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Abstract

Let R be a ring. Given two positive integers m and n, an R-module V
is said to be (m, n)-presented if there is an exact sequence of R-modules
0 → K → Rm → V → 0 with K n-generated. A submodule U ′ of
a right R-module U is said to be (m, n)-pure in U if for every (m, n)-
presented left R-module V , the canonical map U ′ ⊗R V → U ⊗R V is a
monomorphism. A right R-module A is said to be absolutely (m, n)-pure
if A is (m,n)-pure in every module which contains A as a submodule. In
this paper, several characterizations of (m, n)-purity are given and some
properties of (m, n)-purity are investigated, various results of purity are
developed, many extending known results. It is shown that a right R-
module A is absolutely (m, n)-pure if and only if it is (n, m)-injective.

0. Introduction

Throughout R is an associative ring with identity and all modules are unitary.
m and n will be two fixed positive integers (unless specified otherwise). Rm×n

will denote the set of all m × n matrices over R. For an R-module M , Mm

(Mm) denotes the set of all formal 1 × m (m × 1) matrices whose entries are
elements of M and M+ denotes the character module HomZ(M, Q/Z) of M .
For any x ∈ Mm and A ∈ Rm×n, under the usual multiplication of matrices,
xA is a well-defined element in Mn. We write MR (RM) to indicate a right
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(left) R-module. For convenience, “n-generated” means “having a generating
set of cardinality at most n”.

Following [2], AR is called (m, n)-injective if every right R-homomorphism
from an n-generated submodule of Rm to A extends to one from Rm to A.
(1, n)-injective modules are also called n-injective modules in [10]. Cohn [4]
called a submodule U ′ of UR pure in U in case for every left R-module V , the
canonical map U ′ ⊗R V → U ⊗R V is a monomorphism. We also recall that
AR is said to be absolutely pure [7] if it is pure in every module containing
it as a submodule. AR is said to be FP -injective [6] if Ext1R(V, A) = 0 for
every finitely presented module VR. AR is said to be F -injective [5] if every
right R-homomorphism from a finitely generated right ideal to A extends to
one from RR to A. Clearly, AR is F -injective if and only if A is n-injective for
every positive integer n.

In section 1, we introduce the concept of (m, n)-pure submodules. Various
results are developed, many extending known results. In section 2, absolutely
(m, n)-pure modules are investigated. In particular, it is shown that a right
R-module A is absolutely (m, n)-pure if and only if it is (n, m)-injective. In the
last section, we consider the relation between (m, n)-purity and (m, n)-flatness.

1. (m,n)-pure submodules

We start with the following definition.

Definition 1.1 A left R-module V is said to be (m, n)-presented, if there is an
exact sequence of left R-modules 0 → K → Rm → V → 0 with K n-generated.

Remark 1.2 It is easy to see that a left R-module A is (m, n)-injective if
and only if Ext1R(V, A) = 0 for all (m, n)-presented left R-module V , so A is
FP -injective if and only if A is (m, n)-injective for all positive integers m and n.

Definition 1.3 Given a right R-module U with submodule U ′, U ′ is called
(m, n)-pure in U if the canonical map U ′ ⊗R V → U ⊗R V is a monomorphism
for every (m, n)-presented left R-module V . U ′ is said to be (m,ℵ0)-pure (resp.,
(ℵ0 , n)-pure) in U in case U ′ is (m, n)-pure in U for all positive integers n (resp.,
m).

Remark 1.4 (1) It is easy to see that U ′ is pure in U if and only if U ′ is
(m, n)-pure in U for all positive integers m and n.

(2) Suppose U ′ ≤ U and every finitely generated submodule of U ′ is (m, n)-
pure in U . As we all know, U ′ is the direct limit of its finitely generated
submodules and ⊗ is commutative with lim→ . Then U ′ is (m, n)-pure in U .

