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Abstract

Let G be the class of all graphs and J ⊆ G. A graph parameter f is
called an interpolation graph parameter with respect to J if there exist
integers a and b such that

{f(G) : G ∈ J } = {k ∈ ZZ : a ≤ k ≤ b}.
In the study of interpolation on graph parameter f with respect to J ,
we may consider into two parts. First, it is to consider whether a given
graph parameter f interpolates with respect to J or not. If it is, we
shall develop techniques to find min(f,J ) := min{f(G) : G ∈ J} and
max(f,J ) := max{f(G) : G ∈ J }.

We discuss various kinds of graph parameters and answer the first
part of interpolation theorem of graph parameters. Some of which have
been done while some are new. As an application, we are able to provide
an alternate proof of Erdős’ conjecture on regular graphs with prescribed
chromatic number.

1. Introduction

Let G be the class of all simple graphs. A function f : G → ZZ is called a graph
parameter if f(G) = f(H), whenever G ∼= H. Let f be a graph parameter and
J ⊆ G, f is called an interpolation graph parameter with respect to J if there
exist integers a and b such that {f(G) : G ∈ J} = {k ∈ ZZ : a ≤ k ≤ b}.

In 1963, Erdős and Gallai [2] proved that any regular graph on n vertices
has a chromatic number k ≤ 3n

5
unless the graph is complete. Erdős gave a
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conjecture that “probably such a graph exists for every k ≤ 3n
5

, except possibly
for trivial exceptional cases.”

Caccetta and Pullman [1] confirmed and strengthened the above conjecture
by showing that if k > 1, then for every n ≥ 5k

3 , there exists a connected,
regular, k-chromatic graph on n vertices. This is an example of interpolation
graph parameter χ with respect to the class of all connected regular graphs of
order n.

It is noted that the proof given in [1] is a constructed proof. We will show
in section 5 an alternate proof of Erdős’ conjecture as a consequence of our
interpolation theorem of the graph parameter χ.

In 1980, G. Chartrand raised the following question: If a graph G possesses
a spanning tree having m leaves and another having M leaves, where m < M,
does G possess a spanning tree having k leaves for every k between m and M?

This question was answered affirmatively and it led to a host of lots of
papers studying the interpolation properties of graph parameters with respect
to the set of all spanning trees of a given graph.

In [6] - [10], Harary et. al., published some results of interpolation theorems
on various kinds of graph parameters with respect to the set of all spanning
trees and some classes of spanning subgraphs of a given graph.

In the study of interpolation of graph parameter f with respect to J , we
may consider into two parts. First, we consider whether a given graph parame-
ter f interpolates with respect to J or not. If it is, we shall develop techniques
to find

min(f,J ) := min{f(G) : G ∈ J } and max(f,J ) := max{f(G) : G ∈ J }.
In this paper we present only the first part of the theorem for some graph

parameters with respect to the class of all graphs with a fixed degree sequence.
The second part of the theorem will also be discussed for the graph parameter
χ. Finally we provide an alternate proof of Erdős’ conjecture on regular graphs
with prescribed chromatic number.

2. The graph of realizations

Let G be a graph of order n and V (G) = {v1, v2, . . . , vn} be the vertex set
of G. The sequence (d(v1), d(v2), . . . , d(vn)) is called a degree sequence of G.
Moreover, a graph H of order n is said to have the same degree sequence as G
if there is a bijection φ: V (G) → V (H) such that d(vi) = d(φ(vi)) for all i =
1, 2, . . . , n.

A sequence d = (d1, d2, . . . , dn) of non-negative integers is a graphic degree
sequence if it is a degree sequence of some graph G and in this case, G is called
a realization of d.
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Theorem 2.1 (Havel [11] and Hakimi [5]) Let d = (d1, d2, . . . , dn) be a non-
increasing sequence of non-negative integers and denote the sequence

(d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2 , . . . , dn) = d′.

Then d is graphic if and only if d′ is graphic. �

A switching on a graph G is a replacement of any two independent edges
ab and cd of G by the edges ac and bd, where ac and bd are not edges in
G. It is easy to see that the graph obtained from G by a switching will have
the same degree sequence as G. Thus, we may say that switching is a degree-
preserving operation. It would be convenient to denote by Gσ(a,b;c,d) for the
graph obtained from G by the above switching.

