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Abstract

Let R be aring. Given two positive integers m and n, an R-module V/
is said to be (m,n)-presented if there is an exact sequence of R-modules
0 —- K —- R™ -V — 0 with K n-generated. A submodule U’ of
a right R-module U is said to be (m,n)-pure in U if for every (m,n)-
presented left R-module V, the canonical map U' @r V — U @gr V is a
monomorphism. A right R-module A is said to be absolutely (m,n)-pure
if A is (m,n)-pure in every module which contains A as a submodule. In
this paper, several characterizations of (m,n)-purity are given and some
properties of (m,n)-purity are investigated, various results of purity are
developed, many extending known results. It is shown that a right R-
module A is absolutely (m,n)-pure if and only if it is (n,m)-injective.

0. Introduction

Throughout R is an associative ring with identity and all modules are unitary.
m and n will be two fixed positive integers (unless specified otherwise). R™*"
will denote the set of all m x n matrices over R. For an R-module M, M™
(M,,) denotes the set of all formal 1 x m (m x 1) matrices whose entries are
elements of M and M denotes the character module Homgz(M,Q/Z) of M.
For any x € M™ and A € R™*", under the usual multiplication of matrices,
2z A is a well-defined element in M™. We write Mg (rM) to indicate a right
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(left) R-module. For convenience, “n-generated” means “having a generating
set of cardinality at most n”.

Following [2], AR is called (m, n)-injective if every right R-homomorphism
from an n-generated submodule of R™ to A extends to one from R™ to A.
(1, n)-injective modules are also called n-injective modules in [10]. Cohn [4]
called a submodule U’ of Ur pure in U in case for every left R-module V, the
canonical map U' g V — U ®r V is a monomorphism. We also recall that
Apg is said to be absolutely pure [7] if it is pure in every module containing
it as a submodule. Ag is said to be FP-injective [6] if Exth(V,A) = 0 for
every finitely presented module Vi. Apg is said to be F-injective [5] if every
right R-homomorphism from a finitely generated right ideal to A extends to
one from Rp to A. Clearly, Ag is F-injective if and only if A is n-injective for
every positive integer n.

In section 1, we introduce the concept of (m, n)-pure submodules. Various
results are developed, many extending known results. In section 2, absolutely
(m,n)-pure modules are investigated. In particular, it is shown that a right
R-module A is absolutely (m, n)-pure if and only if it is (n, m)-injective. In the
last section, we consider the relation between (m, n)-purity and (m, n)-flatness.

1. (m,n)-pure submodules

We start with the following definition.

Definition 1.1 A left R-module V is said to be (m, n)-presented, if there is an
exact sequence of left R-modules 0 - K — R™ — V — 0 with K n-generated.

Remark 1.2 It is easy to see that a left R-module A is (m,n)-injective if
and only if Ext}(V, A) = 0 for all (m, n)-presented left R-module V, so A is
F P-injective if and only if A is (m, n)-injective for all positive integers m and n.

Definition 1.3 Given a right R-module U with submodule U’, U’ is called
(m,n)-pure in U if the canonical map U’ @ gV — U ®r V is a monomorphism
for every (m, n)-presented left R-module V. U’ is said to be (m, Rg)-pure (resp.,
(N, n)-pure) in U in case U’ is (m, n)-pure in U for all positive integers n (resp.,
m).

Remark 1.4 (1) It is easy to see that U’ is pure in U if and only if U’ is
(m,n)-pure in U for all positive integers m and n.

(2) Suppose U’ < U and every finitely generated submodule of U’ is (m, n)-
pure in U. As we all know, U’ is the direct limit of its finitely generated
submodules and ® is commutative with 1iln. Then U’ is (m, n)-pure in U.

Theorem 1.5 Let Uy, < Ug, then the following statements are equivalent:
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(1) U’ is (m,n)-pure in U,

(1)) For all C € R™ ™, the canonical map U' @r (R™/R"C) — U ®g
(R™/R"™C) is a monomorphism,

(2) For every (m,n)-presented left R-module V', the canonical map Torf (U, V) —
Torf(U/U', V) is surjective,

(3) For allC € R™™™ (U')™NnU"C = (U")"C,
(4) For every n-generated submodule I of gR™, (U')™"NUI=U'T ,

(5) For every (n, m)-presented right R-module V', the canonical map Homg(V,U)
— Homp(V,U/U’) is surjective,

(5) For all C € R"™*™, the canonical map

Homp(Ryn/CRpy,U) — Homg (R, /CRy, U/U")

18 surjective,
(6) For every commutative diagram

R" Rr™
7 |
0 U’ U

there exists h : R™ — U’ with f = hg,
(7) For every (n,m)-presented right R-module V' , the canonical map Exty(V,U’)
— ExtR(V,U) is a monomorphism.