Theorem 1.5 Let U ′
R ≤ UR, then the following statements are equivalent:
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(1) U ′ is (m, n)-pure in U ,
(1)′ For all C ∈ Rn×m, the canonical map U ′ ⊗R (Rm/RnC) → U ⊗R

(Rm/RnC) is a monomorphism,
(2) For every (m, n)-presented left R-module V , the canonical map TorR

1 (U, V ) →
TorR

1 (U/U ′, V ) is surjective,
(3) For all C ∈ Rn×m, (U ′)m ∩ UnC = (U ′)nC,
(4) For every n-generated submodule I of RRm, (U ′)m ∩ UI = U ′I ,
(5) For every (n, m)-presented right R-module V , the canonical map HomR(V, U)

→ HomR(V, U/U ′) is surjective,
(5)′ For all C ∈ Rn×m, the canonical map

HomR(Rn/CRm, U) → HomR(Rn/CRm, U/U ′)

is surjective,
(6) For every commutative diagram

Rn �g
Rm

�
f

�
0 � U ′ � U

there exists h : Rm → U ′ with f = hg,
(7) For every (n, m)-presented right R-module V , the canonical map Ext1R(V, U ′)

→ Ext1R(V, U) is a monomorphism.

Proof (1)⇔(1)′ and (5)⇔(5)′ are obvious.
(1)⇔(2) follows from the exact sequence

TorR
1 (U, V ) → TorR

1 (U/U ′, V ) → U ′ ⊗ V → U ⊗ V.

(1)⇒(3) Suppose that C = (cij)n×m and x ∈ (U ′)m ∩ UnC, then there
exist a1, a2, · · · , am ∈ U ′, u1, u2, · · · , un ∈ U such that x = (a1, a2, · · · , am)
and ai =

∑n
j=1 ujcji, i = 1, 2, · · · , m. Let V be an (m, n)-presented left

R-module with generators v1, v2, · · · , vm and relations
∑m

i=1 cjivi = 0, j =
1, 2, · · · , n, then we have

∑m
i=1 ai ⊗ vi = 0 in U ⊗ V . Since U ′ is (m, n)-

pure in U ,
∑m

i=1 ai ⊗ vi = 0 in U ′ ⊗ V . It follows that ai =
∑n

j=1 u′
jcji for

some u′
1, u′

2, · · · , u′
n ∈ U ′, i = 1, 2, · · · , m, thus x ∈ (U ′)nC. But (U ′)nC ⊆

(U ′)m ∩ UnC, so (U ′)m ∩ UnC = (U ′)nC.
(3)⇒(4) Suppose I = Rb1+· · ·+Rbn, where bj = (c1j , c2j, · · · , cmj) ∈ Rm,

j = 1, 2, · · · , n. If x = (a1, · · · , am) =
∑n

j=1 ujbj ∈ (U ′)m ∩ UI with each
ai ∈ U ′ and each uj ∈ U , then x = (u1, u2, · · · , un)C ∈ UnC∩ (U ′)m, where C
is an n×m matrix with row vectors b1, · · · , bn. By (3), x = (u′

1, u′
2, · · · , u′

n)C
for some u′

1, u′
2, · · · , u′

n ∈ U ′. This implies that x ∈ U ′I, and hence (U ′)m ∩
UI = U ′I.

(4)⇒(5) Consider the following diagram with exact rows
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0 � K �iK Rn �π2
V � 0

�
f

0 � U ′ �iU ′
U �π1

U/U ′ � 0

where f ∈ HomR(V, U/U ′) and K is an m-generated submodule of Rn, with
generators yi = (ci1, ci2, · · · , cin), i = 1, 2, · · · , m. Since Rn is projective,
there exist g ∈ HomR(Rn, U) and h ∈ HomR(K, U ′) such that the diagram
commutes. Now let bj = (c1j, c2j, · · · , cmj) ∈ Rm, j = 1, 2, · · · , n, I =
Rb1+· · ·+Rbn and ui =

∑n
j=1 g(ej)cij , where ej = (0, · · · , 0, 1, 0, · · ·, 0) (with 1

in the jth position and 0’s in all other positions), i = 1, 2, · · · , m, j = 1, 2, · · · , n.
Then ui = g(