It is easy to see that the graph obtained from G by a switching will have
the same degree sequence as G. Thus, we may say that switching is a degree-
preserving operation. The following theorem has been shown by Havel [11] and
Hakimi [5].

Theorem 2.2 Let d = (d1, d2, . . . , dn) be a graphic degree sequence. If G1 and
G2 are any two realizations of d, then one can be obtained from the other by a
finite sequence of switchings. �

As a consequence of the above Theorem, we can define the graph R(d) of
realizations of d, the vertices of which are the graphs with degree sequence d;
two vertices are adjacent in R(d) if one can be obtained from the other by a
switching. Thus we have shown the following corollary.
Corollary 2.3 The graph R(d) is connected. �

Let χ(G) and ω(G) be the chromatic number and the clique number of a
graph G, respectively. We proved in [15] and [16] that the graph parameters χ
and ω are interpolation graph parameters with respect to the set of all graphs
with a fixed degree sequence. In 1956, Nordhaus and Gaddum [12] studied
graph parameters χ+χ and χ·χ which are defined by: (χ+χ)(G) := χ(G)+χ(G)
and (χ · χ)(G) := χ(G) · χ(G), for any graph G.

Theorem 2.4 (Nordhaus and Gaddum [12]) Let G be a graph on n vertices.
Then

(i) 2
√

n ≤ χ(G) + χ(G) ≤ n + 1,
(ii) n ≤ χ(G) · χ(G) ≤ (1

2 (n + 1))2. �

The following result due to Fink [3] establishes the existence of a graph
with prescribe chromatic number.
Theorem 2.5 (Fink [3]) Every pair of positive integers p and q with p+q ≤ n+1
and pq ≥ n there exists a graph G of order n such that χ(G) = p and χ(G) = q.
�

The result in Theorem 2.5 above is a kind of interpolation graph parameter
χ + χ with respect to the set of all graphs of order n. It is easy to see that the
parameter χ · χ, in general, does not have interpolation property with respect
to the set of all graphs of order n.
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3. Interpolation theorems

In this section, we prove interpolation theorems for three graph parameters,
namely the vertex independence number, the edge independence number and
the vertex domination number. Relevant graph parameters are also discussed.

A subset U of the vertex set V of a graph G = (V, E) is said to be an
independent set of G if no two vertices of U are adjacent in G. An independent
set of G with maximum number of vertices is called a maximum independent
set of G. The number of vertices in a maximum independent set of G, written
α0(G), is called the independence number of G.

A subset M of the edge set E of a graph G = (V, E) is an independent edge
set or matching in G if no two distinct edges in M have a common vertex. A
matching M is maximum in G if there is no matching M ′ of G with |M ′| > |M |.
The cardinality of a maximum matching of G, written α1(G), is called the
matching number of G.

A vertex of a graph G = (V, E) is said to cover the edges incident with it.
A vertex cover of a graph G is a set of vertices covering all the edges of G. The
minimum cardinality of a vertex cover of a graph G, written by β0(G), is called
its vertex covering number of G.

An edge of a graph G = (V, E) is said to cover the two vertices incident with
it, and an edge cover of a graph G is a set of edges covering all the vertices of
G. The minimum cardinality of an edge cover of G, written by β1(G), is called
its edge covering number of G.

A dominating set (or domset, for short) of a graph G = (V, E) is a subset
D of V such that each vertex of V \ D is adjacent to at least one vertex of D.
The domination number γ(G) is the cardinality of a minimal dominating set
with least number of elements.

Gallai ([4]) proposed a result concerning to the relationship between α0 and
β0 as follows.

Theorem 3.1 For any graph G of order n, α0 + β0 = n. �

Norman and Rabin [13] also gave the relationship between α1, and β1 as
in Theorem 3.2.

Theorem 3.2 For any graph G of order n and δ ≥ 1, α1 + β1 = n. �

We now prove the results on interpolation theorems on graph parameters
α0, α1 and γ as follows:

Theorem 3.3 If G is a graph and σ(a, b; c, d) is a switching on G, then
α0(Gσ(a,b;c,d)) ≥ α0(G) − 1.

