ON (m, n)-purity of modules

Zhanmin Zhu[†], Jianlong Chen⁸ and Xiaoxiang Zhang^{*}

[†] Department of Mathematics, Hubei Institute for Nationalities Enshi, Hubei 445000, P. R. China

> * Department of Mathematics, Southeast University Nanjing 210096, P. R. China e-mail: z990303@seu.edu.cn

Abstract

Let R be a ring. Given two positive integers m and n, an R-module V is said to be (m, n)-presented if there is an exact sequence of R-modules $0 \to K \to R^m \to V \to 0$ with K n-generated. A submodule U' of a right R-module U is said to be (m, n)-pure in U if for every (m, n)presented left R-module V, the canonical map $U' \otimes_R V \to U \otimes_R V$ is a monomorphism. A right R-module A is said to be absolutely (m, n)-pure if A is (m, n)-pure in every module which contains A as a submodule. In this paper, several characterizations of (m, n)-purity are given and some properties of (m, n)-purity are investigated, various results of purity are developed, many extending known results. It is shown that a right Rmodule A is absolutely (m, n)-pure if and only if it is (n, m)-injective.

0. Introduction

Throughout R is an associative ring with identity and all modules are unitary. m and n will be two fixed positive integers (unless specified otherwise). $R^{m \times n}$ will denote the set of all $m \times n$ matrices over R. For an R-module M, M^m (M_m) denotes the set of all formal $1 \times m$ $(m \times 1)$ matrices whose entries are elements of M and M^+ denotes the character module $Hom_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ of M. For any $x \in M^m$ and $A \in R^{m \times n}$, under the usual multiplication of matrices, xA is a well-defined element in M^n . We write M_R $(_RM)$ to indicate a right

Key words and phrases: (m, n)-pure module, absolutely (m, n)-pure module, (m, n)-injective

⁽²⁰⁰⁰⁾ Mathematics Subject Classification: 16D40, 16D50

(left) R-module. For convenience, "n-generated" means "having a generating set of cardinality at most n".

Following [2], A_R is called (m, n)-injective if every right R-homomorphism from an n-generated submodule of R^m to A extends to one from R^m to A. (1, n)-injective modules are also called n-injective modules in [10]. Cohn [4] called a submodule U' of U_R pure in U in case for every left R-module V, the canonical map $U' \otimes_R V \to U \otimes_R V$ is a monomorphism. We also recall that A_R is said to be absolutely pure [7] if it is pure in every module containing it as a submodule. A_R is said to be FP-injective [6] if $Ext_R^1(V, A) = 0$ for every finitely presented module V_R . A_R is said to be F-injective [5] if every right R-homomorphism from a finitely generated right ideal to A extends to one from R_R to A. Clearly, A_R is F-injective if and only if A is n-injective for every positive integer n.

In section 1, we introduce the concept of (m, n)-pure submodules. Various results are developed, many extending known results. In section 2, absolutely (m, n)-pure modules are investigated. In particular, it is shown that a right *R*-module *A* is absolutely (m, n)-pure if and only if it is (n, m)-injective. In the last section, we consider the relation between (m, n)-purity and (m, n)-flatness.

1. (m, n)-pure submodules

We start with the following definition.

Definition 1.1 A left *R*-module *V* is said to be (m, n)-presented, if there is an exact sequence of left *R*-modules $0 \to K \to R^m \to V \to 0$ with *K n*-generated.

Remark 1.2 It is easy to see that a left *R*-module *A* is (m, n)-injective if and only if $Ext_R^1(V, A) = 0$ for all (m, n)-presented left *R*-module *V*, so *A* is *FP*-injective if and only if *A* is (m, n)-injective for all positive integers *m* and *n*.

Definition 1.3 Given a right *R*-module *U* with submodule U', U' is called (m, n)-pure in *U* if the canonical map $U' \otimes_R V \to U \otimes_R V$ is a monomorphism for every (m, n)-presented left *R*-module *V*. U' is said to be (m, \aleph_0) -pure (resp., (\aleph_0, n) -pure) in *U* in case U' is (m, n)-pure in *U* for all positive integers *n* (resp., *m*).

Remark 1.4 (1) It is easy to see that U' is pure in U if and only if U' is (m, n)-pure in U for all positive integers m and n.

(2) Suppose $U' \leq U$ and every finitely generated submodule of U' is (m, n)-pure in U. As we all know, U' is the direct limit of its finitely generated submodules and \otimes is commutative with lim. Then U' is (m, n)-pure in U.