∑n
j=1 ejcij) = g(yi) = h(yi) ∈ U ′, i = 1, 2, · · · , m. Note that

(u1, u2, · · · , um) =
∑n

j=1 g(ej)bj ∈ UI, by (4), (u1, u2, · · · , um) =
∑n

j=1 u′
jbj

for some u′
1, u′

2, · · · , u′
n ∈ U ′. Therefore, ui =

∑n
j=1 u′

jcij, i = 1, 2, · · · , m.
Define σ ∈ HomR(Rn, U ′) such that σ(ej) = u′

j, j = 1, 2, · · · , n. Then σiK =
h. Finally, we define τ : V → U by τ (z + K) = g(z) − σ(z), then τ is a
well-defined right R-homomorphism and π1τ = f . Whence HomR(V, U) →
HomR(V, U/U ′) is surjective.

(5)⇒(3) Suppose that C = (cij)n×m ∈ Rn×m and x ∈ (U ′)m ∩ UnC.
Then x = (a1, a2, · · · , am) = (u1, u2, · · · , un)C for some a1, a2, · · · , am ∈ U ′

and u1, u2, · · · , un ∈ U . Take yi = (c1i, c2i, · · · , cni) (i = 1, 2, · · · , m), K =
y1R+y2R+· · ·+ymR and V = Rn/K. Then we have the following commutative
diagram with exact rows

0 � K �iK Rn �π2
V � 0

�
f1 �

f2

0 � U ′ �iU ′
U �π1

U/U ′ � 0

where f2 is defined by f2(ej) = uj, j = i, 2, · · · , n and f1 = f2|K. Define
f3 : V → U/U ′ by f3(z +K) = π1f2(z). It is easy to see that f3 is well defined
and f3π2 = π1f2. By hypothesis, f3 = π1τ for some τ ∈ HomR(V, U). Now we
define σ : Rn → U ′ by σ(z) = f2(z) − τπ2(z). Then σ ∈ HomR(Rn, U ′) and
iU ′σ = f2. Hence ai = f2(yi) = σ(yi) =

∑n
j=1 σ(ej)cji, i = 1, 2, · · · , m, and

x = (σ(e1), σ(e2), · · · , σ(en))C ∈ (U ′)nC. Therefore (U ′)m ∩ UnC = (U ′)nC.
(3)⇒(1) Suppose that RV is (m, n)-presented, with generators v1, v2, · · · , vm

and relations
∑m

j=1 cijvj = 0, i = 1, · · · , n. If
∑s

k=1 ak ⊗ bk = 0 in U ⊗ V ,
where ak ∈ U ′, bk =

∑m
j=1 αkjvj ∈ V , then

∑m
j=1(

∑s
k=1 akαkj) ⊗ vj = 0 in

U ⊗ V . So
∑s

k=1 akαkj =
∑n

i=1 uicij for some ui ∈ U . By (3), there exist
u′

1, u
′
2, · · · , u′

n ∈ U ′ such that
∑s

k=1 akαkj =
∑n

i=1 u′
icij, j = 1, · · · , m. Thus∑s

k=1 ak ⊗ bk =
∑n

i=1 u′
i ⊗ (

∑m
j=1 cijvj) = 0 in U ′ ⊗ V .

(5)⇔(6) By Diagram Lemma (see [11, page 53]).
(5)⇔(7) It follows from the exact sequence
HomR(V, U) → HomR(V, U/U ′) → Ext1R(V, U ′) → Ext1R(V, U). �
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Corollary 1.6 Let U ′
R ≤ UR, then U ′ is (1,ℵ0)-pure in U if and only if

UI ∩ U ′ = U ′I for all finitely generated left ideals I. �

Proposition 1.7 Let U ′
R ≤ UR, then

(1) If U is n-generated, then U ′ is (m, n)-pure in U if and only if U ′ is
(m,ℵ0)-pure in U .

(2) If each finitely generated left ideal of R is n-generated, then U ′ is (1, n)-
pure in U if and only if U ′ is (1,ℵ0)-pure in U .

(3) If each finitely generated right ideal of R is m-generated, then U ′ is
(m, 1)-pure in U if and only if U ′ is (ℵ0, 1)-pure in U .