Proof (1)&(1)" and (5)<(5)" are obvious.
(1)< (2) follows from the exact sequence

Torf (U, V) = TorB(U/U', V) = U @V - U V.

(1)=(3) Suppose that C = (¢;j)nxm and z € (U')™ NU™C, then there

exist ay,as, -, am € U’y up,ug, -+, u, € U such that x = (a1, az, -+, am)
and a; = Y0 ujcj, @ = 1,2,---,m. Let V be an (m,n)-presented left
R-module with generators vy, ve, ---, vy, and relations 27;1 cjivi =0, j =

1,2, -, n, then we have Y"1 a; ® v; = 0 in U ® V. Since U’ is (m,n)-
pure in U, > a; ®v; = 0 in U' @ V. It follows that a; = 2?21 uficj; for

some uf, ubh, -, u, €U, i=1,2,---, m, thus z € (U)"C. But (U')"C C
UHm™nunC, so (U™ NU™C = (U)™C.

(3)=(4) Suppose I = Rby1+---+Rb,,, where b; = (c1;, €25, -+, Cmj) € R,
j=12 - n e = (ar, -, am) = 3 ub; € (U)™ NUI with each
a; € U' and each u; € U, then z = (u1, ug, - -+, u,)C € UMCN(U')™, where C
is an n X m matrix with row vectors by, -+ -, b,. By (3), z = (v}, ub, -+, ul,)C
for some uy, uh, ---,u,, € U’. This implies that x € U’I, and hence (U’")™ N
UlI=U'I

(4)=(5) Consider the following diagram with exact rows
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0 K~ pn 2.y 0
| H
0 v ey s gy — o
where f € Homgr(V,U/U’) and K is an m-generated submodule of R™, with
generators y; = (ci1, Cia, ~**,Cin), ¢ = 1,2, ---, m. Since R"™ is projective,
there exist g € Homp(R",U) and h € Hompg(K,U’) such that the diagram
commutes. Now let b, = (c1;, ¢z, -+, €mj) € R™, j =1,2,-,n, I =

Rbi1+---+Rb, and u; = ZJ 19(ej)eij, Where e; = (0,- O, 1,0,---,0) (with 1
in the jth position and 0’s in all other positions), ¢ = 1, 2, ,m, =12+ n
Then u; = g(Z" ejcij) = g(yi) = h(y;) € U', i =1, 2, -+, m. Note that

(ulaU'Qa o um):ijlg(ej)bj e Ul, by( )7 (’(1,1,’(1,2, o um):Z_] 1U'Jb
for some u’l, ubh, -+, ul, € U'. Therefore, u; = ZJ 1ujc”, 1=1,2,---,m.
Define 0 € Hompg(R",U’) such that o(e;) = u}, j=1,2, -, n. Then azK
h. Finally, we define 7 : V. — U by 7(2 + K) = g(z) - U(z), then 7 is a
well-defined right R-homomorphism and m7 = f. Whence Homgr(V,U) —
Homp(V,U/U’) is surjective.

(5)=(3) Suppose that C = (¢ij)nxm € R™™ and =z € (U)" NU"C.
Then z = (a1, az, -+, am) = (u1, ug, - - -, uy,)C for some ay,as,- -, am € U’
and wuy,ug, -, uy € U. Take Yi = (Cu, C2iy "y Cni) (’L =1,2,---, m), K =
1 R+y2s R+ - -+ynm Rand V = R"/K. Then we have the following commutative
diagram with exact rows

0 K —e pn 2,y 0
L
0 v ey s gy — o

where fo is defined by fa(e;) = wj, j = 4,2,---,n and fi = fa|x. Define
f3: V=>U/U by f3(z+K) = m1f2(z). Tt is easy to see that f3 is well defined
and f3mo = 1 fo. By hypothesis, f3 = w17 for some 7 € Hompg(V,U). Now we
define o : R" — U’ by 0(z) = fa(z) — 7m2(2). Then 0 € Hompr(R"™,U’) and
iyro = fo. Hence a; = fo(y;) = o(y;) = Z?Zl o(ej)eji, = 1,2,---,m, and
x = (o(e1),0(e2), -, 0(en))C € (U)*C. Therefore (U')" NU"C = (U')"C.