Theorem 1.5 Let $U'_R \leq U_R$, then the following statements are equivalent:

Z. ZHU, J. CHEN and X. ZHANG

(1) U' is (m, n)-pure in U,

(1)' For all $C \in \mathbb{R}^{n \times m}$, the canonical map $U' \otimes_R (\mathbb{R}^m/\mathbb{R}^n C) \to U \otimes_R (\mathbb{R}^m/\mathbb{R}^n C)$ is a monomorphism,

(2) For every (m, n)-presented left R-module V, the canonical map $Tor_1^R(U, V) \rightarrow Tor_1^R(U/U', V)$ is surjective,

(3) For all $C \in \mathbb{R}^{n \times m}$, $(U')^m \cap U^n C = (U')^n C$,

(4) For every n-generated submodule I of $_{R}R^{m}$, $(U')^{m} \cap UI = U'I$,

(5) For every (n, m)-presented right R-module V, the canonical map $Hom_R(V, U) \rightarrow Hom_R(V, U/U')$ is surjective,

(5)' For all $C \in \mathbb{R}^{n \times m}$, the canonical map

$$Hom_R(R_n/CR_m, U) \to Hom_R(R_n/CR_m, U/U')$$

is surjective,

(6) For every commutative diagram

$$\begin{array}{cccc} R^n & \xrightarrow{g} & R^m \\ f \downarrow & \downarrow \\ & \longrightarrow & U' & \longrightarrow & U \end{array}$$

there exists $h: \mathbb{R}^m \to U'$ with f = hg,

(7) For every (n, m)-presented right R-module V, the canonical map $Ext_R^1(V, U') \rightarrow Ext_R^1(V, U)$ is a monomorphism.

Proof $(1) \Leftrightarrow (1)'$ and $(5) \Leftrightarrow (5)'$ are obvious.

 $(1) \Leftrightarrow (2)$ follows from the exact sequence

0

$$Tor_1^R(U,V) \to Tor_1^R(U/U',V) \to U' \otimes V \to U \otimes V.$$

(1) \Rightarrow (3) Suppose that $C = (c_{ij})_{n \times m}$ and $x \in (U')^m \cap U^n C$, then there exist $a_1, a_2, \dots, a_m \in U'$, $u_1, u_2, \dots, u_n \in U$ such that $x = (a_1, a_2, \dots, a_m)$ and $a_i = \sum_{j=1}^n u_j c_{ji}$, $i = 1, 2, \dots, m$. Let V be an (m, n)-presented left R-module with generators v_1, v_2, \dots, v_m and relations $\sum_{i=1}^m c_{ji}v_i = 0$, $j = 1, 2, \dots, n$, then we have $\sum_{i=1}^m a_i \otimes v_i = 0$ in $U \otimes V$. Since U' is (m, n)-pure in $U, \sum_{i=1}^m a_i \otimes v_i = 0$ in $U' \otimes V$. It follows that $a_i = \sum_{j=1}^n u'_j c_{ji}$ for some $u'_1, u'_2, \dots, u'_n \in U'$, $i = 1, 2, \dots, m$, thus $x \in (U')^n C$. But $(U')^n C \subseteq (U')^m \cap U^n C$, so $(U')^m \cap U^n C = (U')^n C$.

 $\begin{array}{l} (3) \Rightarrow (4) \text{ Suppose } I = Rb_1 + \dots + Rb_n, \text{ where } b_j = (c_{1j}, c_{2j}, \dots, c_{mj}) \in R^m, \\ j = 1, 2, \dots, n. \text{ If } x = (a_1, \dots, a_m) = \sum_{j=1}^n u_j b_j \in (U')^m \cap UI \text{ with each } \\ a_i \in U' \text{ and each } u_j \in U, \text{ then } x = (u_1, u_2, \dots, u_n)C \in U^nC \cap (U')^m, \text{ where } C \\ \text{ is an } n \times m \text{ matrix with row vectors } b_1, \dots, b_n. \text{ By } (3), x = (u'_1, u'_2, \dots, u'_n)C \\ \text{ for some } u'_1, u'_2, \dots, u'_n \in U'. \text{ This implies that } x \in U'I, \text{ and hence } (U')^m \cap UI \\ UI = U'I. \end{array}$