Proof Let G = (V, E) be a graph and let U be an independent set of vertices
of V with |U | = α0(G). Let σ(a, b; c, d) = σ be a switching on G. Since U is
an independent set of vertices, the induced subgraph of Uσ in Gσ contains at
least α0(G) − 1 independent vertices. Therefore α0(Gσ) ≥ α0(G) − 1. �

Corollary 3.4 If σ is a switching on G, then |α0(G) − α0(Gσ)| ≤ 1.
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Proof Since a switching is symmetry, we may assume that α0(G) ≥ α0(Gσ).
By Theorem 3.3, α0(Gσ) is either α0(G) − 1 or α0(G). In both cases we have
|α0(G) − α0(Gσ)| ≤ 1. �

Theorem 3.5 If G is a graph with α1(G) = α1 and σ is a switching on G,
then α1(Gσ) ≥ α1 − 1.

Proof Let M be an independent set of edges of E with |M | = α1(G). Let
σ(a, b; c, d) = σ be a switching on G. If {ab, cd} ∩ M = ∅, then |M | = |Mσ|. If
{ab, cd} ⊆ M, then |M | = |Mσ|. Finally, if M contains exactly one edge from
the set {ab, cd}, then |Mσ| = |M | − 1. Therefore α1(Gσ) ≥ α1 − 1. �

Corollary 3.6 If σ is a switching on G, then |α1(G) − α1(Gσ)| ≤ 1.

Proof Since a switching is symmetry, we may assume that α1(G) ≥ α1(Gσ).
By Theorem 3.5, α1(Gσ) is either α1(G) − 1 or α1(G). In both cases we have
|α1(G) − α1(Gσ)| ≤ 1. �

Theorem 3.7 If G is a graph with γ(G) = γ and σ is a switching on G, then
γ(Gσ) ≤ γ + 1.

Proof Let D be a domset of vertices of V with |D| = γ(G). Let σ(a, b; c, d) = σ
be a switching on G. If {a, b, c, d}∩D = ∅, then |D| = |Dσ|. If {a, b, c, d} ⊆ D,
then |D| = |Dσ|. If a ∈ D and b, c, d ∈ V \ D, then D ∪ {b} is a domset of
Gσ. If a, b ∈ D and c, d ∈ V \ D, then D is a domset of Gσ. If a, c ∈ D, then
D ∪ {b} is a domset of Gσ. Finally, if a, b, c ∈ D and d ∈ V \ D, then D ∪ {d}
is a domset of Gσ. Thus γ(Gσ) ≤ γ(G) + 1. �

Corollary 3.8 If σ is a switching on G, then |γ(G) − γ(Gσ)| ≤ 1.

Proof Since a switching is symmetry, we may assume that γ(G) ≤ γ(Gσ).
By Theorem 3.7, γ(Gσ) is either γ(G) + 1 or γ(G). In both cases we have
|γ(G) − γ(Gσ)| ≤ 1. �

Combining the results in this section and with the fact that the graph of
realizations is connected we can conclude the following theorem.

Theorem 3.9 Let d = (d1, d2, . . . , dn), d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 be a graphic
degree sequence. Then α0, α1, β0, β1, γ are interpolation graph parameters
with respect to R(d). �

We now summarize our results for the first part of interpolation theorem as
follows:

Theorem 3.10 Let f ∈ {χ, ω, α0, α1, β0, β1, γ}. Then for any graphic degree
sequence d, there exist integers a := a(f) and b := b(f) such that d has a
realization G with f(G) = c if and only if c is an integer satisfying a ≤ c ≤ b.
�
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4. Application

In this final section, we first state our results in [15] and use them to proof
Erdős’ conjecture on regular graphs with prescribed chromatic number. The-
orem 4.1 - Theorem 4.6 are cited from [15], while Theorem 4.7 - Theorem 4.8
are cited from [14].
Theorem 4.1 If r ≥ 2 and n ≥ 2r, then

min(χ, rn) =
{

2 if n is even,
3 if n is odd.