Proof (2) can be proved by Theorem 1.5(4), and (3) can be proved by Theorem
1.5(5). Now we prove only the necessity of (1).

Let u1, u2, · · · , un be a generating set of U . For every positive integer l and
each C ∈ Rl×m, if x ∈ (U ′)m ∩U lC, then x = (u1, u2, · · · , un)AC for some A ∈
Rn×l. Since U ′ is (m, n)-pure in U , by Theorem 1.5(3), x = (u′

1, u
′
2, · · · , u′

n)AC
for some u′

1, u
′
2, · · · , u′

n ∈ U . Thus x ∈ (U ′)m ∩ (U ′)lC. Therefore U ′ is (m, l)-
pure in U . �

Remark 1.8 Suppose that every finitely generated left R-module is a direct
limit of cyclic modules, then (1,ℵ0)-pure submodules of any right R-module
are pure. By Proposition 1.7(2), it follows that if R is a principal ideal domain,
then (1, 1)-pure submodules of any R-module are pure.

Many properties of (m, n)-purity are similar to those of purity. For exam-
ple, we have

Proposition 1.9 Suppose E, F and G are right R-modules such that E ⊆
F ⊆ G.

(1) If E is (m, n)-pure in F and F is (m, n)-pure in G, then E is (m, n)-
pure in G.

(2) If E is (m, n)-pure in G, then E is (m, n)-pure in F .
(3) If F is (m, n)-pure in G, then F/E is (m, n)-pure in G/E.
(4) If E is (m, n)-pure in G and F/E is (m, n)-pure in G/E, then F is

(m, n)-pure in G. �

By Ramamurthi and Rangaswamy [8], a submodule A of an R-module B
is called strongly pure if for each element a ∈ A (equivalently, any finite set
a1, a2, · · · , an of elements of A) there exists a homomorphism α : B → A such
that α(a) = a (α(ai) = ai, i = 1, 2, · · · , n). Clearly, if A is strongly pure in B,
then A is pure in B, but the converse is not true.

Proposition 1.10 Suppose that PR is a projective module and KR ≤ PR, then
the following statements are equivalent:
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(1) K is pure in P ,
(2) K is (1,ℵ0)-pure in P ,
(3) K is strongly pure in P .

Proof (1)⇒(2) and (3)⇒(1) are obvious.
(2)⇒(3) Let FR be a free module with basis X = {xi | i ∈ I} and F =

P ⊕ P ′, then K is (1,ℵ0)-pure in F by (2). Let y =
∑n

i=1 xiri ∈ K and
I = Rr1 + Rr2 + · · · + Rrn, then y ∈ K ∩ FI. Since K is (1, n)-pure in F ,
by Theorem 1.5(4), y ∈ KI. Assume y =

∑n
i=1 kiri for some ki ∈ K, define

θ : F → K by θ(xi) = ki, 1 ≤ i ≤ n, and θ(xi) = 0 for other xi’s, then
θ(y) = y, and hence K is strongly pure in P . �

2. Absolutely (m,n)-pure modules

Definition 2.1 AR is said to be absolutely (m, n)-pure if A is (m, n)-pure in
every module which contains A as a submodule.

Theorem 2.2 For a right R-module A, the following statements are equivalent:
(1) A is absolutely (m, n)-pure,
(2) A is (m, n)-pure in its injective envelope E(A),
(3) A is (n, m)-injective .

Proof (1)⇒(2) is obvious.
(2)⇒(1) Suppose A ≤ B, then A ≤ E(A) ≤ E(B). Since A is (m, n)-pure

in E(A) and E(A) is pure in E(B), A is (m, n)-pure in E(B) by Proposition
1.9(1). Note that A ≤ B ≤ E(B), by Proposition 1.9(2), A is (m, n)-pure is B.

(2)⇔(3) follows from the the exact sequence

HomR(V, E(A)) → HomR(V, E(A)/A) → Ext1R(V, A) → 0

and Remark 1.2 and Theorem 1.5(5). �

Proposition 2.3 If AR is an (m, n)-pure submodule of an absolutely (m, n)-
pure module BR, then A is absolutely (m, n)-pure.