 $(4) \Rightarrow (5)$ Consider the following diagram with exact rows

$$0 \longrightarrow K \xrightarrow{i_K} R^n \xrightarrow{\pi_2} V \longrightarrow 0$$
$$\downarrow f$$
$$0 \longrightarrow U' \xrightarrow{i_{U'}} U \xrightarrow{\pi_1} U/U' \longrightarrow 0$$

where $f \in Hom_R(V, U/U')$ and K is an m-generated submodule of \mathbb{R}^n , with generators $y_i = (c_{i1}, c_{i2}, \cdots, c_{in}), i = 1, 2, \cdots, m$. Since \mathbb{R}^n is projective, there exist $g \in Hom_R(\mathbb{R}^n, U)$ and $h \in Hom_R(K, U')$ such that the diagram commutes. Now let $b_j = (c_{1j}, c_{2j}, \cdots, c_{mj}) \in \mathbb{R}^m$, $j = 1, 2, \cdots, n$, $I = \mathbb{R}b_1 + \cdots + \mathbb{R}b_n$ and $u_i = \sum_{j=1}^n g(e_j)c_{ij}$, where $e_j = (0, \cdots, 0, 1, 0, \cdots, 0)$ (with 1 in the *j*th position and 0's in all other positions), $i = 1, 2, \cdots, m, j = 1, 2, \cdots, n$. Then $u_i = g(\sum_{j=1}^n e_j c_{ij}) = g(y_i) = h(y_i) \in U', i = 1, 2, \cdots, m$. Note that $(u_1, u_2, \cdots, u_m) = \sum_{j=1}^n g(e_j)b_j \in UI$, by (4), $(u_1, u_2, \cdots, u_m) = \sum_{j=1}^n u'_j b_j$ for some $u'_1, u'_2, \cdots, u'_n \in U'$. Therefore, $u_i = \sum_{j=1}^n u'_j c_{ij}, i = 1, 2, \cdots, m$. Define $\sigma \in Hom_R(\mathbb{R}^n, U')$ such that $\sigma(e_j) = u'_j, j = 1, 2, \cdots, n$. Then $\sigma i_K = h$. Finally, we define $\tau : V \to U$ by $\tau(z + K) = g(z) - \sigma(z)$, then τ is a well-defined right *R*-homomorphism and $\pi_1 \tau = f$. Whence $Hom_R(V, U) \to Hom_R(V, U/U')$ is surjective.

(5) \Rightarrow (3) Suppose that $C = (c_{ij})_{n \times m} \in \mathbb{R}^{n \times m}$ and $x \in (U')^m \cap U^n C$. Then $x = (a_1, a_2, \dots, a_m) = (u_1, u_2, \dots, u_n)C$ for some $a_1, a_2, \dots, a_m \in U'$ and $u_1, u_2, \dots, u_n \in U$. Take $y_i = (c_{1i}, c_{2i}, \dots, c_{ni})$ $(i = 1, 2, \dots, m), K = y_1 R + y_2 R + \dots + y_m R$ and $V = \mathbb{R}^n / K$. Then we have the following commutative diagram with exact rows

$$0 \longrightarrow K \xrightarrow{i_K} R^n \xrightarrow{\pi_2} V \longrightarrow 0$$
$$\downarrow f_1 \qquad \downarrow f_2$$
$$0 \longrightarrow U' \xrightarrow{i_{U'}} U \xrightarrow{\pi_1} U/U' \longrightarrow 0$$

where f_2 is defined by $f_2(e_j) = u_j$, $j = i, 2, \dots, n$ and $f_1 = f_2|_K$. Define $f_3: V \to U/U'$ by $f_3(z+K) = \pi_1 f_2(z)$. It is easy to see that f_3 is well defined and $f_3\pi_2 = \pi_1 f_2$. By hypothesis, $f_3 = \pi_1 \tau$ for some $\tau \in Hom_R(V, U)$. Now we define $\sigma: \mathbb{R}^n \to U'$ by $\sigma(z) = f_2(z) - \tau \pi_2(z)$. Then $\sigma \in Hom_R(\mathbb{R}^n, U')$ and $i_{U'}\sigma = f_2$. Hence $a_i = f_2(y_i) = \sigma(y_i) = \sum_{j=1}^n \sigma(e_j)c_{ji}$, $i = 1, 2, \dots, m$, and $x = (\sigma(e_1), \sigma(e_2), \dots, \sigma(e_n))C \in (U')^n C$. Therefore $(U')^m \cap U^n C = (U')^n C$.