(3)=(1) Suppose that gV is (m, n)-presented, with generators vy, va, - - -, Uy,
and relations Z;n:l cijvj =0,i=1,---n Y, ar®b,=0inURYV,
where ay, € U', b, = Y10 agjuy € V, then 3300 (377 apany) @ v; = 0 in
U®V. So Y i_,akoj = > i uici; for some u; € U. By (3), there exist
uh,ub, - ul, € U such that > agar; = > i ulcij, j = 1,-++,m. Thus
Shor @k @b =300 up @ (0L ciju) =0in U@ V.

(5)<(6) By Diagram Lemma (see [11, page 53]).

(5)(7) It follows from the exact sequence

Hompg(V,U) — Homg(V,U/U") — Exth(V,U') — ExtL(V,U). O
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Corollary 1.6 Let Up < Ug, then U’ is (1,R¢)-pure in U if and only if
UINU' =U'I for all finitely generated left ideals I. O

Proposition 1.7 Let Uy, < Ug, then

(1) If U is n-generated, then U’ is (m,n)-pure in U if and only if U’ is
(m, Ro)-pure in U.

(2) If each finitely generated left ideal of R is n-generated, then U’ is (1,n)-
pure in U if and only if U’ is (1, Rg)-pure in U.

(3) If each finitely generated right ideal of R is m-generated, then U’ is
(m, 1)-pure in U if and only if U is (Ro, 1)-pure in U.

Proof (2) can be proved by Theorem 1.5(4), and (3) can be proved by Theorem
1.5(5). Now we prove only the necessity of (1).

Let wy,usg, -+, u, be a generating set of U. For every positive integer [ and
each C € R>*™ if x € (U™ NU'C, then & = (uy,us, - - -, u, ) AC for some A €
R™ !, Since U’ is (m,n)-pure in U, by Theorem 1.5(3), z = (u},ub, - - -, u!,)AC
for some u}, ub, - -, ul, € U. Thus x € (U')™ N (U")!C. Therefore U’ is (m, 1)-
pure in U. O

Remark 1.8 Suppose that every finitely generated left R-module is a direct
limit of cyclic modules, then (1,Rg)-pure submodules of any right R-module
are pure. By Proposition 1.7(2), it follows that if R is a principal ideal domain,
then (1, 1)-pure submodules of any R-module are pure.

Many properties of (m,n)-purity are similar to those of purity. For exam-
ple, we have

Proposition 1.9 Suppose E, F and G are right R-modules such that E C
F CG.

(1) If E is (m,n)-pure in F and F is (m,n)-pure in G, then E is (m,n)-
pure in G.

(2) If E is (m,n)-pure in G, then E is (m,n)-pure in F.

(3) If F is (m,n)-pure in G, then F/E is (m,n)-pure in G/E.

(4) If E is (m,n)-pure in G and F/E is (m,n)-pure in G/E, then F is
(m,n)-pure in G. O

By Ramamurthi and Rangaswamy [8], a submodule A of an R-module B
is called strongly pure if for each element a € A (equivalently, any finite set
ai, ag, - -+, ay, of elements of A) there exists a homomorphism « : B — A such
that a(a) = a (ala;) = a;, 1 =1,2, -+, n). Clearly, if A is strongly pure in B,
then A is pure in B, but the converse is not true.

Proposition 1.10 Suppose that Pr is a projective module and Kr < Pgr, then
the following statements are equivalent:
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(1) K is pure in P,
(2) K is (1,R¢)-pure in P,
(3) K is strongly pure in P.
Proof (1)=-(2) and (3)=-(1) are obvious.
(2)=(3) Let Fg be a free module with basis X = {x;]i € I} and F =

P @& P, then K is (1,R¢)-pure in F by (2). Let y = >.I" , x;r; € K and
I =Rri+Rro+---+ Rry, then y € KN FI. Since K is (1,n)-pure in F,
by Theorem 1.5(4), y € KI. Assume y = > . | k;r; for some k; € K, define
0: F — K by 0(x;) =k, 1 <i<n,and 0(x;) = 0 for other z;’s, then
6(y) =y, and hence K is strongly pure in P. O

2. Absolutely (m,n)-pure modules

Definition 2.1 Ag is said to be absolutely (m,n)-pure if A is (m,n)-pure in
every module which contains A as a submodule.