Proof For every (m, n)-presented module RV , since A is (m, n)-pure in B and
B is (m, n)-pure in E(B), A ⊗ V → B ⊗ V and B ⊗ V → E(B) ⊗ V are
monomorphisms. Thus the following commutative diagram

A ⊗ V � B ⊗ V

� �
E(A) ⊗ V � E(B) ⊗ V

gives that the map A ⊗ V → E(A) ⊗ V is a monomorphism. �
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The following theorem is immediate.

Theorem 2.4 Suppose that AR ≤ BR and BR is (m, n)-injective, then A is
(m, n)-injective if and only if A is (n, m)-pure in B. �

Corollary 2.5 Let AR ≤ BR.
(1) If B is FP -injective, then A is FP -injective if and only if A is pure in

B.
(2) If B is F -injective, then A is F -injective if and only if A is (ℵ0 , 1)-pure

in B.
(3) If B is n-injective, then A is n-injective if and only if A is (n, 1)-pure

in B. In particular, if B is P -injective, then A is P -injective if and only if A
is (1, 1)-pure in B. �

Corollary 2.6 Let A be a right R-module, then
(1) A is FP -injective if and only if A is absolutely pure.
(2) A is F -injective if and only if for every finitely generated free left R-

module F and every cyclic submodule K of F , A ⊗ F/K → E(A) ⊗ F/K is a
monomorphism.

(3) A is n-injective if and only if for every finitely generated free left R-
module F and every cyclic submodule K of the left R-module RRn, A⊗Rn/K →
E(A) ⊗ Rn/K is a monomorphism. In particular, A is P -injective if and only
if for each a ∈ R, A ⊗ R/Ra → E(A) ⊗ R/Ra is a monomorphism. �

Remark 2.7 Following Jain [6], ring R is said to be right IF in case every
injective right R-module is flat. By Corollary 2.6, it is easy to see that if R is
a right IF ring, then AR is n-injective if and only if TorR

1 (E(A)/A, Rn/I) = 0
for all cyclic submodules I of RRn.

Definition 2.8 A right R-module A is said to be (m,ℵ0)-injective (resp.,
(ℵ0 , n)-injective) if A is (m, n)-injective, for every positive integer n (resp., m).
Clearly, A is F -injective if and only if A is (1,ℵ0)-injective.

Proposition 2.9 Suppose that AR is (n, m)-injective and E(A) is n-generated,
then A is (ℵ0, m)-injective.

Proof As A is (n, m)-injective, so A is (m, n)-pure in E(A) by Theorem 2.2.
But E(A) is n-generated, by proposition 1.8(1), A is (m,ℵ0)-pure in E(A), and
hence A is (ℵ0 , m)-injective. �

Remark 2.10 Rutter [9] has an example of a left P -injective ring which is
not left 2-injective. Similarly, we can give an example of a right P -injective
ring which is not right 2-injective. So, in general, an (1, n)-pure submodules
of a right R-module need not to be its (2, n)-pure submodules. From Theorem
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2.2, we see also that if for every positive integer m, (m, 1)-pure submodules
of each injective R-module are its (m,ℵ0)-pure submodules, then F -injective
R-modules are FP -injective modules.

3. (m,n)-purity and (m,n)-flatness

In this section, we consider the relation between (m, n)-purity and (m, n)-
flatness. Firstly, we give a definition as below.

Definition 3.1 A right R-module V is said to be (m, n)-flat, if for every n-
generated submodule I of RRm, the canonical map V ⊗ I → V ⊗Rm is monic.
A right R-module V is called (m,ℵ0)-flat (resp., (ℵ0, n)-flat), if for every posi-
tive integer n (resp., m), V is (m, n)-flat.

Note that (1, n)-flat module is n-flat in sense of [10] and the next proposi-
tion is easy to verify.