 $\begin{array}{l} (3) \Rightarrow (1) \text{ Suppose that }_{R}V \text{ is }(m,n) \text{-presented, with generators } v_{1},v_{2},\cdots,v_{m} \\ \text{and relations } \sum_{j=1}^{m}c_{ij}v_{j}=0, \ i=1,\cdots,n. \quad \text{If } \sum_{k=1}^{s}a_{k}\otimes b_{k}=0 \text{ in } U\otimes V, \\ \text{where } a_{k}\in U', \ b_{k}=\sum_{j=1}^{m}\alpha_{kj}v_{j}\in V, \text{ then } \sum_{j=1}^{m}(\sum_{k=1}^{s}a_{k}\alpha_{kj})\otimes v_{j}=0 \text{ in } \\ U\otimes V. \text{ So } \sum_{k=1}^{s}a_{k}\alpha_{kj}=\sum_{i=1}^{n}u_{i}c_{ij} \text{ for some } u_{i}\in U. \text{ By } (3), \text{ there exist } \\ u'_{1},u'_{2},\cdots,u'_{n}\in U' \text{ such that } \sum_{k=1}^{s}a_{k}\alpha_{kj}=\sum_{i=1}^{n}u'_{i}c_{ij}, \ j=1,\cdots,m. \text{ Thus } \\ \sum_{k=1}^{s}a_{k}\otimes b_{k}=\sum_{i=1}^{n}u'_{i}\otimes (\sum_{j=1}^{m}c_{ij}v_{j})=0 \text{ in } U'\otimes V. \\ (5) \Leftrightarrow (6) \text{ By Diagram Lemma (see [11, page 53]). \end{array}$

 $(5) \Leftrightarrow (7)$ It follows from the exact sequence

$$Hom_R(V,U) \to Hom_R(V,U/U') \to Ext^1_R(V,U') \to Ext^1_R(V,U).$$

Corollary 1.6 Let $U'_R \leq U_R$, then U' is $(1,\aleph_0)$ -pure in U if and only if $UI \cap U' = U'I$ for all finitely generated left ideals I.

Proposition 1.7 Let $U'_R \leq U_R$, then

(1) If U is n-generated, then U' is (m, n)-pure in U if and only if U' is (m, \aleph_0) -pure in U.

(2) If each finitely generated left ideal of R is n-generated, then U' is (1, n)-pure in U if and only if U' is $(1, \aleph_0)$ -pure in U.

(3) If each finitely generated right ideal of R is m-generated, then U' is (m, 1)-pure in U if and only if U' is $(\aleph_0, 1)$ -pure in U.

Proof (2) can be proved by Theorem 1.5(4), and (3) can be proved by Theorem 1.5(5). Now we prove only the necessity of (1).

Let u_1, u_2, \dots, u_n be a generating set of U. For every positive integer l and each $C \in \mathbb{R}^{l \times m}$, if $x \in (U')^m \cap U^l C$, then $x = (u_1, u_2, \dots, u_n)AC$ for some $A \in \mathbb{R}^{n \times l}$. Since U' is (m, n)-pure in U, by Theorem 1.5(3), $x = (u'_1, u'_2, \dots, u'_n)AC$ for some $u'_1, u'_2, \dots, u'_n \in U$. Thus $x \in (U')^m \cap (U')^l C$. Therefore U' is (m, l)-pure in U.

Remark 1.8 Suppose that every finitely generated left *R*-module is a direct limit of cyclic modules, then $(1, \aleph_0)$ -pure submodules of any right *R*-module are pure. By Proposition 1.7(2), it follows that if *R* is a principal ideal domain, then (1, 1)-pure submodules of any *R*-module are pure.

Many properties of (m, n)-purity are similar to those of purity. For example, we have

Proposition 1.9 Suppose E, F and G are right R-modules such that $E \subseteq F \subseteq G$.

(1) If E is (m, n)-pure in F and F is (m, n)-pure in G, then E is (m, n)-pure in G.

(2) If E is (m, n)-pure in G, then E is (m, n)-pure in F.

(3) If F is (m, n)-pure in G, then F/E is (m, n)-pure in G/E.

(4) If E is (m, n)-pure in G and F/E is (m, n)-pure in G/E, then F is (m, n)-pure in G.