Theorem 2.2 For a right R-module A, the following statements are equivalent:

(1) A is absolutely (m,n)-pure,

(2) A is (m,n)-pure in its injective envelope E(A),

(3) A is (n,m)-injective .

Proof (1)=-(2) is obvious.

(2)=(1) Suppose A < B, then A < E(A) < E(B). Since A is (m,n)-pure
in E(A) and E(A) is pure in E(B), A is (m,n)-pure in F(B) by Proposition
1.9(1). Note that A < B < E(B), by Proposition 1.9(2), A4 is (m, n)-pure is B.

(2)<(3) follows from the the exact sequence

Hompg(V,E(A)) — Hompg(V, E(A)/A) — Exth(V,A) — 0
and Remark 1.2 and Theorem 1.5(5). O

Proposition 2.3 If Ar is an (m,n)-pure submodule of an absolutely (m,n)-
pure module Br, then A is absolutely (m,n)-pure.

Proof For every (m, n)-presented module gV, since A is (m, n)-pure in B and
B is (m,n)-pure in E(B), AQV — BV and BV — E(B)®V are
monomorphisms. Thus the following commutative diagram

AoV BaV
} }
E(A) eV E(B)®V

gives that the map A® V — E(A4) ® V is a monomorphism. O
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The following theorem is immediate.

Theorem 2.4 Suppose that Ar < Br and Bgr is (m,n)-injective, then A is
(m, n)-injective if and only if A is (n,m)-pure in B. O

Corollary 2.5 Let Ap < Bg.

(1) If B is FP-injective, then A is F P-injective if and only if A is pure in
B.

(2) If B is F-injective, then A is F-injective if and only if A is (Ng, 1)-pure
in B.

(3) If B is n-injective, then A is n-injective if and only if A is (n,1)-pure
in B. In particular, if B is P-injective, then A is P-injective if and only if A
is (1,1)-pure in B. O

Corollary 2.6 Let A be a right R-module, then

(1) A is FP-injective if and only if A is absolutely pure.

(2) A is F-injective if and only if for every finitely generated free left R-
module F and every cyclic submodule K of F, AQ F/K — E(A)® F/K is a
monomorphism.

(3) A is n-injective if and only if for every finitely generated free left R-
module F' and every cyclic submodule K of the left R-module pRR", AQR" /K —
E(A) ® R"/K is a monomorphism. In particular, A is P-injective if and only
if for each a € R, A® R/Ra — E(A) ® R/Ra is a monomorphism. O

Remark 2.7 Following Jain [6], ring R is said to be right IF in case every
injective right R-module is flat. By Corollary 2.6, it is easy to see that if R is
a right IF ring, then Ag is n-injective if and only if Torf(E(A)/A, R"/I) =0
for all cyclic submodules I of pR™.

Definition 2.8 A right R-module A is said to be (m, Rq)-injective (resp.,
(Ng, n)-injective) if A is (m, n)-injective, for every positive integer n (resp., m).
Clearly, A is F-injective if and only if A is (1, Rg)-injective.

Proposition 2.9 Suppose that Ag is (n, m)-injective and E(A) is n-generated,
then A is (Ng, m)-injective.

Proof As A is (n,m)-injective, so A is (m,n)-pure in E(A) by Theorem 2.2.
But E(A) is n-generated, by proposition 1.8(1), A is (m, Ng)-pure in E(A), and
hence A is (Ng, m)-injective. O

Remark 2.10 Rutter [9] has an example of a left P-injective ring which is
not left 2-injective. Similarly, we can give an example of a right P-injective
ring which is not right 2-injective. So, in general, an (1, n)-pure submodules
of a right R-module need not to be its (2, n)-pure submodules. From Theorem
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2.2, we see also that if for every positive integer m, (m, 1)-pure submodules
of each injective R-module are its (m, Rp)-pure submodules, then F-injective
R-modules are F P-injective modules.

3. (m,n)-purity and (m,n)-flatness

In this section, we consider the relation between (m,n)-purity and (m,n)-
flatness. Firstly, we give a definition as below.

Definition 3.1 A right R-module V is said to be (m,n)-flat, if for every n-
generated submodule I of R R™, the canonical map V® I — V ® R™ is monic.
A right R-module V is called (m, Rg)-flat (resp., (No, n)-flat), if for every posi-
tive integer n (resp., m), V is (m, n)-flat.

