klein and L.C. Kappe, An analogue for rings of a group problem of P. Erdös and B.H. Neumann, Acta Math. Hungar., 77(1997), 57-67.
[7] M. Chacron, On a theorem of Herstein, Canad. J. Math., 21(1969), 13481353.
[8] A.A. Klein and H.E. Bell, Rings with finitely many nilpotent elements, Comm. Algebra, 22(1994), 349-354.