By Ramamurthi and Rangaswamy [8], a submodule A of an R-module B is called *strongly pure* if for each element $a \in A$ (equivalently, any finite set a_1, a_2, \dots, a_n of elements of A) there exists a homomorphism $\alpha : B \to A$ such that $\alpha(a) = a$ ($\alpha(a_i) = a_i, i = 1, 2, \dots, n$). Clearly, if A is strongly pure in B, then A is pure in B, but the converse is not true.

Proposition 1.10 Suppose that P_R is a projective module and $K_R \leq P_R$, then the following statements are equivalent:

(1) K is pure in P,

- (2) K is $(1, \aleph_0)$ -pure in P,
- (3) K is strongly pure in P.

Proof $(1) \Rightarrow (2)$ and $(3) \Rightarrow (1)$ are obvious.

(2) \Rightarrow (3) Let F_R be a free module with basis $X = \{x_i \mid i \in I\}$ and $F = P \oplus P'$, then K is $(1,\aleph_0)$ -pure in F by (2). Let $y = \sum_{i=1}^n x_i r_i \in K$ and $I = Rr_1 + Rr_2 + \cdots + Rr_n$, then $y \in K \cap FI$. Since K is (1, n)-pure in F, by Theorem 1.5(4), $y \in KI$. Assume $y = \sum_{i=1}^n k_i r_i$ for some $k_i \in K$, define $\theta : F \to K$ by $\theta(x_i) = k_i$, $1 \leq i \leq n$, and $\theta(x_i) = 0$ for other x_i 's, then $\theta(y) = y$, and hence K is strongly pure in P. \Box

2. Absolutely (m, n)-pure modules

Definition 2.1 A_R is said to be *absolutely* (m, n)-*pure* if A is (m, n)-pure in every module which contains A as a submodule.

Theorem 2.2 For a right *R*-module *A*, the following statements are equivalent:

- (1) A is absolutely (m, n)-pure,
- (2) A is (m, n)-pure in its injective envelope E(A),
- (3) A is (n,m)-injective.

Proof $(1) \Rightarrow (2)$ is obvious.

(2) \Rightarrow (1) Suppose $A \leq B$, then $A \leq E(A) \leq E(B)$. Since A is (m, n)-pure in E(A) and E(A) is pure in E(B), A is (m, n)-pure in E(B) by Proposition 1.9(1). Note that $A \leq B \leq E(B)$, by Proposition 1.9(2), A is (m, n)-pure is B.

 $(2) \Leftrightarrow (3)$ follows from the the exact sequence

$$Hom_R(V, E(A)) \to Hom_R(V, E(A)/A) \to Ext^1_R(V, A) \to 0$$

and Remark 1.2 and Theorem 1.5(5).

Proposition 2.3 If A_R is an (m, n)-pure submodule of an absolutely (m, n)-pure module B_R , then A is absolutely (m, n)-pure.

Proof For every (m, n)-presented module $_RV$, since A is (m, n)-pure in B and B is (m, n)-pure in E(B), $A \otimes V \to B \otimes V$ and $B \otimes V \to E(B) \otimes V$ are monomorphisms. Thus the following commutative diagram

$$A \otimes V \longrightarrow B \otimes V$$

$$\downarrow \qquad \qquad \downarrow$$

$$E(A) \otimes V \longrightarrow E(B) \otimes V$$

gives that the map $A \otimes V \to E(A) \otimes V$ is a monomorphism.

Z. ZHU, J. CHEN and X. ZHANG

The following theorem is immediate.

Theorem 2.4 Suppose that $A_R \leq B_R$ and B_R is (m, n)-injective, then A is (m, n)-injective if and only if A is (n, m)-pure in B.

Corollary 2.5 Let $A_R \leq B_R$.

(1) If B is FP-injective, then A is FP-injective if and only if A is pure in B.

(2) If B is F-injective, then A is F-injective if and only if A is $(\aleph_0, 1)$ -pure in B.

(3) If B is n-injective, then A is n-injective if and only if A is (n, 1)-pure in B. In particular, if B is P-injective, then A is P-injective if and only if A is (1, 1)-pure in B. \Box

Corollary 2.6 Let A be a right R-module, then

(1) A is FP-injective if and only if A is absolutely pure.

(2) A is F-injective if and only if for every finitely generated free left R-module F and every cyclic submodule K of F, $A \otimes F/K \to E(A) \otimes F/K$ is a monomorphism.