Note that (1, n)-flat module is n-flat in sense of [10] and the next proposi-
tion is easy to verify.

Proposition 3.2 For a right R-module V , the following statements are equiv-
alent:

(1) V is (m,n)-flat,

(2) Torf(V,M) =0 for all (m,n)-presented left R-module M,

(3) VT is (m,n)-injective

(4) For every n-generated submodule I of gR™, the map pur : VoI —

VI, Yu @@ — Y vz is a monomorphism,
(5) Forall X e V™ Ae R™™, if XA =0, then exist a positive integer |
andY € V!, C € R™*™, such that CA=0 and X =YC. O

Remark 3.3 From Proposition 3.2, the (m, n)-flatness of Vi can be character-
ized by the (m, n)-injectivity of V. On the other hand, by [3, Lemma 2.7(1)],
the sequence Torf(V*™, M) — Exth(M, V)" — 0 is exact for all finitely pre-
sented left R-module M, so if VT is (m,n)-flat, then V is (m, n)-injective.

Proposition 3.4 (n,Rg)-pure submodules of (m,n)-flat modules are (m,n)-
flat.

Proof Suppose that Vg is (m, n)-flat, K is (n,Ng)-purein V. Let X € K™, A €
R™™™ gatisfy XA = 0, then by the (m,n)-flatness of V', there exist positive
integer I, U € V! and C € R™" such that CA = 0 and X = UC. Since K is
(n,Np)-pure in V and hence (n,)-pure, by Theorem 1.5(3), X = Y C for some
Y € K'. And so K is (m,n)-flat. O

Corollary 3.5 Pure submodules of a flat module are flat. O

Theorem 3.6 Let U, < Ug.
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(1) IfU/U’ is (m,n)-flat, then U’ is (m,n)-pure in U.
(2) If U’ is (m,n)-pure in U and U is (m,n)-flat, then U/U" is (m,n)-flat.

Proof It follows from the exact sequence
TorP(U, M) — Tor}(U/U', M) - U @M - UM

and Proposition 3.2(2). O

Corollary 3.7 Let Up < Ug.

(1) If U is flat, then U/U’ is flat if and only if U’ is pure in U.

(2) If U is n-flat, then U/U’ is n-flat if and only if U’ is (1,n)-pure in U.
O

By Proposition 3.2(2), we see that Vg is flat if and only if V' is (m, n)-flat
for all positive integers m and n. Suppose V is an n-generated and n-flat mod-
ule, there exists an exact sequence 0 - K — F — V — 0 with F free and
rank(F) = n. Then K is (1,n)-pure in F' by Corollary 3.7 and hence (1, X)-
pure by Proposition 1.7, so V' is (1, Rg)-flat. It is well known that Vg is flat if
and only if V' is (1, Rg)-flat. So we have the following corollary.

Corollary 3.8['% n-generated and n-flat modules are flat. m

Proposition 3.9 Let Ugr be an n-generated flat module, U, < Ug, then U’ is
pure in U if and only if U’ is (1,n)-pure. In particular, for every right ideal T
of R, Ir is pure in Ry if and only if I is (1,1)-pure in Rpg.

Proof By Proposition 1.7. g

Corollary 3.10 Suppose Ry is F'P-injective (resp., (m,n)-injective, F-injective,
n-injective), Ir < Rpg, then Ig is FP-injective (resp., (m,n)-injective, F -
injective, n-injective) if and only if Ir is P-injective.

Proof It follows immediately from Theorem 2.4 and Proposition 3.9. O

Proposition 3.11 Suppose that R is a right IF ring and (1,n)-flat right
R-modules are (m,n)-flat, then (n,1)-injective right R-modules are (n,m)-
injective.

Proof If Ag is (n,1)-injective, then A is (1,n)-pure in E(A). Since R is a
right IF ring, E(A) is flat. Hence E(A)/A is (1,n)-flat. By hypothesis, E(A)/A
is (m,n)-flat and hence A is (m, n)-pure in E(A), that is, A is (n, m)-injective.0

Corollary 3.12 Suppose that R is a right IF ring and (1,1)-flat right R-
modules are (No, 1)-flat. Then P-injective right R-modules are F-injective and
(1,1)-flat left R-modules are flat. O
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