�

Theorem 4.2 If r ≥ 2, then min(χ, rr+1) = max(χ, rr+1) = r + 1, and
min(χ, rr+2) = max(χ, rr+2) = (r + 2)/2 (in this case r must be even). �

Theorem 4.3 For any r ≥ 4 and odd integer s such that 3 ≤ s ≤ r, let q and
t be integers satisfying r + s = sq + t, 0 ≤ t < s. Then

min(χ, rr+s) =

⎧⎨
⎩

q if t = 0,
q + 1 if 1 ≤ t ≤ s − 2,
q + 2 if t = s − 1.

�

Theorem 4.4 For any even integer r ≥ 6 and any even number s such that
4 ≤ s ≤ r, let q and t be integers satisfying r + s = sq + t, 0 ≤ t < s. Then

min(χ, rr+s) =
{

q if t = 0,
q + 1 if t ≥ 2.

�

Theorem 4.5 Let r ≥ 2. Then
(1) max(χ, r2r) = r,

(2) max(χ, r2r+1) =
{

3 if r = 2,
r if r ≥ 4,

(3) max(χ, rn) = r + 1 for n ≥ 2r + 2. �

Theorem 4.6 For any r and s such that 3 ≤ s ≤ r − 1, we have
(1) max(χ, rr+s) ≥ (r + s)/2 if r + s is even, and
(2) max(χ, rr+s) ≥ (r + s− 1)/2 if r + s is odd. �

We defined in [14] an F (j)-graph to be a (j−1)-regular graph G of minimum
order f(j) with χ(G) exceeds f(j)/2. We determined F (j)-graphs for all odd
integers j, j ≥ 3, as stated in following 2 theorems:
Theorem 4.7 For odd integer j with j ≥ 3, we have f(j) = 5

2(j − 1) if
j ≡ 3 (mod 4) and f(j) = 1 + 5

2
(j − 1) if j ≡ 1 (mod 4). �

Theorem 4.8 Any r-regular graph of order n with n− r = j is odd and j ≥ 3,

has chromatic number at most f(j) + 1
2f(j) ·n, and this bound is achieved precisely

for those graphs with complement equal to a disjoint union of F (j)-graphs. �
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Erdős and Gallai [2] showed that any r-regular graph of order n with r <
n−1 has a chromatic number at most 3n/5, and this bound is achieved precisely
for those graphs with complement equal to a disjoint union of 5-cycles. This
means that the bound 3n/5 is the best for an r-regular graph of order n when
r = n − 3 and the complementary graph is 2-regular. To achieve the bound,
they choose the complementary graph to be the disjoint union of 5-cycles.

In the case when j = 3, the F (3)-graph is C5 and the result of Erdős and
Gallai [2] becomes a special case of Theorem 4.8.

Let n be an integer with n ≥ 4, r = n− 3 and n = 5p + i, 0 ≤ i ≤ 4. Then
an explicit formula for max(χ, rn) can be given as follows.

max(χ, rn) =

⎧⎨
⎩

3p if i = 0, 1
3p + 1 if i = 2, 3,
3p + 2 if i = 4.

For an integer n ≥ 4, n = 5p + i, 0 ≤ i ≤ 4 and n = 3q + t, 0 ≤ t ≤ 2.
If n is even and n = 2m, then

χ(mn) = [2, m] and χ((n − 3)n) = [q + t, 3p + i/2�].

If n is odd, n ≥ 7 and n = 2m + 1, then

χ(rn) = [3, r] and χ((n − 3)n) = [q + t, 3p + i/2�],

where r is an even integer either r = m − 1 or r = m.

It is easy to check that
χ(mn) ∩ χ((n − 3)n) �= ∅ and χ(rn) ∩ χ((n − 3)n) �= ∅.
Thus we have proved the following result on interpolation theorem of χ with

respect to the class of all connected non complete regular graphs.

Theorem 4.9
(1) If n is even and n ≥ 6, then there exists a connected non complete

regular graph G of order n with χ(G) = k if and only if k is an integer such
that 2 ≤ k ≤ 3n/5.

(2) If n is odd and n ≥ 7, then there exists a connected non complete
regular graph G of order n with χ(G) = k if and only if k is an integer such
that 3 ≤ k ≤ 3n/5. �
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