(3) A is n-injective if and only if for every finitely generated free left R-module F and every cyclic submodule K of the left R-module $_RR^n$, $A \otimes R^n/K \to E(A) \otimes R^n/K$ is a monomorphism. In particular, A is P-injective if and only if for each $a \in R$, $A \otimes R/Ra \to E(A) \otimes R/Ra$ is a monomorphism. \Box

Remark 2.7 Following Jain [6], ring R is said to be right IF in case every injective right R-module is flat. By Corollary 2.6, it is easy to see that if R is a right IF ring, then A_R is n-injective if and only if $Tor_1^R(E(A)/A, R^n/I) = 0$ for all cyclic submodules I of RR^n .

Definition 2.8 A right *R*-module *A* is said to be (m, \aleph_0) -injective (resp., (\aleph_0, n) -injective) if *A* is (m, n)-injective, for every positive integer *n* (resp., *m*). Clearly, *A* is *F*-injective if and only if *A* is $(1, \aleph_0)$ -injective.

Proposition 2.9 Suppose that A_R is (n, m)-injective and E(A) is n-generated, then A is (\aleph_0, m) -injective.

Proof As A is (n, m)-injective, so A is (m, n)-pure in E(A) by Theorem 2.2. But E(A) is n-generated, by proposition 1.8(1), A is (m, \aleph_0) -pure in E(A), and hence A is (\aleph_0, m) -injective.

Remark 2.10 Rutter [9] has an example of a left *P*-injective ring which is not left 2-injective. Similarly, we can give an example of a right *P*-injective ring which is not right 2-injective. So, in general, an (1, n)-pure submodules of a right *R*-module need not to be its (2, n)-pure submodules. From Theorem

2.2, we see also that if for every positive integer m, (m, 1)-pure submodules of each injective R-module are its (m, \aleph_0) -pure submodules, then F-injective R-modules are FP-injective modules.

3. (m, n)-purity and (m, n)-flatness

In this section, we consider the relation between (m, n)-purity and (m, n)-flatness. Firstly, we give a definition as below.

Definition 3.1 A right *R*-module *V* is said to be (m, n)-flat, if for every *n*-generated submodule *I* of ${}_{R}R^{m}$, the canonical map $V \otimes I \to V \otimes R^{m}$ is monic. A right *R*-module *V* is called (m, \aleph_{0}) -flat (resp., (\aleph_{0}, n) -flat), if for every positive integer *n* (resp., *m*), *V* is (m, n)-flat.

Note that (1, n)-flat module is *n*-flat in sense of [10] and the next proposition is easy to verify.

Proposition 3.2 For a right *R*-module *V*, the following statements are equivalent:

- (1) V is (m, n)-flat,
- (2) $Tor_1^R(V, M) = 0$ for all (m, n)-presented left R-module M,
- (3) V^+ is (m, n)-injective,

(4) For every n-generated submodule I of $_{R}R^{m}$, the map $\mu_{I}: V \otimes I \rightarrow VI; \sum v_{i} \otimes x_{i} \mapsto \sum v_{i}x_{i}$ is a monomorphism,

(5) For all $X \in V^n$, $A \in \mathbb{R}^{n \times m}$, if XA = 0, then exist a positive integer l and $Y \in V^l$, $C \in \mathbb{R}^{l \times n}$, such that CA = 0 and X = YC.

Remark 3.3 From Proposition 3.2, the (m, n)-flatness of V_R can be characterized by the (m, n)-injectivity of V^+ . On the other hand, by [3, Lemma 2.7(1)], the sequence $Tor_1^R(V^+, M) \to Ext_R^1(M, V)^+ \to 0$ is exact for all finitely presented left *R*-module *M*, so if V^+ is (m, n)-flat, then *V* is (m, n)-injective.

Proposition 3.4 (n, \aleph_0) -pure submodules of (m, n)-flat modules are (m, n)-flat.

Proof Suppose that V_R is (m, n)-flat, K is (n, \aleph_0) -pure in V. Let $X \in K^n$, $A \in \mathbb{R}^{n \times m}$ satisfy XA = 0, then by the (m, n)-flatness of V, there exist positive integer $l, U \in V^l$ and $C \in \mathbb{R}^{l \times n}$ such that CA = 0 and X = UC. Since K is (n, \aleph_0) -pure in V and hence (n, l)-pure, by Theorem 1.5(3), X = YC for some $Y \in K^l$. And so K is (m, n)-flat.

Corollary 3.5 *Pure submodules of a flat module are flat.*

Theorem 3.6 Let $U'_R \leq U_R$.