Proposition 3.2 For a right R-module V , the following statements are equiv-
alent:

(1) V is (m, n)-flat,
(2) TorR

1 (V, M) = 0 for all (m, n)-presented left R-module M ,
(3) V + is (m, n)-injective ,
(4) For every n-generated submodule I of RRm, the map μI : V ⊗ I →

V I;
∑

vi ⊗ xi �→
∑

vixi is a monomorphism,
(5) For all X ∈ V n, A ∈ Rn×m, if XA = 0, then exist a positive integer l

and Y ∈ V l, C ∈ Rl×n, such that CA = 0 and X = Y C. �

Remark 3.3 From Proposition 3.2, the (m, n)-flatness of VR can be character-
ized by the (m, n)-injectivity of V +. On the other hand, by [3, Lemma 2.7(1)],
the sequence TorR

1 (V +, M) → Ext1R(M, V )+ → 0 is exact for all finitely pre-
sented left R-module M , so if V + is (m, n)-flat, then V is (m, n)-injective.

Proposition 3.4 (n,ℵ0)-pure submodules of (m, n)-flat modules are (m, n)-
flat.

Proof Suppose that VR is (m, n)-flat, K is (n,ℵ0)-pure in V . Let X ∈ Kn, A ∈
Rn×m satisfy XA = 0, then by the (m, n)-flatness of V , there exist positive
integer l, U ∈ V l and C ∈ Rl×n such that CA = 0 and X = UC. Since K is
(n,ℵ0)-pure in V and hence (n, l)-pure, by Theorem 1.5(3), X = Y C for some
Y ∈ Kl. And so K is (m, n)-flat. �

Corollary 3.5 Pure submodules of a flat module are flat. �

Theorem 3.6 Let U ′
R ≤ UR.
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(1) If U/U ′ is (m, n)-flat, then U ′ is (m, n)-pure in U .
(2) If U ′ is (m, n)-pure in U and U is (m, n)-flat, then U/U ′ is (m, n)-flat.

Proof It follows from the exact sequence

TorR
1 (U, M) → TorR

1 (U/U ′, M) → U ′ ⊗ M → U ⊗ M

and Proposition 3.2(2). �

Corollary 3.7 Let U ′
R ≤ UR.

(1) If U is flat, then U/U ′ is flat if and only if U ′ is pure in U .
(2) If U is n-flat, then U/U ′ is n-flat if and only if U ′ is (1, n)-pure in U .

�

By Proposition 3.2(2), we see that VR is flat if and only if V is (m, n)-flat
for all positive integers m and n. Suppose V is an n-generated and n-flat mod-
ule, there exists an exact sequence 0 → K → F → V → 0 with F free and
rank(F ) = n. Then K is (1, n)-pure in F by Corollary 3.7 and hence (1,ℵ0)-
pure by Proposition 1.7, so V is (1,ℵ0)-flat. It is well known that VR is flat if
and only if V is (1,ℵ0)-flat. So we have the following corollary.

Corollary 3.8[10] n-generated and n-flat modules are flat. �

Proposition 3.9 Let UR be an n-generated flat module, U ′
R ≤ UR, then U ′ is

pure in U if and only if U ′ is (1, n)-pure. In particular, for every right ideal I
of R, IR is pure in RR if and only if IR is (1, 1)-pure in RR.

Proof By Proposition 1.7. �

Corollary 3.10 Suppose RR is FP -injective (resp., (m, n)-injective, F -injective,
n-injective), IR ≤ RR, then IR is FP -injective (resp., (m, n)-injective, F -
injective, n-injective) if and only if IR is P -injective.

Proof It follows immediately from Theorem 2.4 and Proposition 3.9. �

Proposition 3.11 Suppose that R is a right IF ring and (1, n)-flat right
R-modules are (m, n)-flat, then (n, 1)-injective right R-modules are (n, m)-
injective.

Proof If AR is (n, 1)-injective, then A is (1, n)-pure in E(A). Since R is a
right IF ring, E(A) is flat. Hence E(A)/A is (1, n)-flat. By hypothesis, E(A)/A
is (m, n)-flat and hence A is (m, n)-pure in E(A), that is, A is (n, m)-injective.�

Corollary 3.12 Suppose that R is a right IF ring and (1, 1)-flat right R-
modules are (ℵ0, 1)-flat. Then P -injective right R-modules are F -injective and
(1, 1)-flat left R-modules are flat. �
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