Z. ZHU, J. CHEN and X. ZHANG

- (1) If U/U' is (m, n)-flat, then U' is (m, n)-pure in U.
- (2) If U' is (m, n)-pure in U and U is (m, n)-flat, then U/U' is (m, n)-flat.

Proof It follows from the exact sequence

$$Tor_1^R(U, M) \to Tor_1^R(U/U', M) \to U' \otimes M \to U \otimes M$$

and Proposition 3.2(2).

Corollary 3.7 Let $U'_R \leq U_R$.

- (1) If U is flat, then U/U' is flat if and only if U' is pure in U.
- (2) If U is n-flat, then U/U' is n-flat if and only if U' is (1, n)-pure in U. \Box

By Proposition 3.2(2), we see that V_R is flat if and only if V is (m, n)-flat for all positive integers m and n. Suppose V is an n-generated and n-flat module, there exists an exact sequence $0 \to K \to F \to V \to 0$ with F free and rank(F) = n. Then K is (1, n)-pure in F by Corollary 3.7 and hence $(1, \aleph_0)$ pure by Proposition 1.7, so V is $(1, \aleph_0)$ -flat. It is well known that V_R is flat if and only if V is $(1, \aleph_0)$ -flat. So we have the following corollary.

Corollary 3.8^[10] n-generated and n-flat modules are flat.

Proposition 3.9 Let U_R be an n-generated flat module, $U'_R \leq U_R$, then U' is pure in U if and only if U' is (1, n)-pure. In particular, for every right ideal I of R, I_R is pure in R_R if and only if I_R is (1, 1)-pure in R_R .

Proof By Proposition 1.7.

Corollary 3.10 Suppose R_R is FP-injective (resp., (m, n)-injective, F-injective, n-injective), $I_R \leq R_R$, then I_R is FP-injective (resp., (m, n)-injective, F-injective, n-injective) if and only if I_R is P-injective.

Proof It follows immediately from Theorem 2.4 and Proposition 3.9. \Box

Proposition 3.11 Suppose that R is a right IF ring and (1, n)-flat right R-modules are (m, n)-flat, then (n, 1)-injective right R-modules are (n, m)-injective.

Proof If A_R is (n, 1)-injective, then A is (1, n)-pure in E(A). Since R is a right IF ring, E(A) is flat. Hence E(A)/A is (1, n)-flat. By hypothesis, E(A)/A is (m, n)-flat and hence A is (m, n)-pure in E(A), that is, A is (n, m)-injective. \Box

Corollary 3.12 Suppose that R is a right IF ring and (1, 1)-flat right R-modules are $(\aleph_0, 1)$ -flat. Then P-injective right R-modules are F-injective and (1, 1)-flat left R-modules are flat.

Acknowledgment

This work was partially supported by the NNSF of China (No. 10171011) and NSF of Jiangsu Province (No. BK2001001).

References

- F.W.Anderson and K.R.Fuller, "Rings and Categories of Modules", GTM 13, Springer-Verlag, New York, 1974.
- [2] J.L.Chen, N.Q.Ding, Y.L.Li, Y.Q.Zhou, On (m, n)-injectivity of modules, Comm.Algebra, 29(12)(2001), 5589-5603.
- [3] J.L.Chen, N.Q.Ding. On n-coherent rings, Comm.Algebra, 24(10)(1996), 3211-3216.
- [4] P.M.Cohn, On the free product of associative rings, Math. Z., 71(1959), 380-398.
- [5] R.N.Gupta, On f-injective modules and semihereditary rings, Proc.Nat.Inst. Sci.India Part A 35(1969),323-328.
- [6] S.Jain, Flat and FP-injective modules, Proc. Amer. Math. Soc., 41(2)(1973), 437-442.
- [7] B.Maddox, Absolutely pure modules, Proc. Amer. Math. Soc., 18(1967), 155-158.
- [8] V.S.Ramamurthi, K.M.Rangaswamy, On finitely injective modules, J. Austral. Math. Soc., 16(1973), 239-248.
- [9] E.A.Rutter, Rings with the principal extension property, Comm. Algebra, 3(3)(1975), 203-212.
- [10] A.Shamsuddin, n-injective and n-flat modules, Comm. Algebra, **29**(5)(2001), 2039-2050.
- [11] R.Wisbauer, "Foundations of Module and Ring Theory", Gordon and Breach Since Publishers, Philadelphia, Pennsylvania, 1991.