A NOTE ON LEFT SYMMETRIC ALGEBRAS

Raúl Benavides ${ }^{\dagger}$, Cristián Mallol ${ }^{\ddagger}$ and Avelino Suazo*
\dagger Departamento de Matemática, Universidad de La Frontera Casilla 54-D, Temuco, Chile e-mail: rbenavid@ufro.cl
\ddagger Departamento de Ingeniería Matemática, Universidad de La Frontera Casilla 54-D, Temuco, Chile e-mail: cmallol@ufro.cl
* Departamento de Matemática,
Universidad de La Serena Cisternas 1200, La Serena, Chile e-mail: asuazo@userena.cl

Abstract

In this work we study left-symmetric algebra over a field K with characteristic $\neq 2$, which are power-associative algebras.

1. PRELIMINARIES

Let A be a nonassociative algebra over a field K. We call A left-symmetric algebra if it satisfies the identity:

$$
\begin{equation*}
(x, y, z)=(y, x, z) \tag{1}
\end{equation*}
$$

where $(x, y, z)=(x y) z-x(y z)$. Right-symmetric algebras are defined by the identity $(x, y, z)=(x, z, y)$. Right-symmetric algebras are sometimes called Vinberg-algebras (see, [8]).

If A is a left-symmetric algebra, then A is a left Novikov algebra if the identity $(x y) z=(x z) y$ is valid in A. We call A right Novikov algebra it the identities $(x, y, z)=(x, z, y)$ and $x(y z)=y(x z)$ are valid in A. Right Novikov algebras were introduced by Balinskii and Novikov in [1], and have also been studied

This article was supported by Fondecyt-Lineas Complementarias Grant N^{0} 8990001, and the third author by CNPq-Brazil Grant 300645/93-7.
Key words and phrases: Vinberg and Novikov Algebras.
(2000) Mathematics Subject Classification: 17A30
by Zelmanov [9] and Fillipov [3]. Left Novikov algebras were investigated by Cherkashin [2] and Osborn [4], [5], [6].

We define the right principal powers of $x \in A$ by $x^{1}=x$ and $x^{n+1}=x^{n} x$ for all $n \geq 1$. An element $x \in A$ is called right nilpotent if there exists $n \geq 1$ such that $x^{n}=0$, and $x \in A$ is called right nilpotent with right nilindex $n \geq 2$ if $x^{n}=0$ and $x^{n-1} \neq 0$. If any element in A is right nilpotent, then A is called a right nilalgebra. A is called a right nilalgebra with right nilindex $n \geq 2$ if $x^{n}=0$ for all $x \in A$ and there exists $y \in A$ such that $y^{n-1} \neq 0$. It is known that A is a power-associative algebra if for all $x \in A$ we have $x^{i} x^{j}=x^{i+j}$ for all $i, j \geq 1$. A is a flexible algebra, if $(x, y, x)=0$ for all $x, y \in A$. A is a right alternative algebra, if $(y, x, x)=0$ for all $x, y \in A$. Similarly, we define left alternative algebra.

If B, D are subspaces of A then $B D$ is the subspace of A spanned by all products $b d$ with b in B, d in D. We define the right principal powers of B by $B^{1}=B$ and $B^{n+1}=B^{n} B$ for all $n \geq 1$. If there exists an element $k \geq 1$ such that $B^{k}=0$ then B is called right nilpotent.
A is called nilpotent if for some integer positive n the product of any n elements from the algebra A, with any arrangement of parentheses, equals zero.

An element e of A is called an idempotent in case $e^{2}=e \neq 0$. An idempotent $e \in A$ is called principal in case there is no idempotent $u \in A$ such that $e u=u e=0$.

2. POWER-ASSOCIATIVE LEFT-SYMMETRIC ALGEBRAS

In this section, A is a left-symmetric algebra over a field K with characteristic $\neq 2$. It is known that when A is a commutative algebra, then A is associative. Also it is known that, left-symmetric algebras are Lie-admissibbe, i.e., under the commutator $[a, b]=a b-b a$, we obtain a Lie algebra.
Proposition 2.1 The following conditions are equivalent:
(a) $x x^{2}=x^{3}$ for all $x \in A$, where $x^{3}=x^{2} x$.
(b) A is a power-associative algebra.

Proof Suppose that (a) is valid. That is, $x x^{2}=x^{2} x$ for all $x \in A$. The linearized form of the identity $x x^{2}=x^{2} x$ is $(x, z, y)+(z, x, y)+(x, y, z)+$ $(z, y, x)+(y, x, z)+(y, z, x)=0$. Using this last relation and since A is a left-symmetric algebra, we obtain that the following identities are valid in A :

$$
\begin{align*}
& (x, z, y)+(x, y, z)+(y, z, x)=0 \tag{2}\\
& (x, y, z)+(z, x, y)+(z, y, x)=0 \tag{3}
\end{align*}
$$

For $x \in A$, we will prove first that $x x^{n}=x^{n+1}$ for all $n \geq 1$, where $x^{n+1}=x^{n} x$. We consider $n \geq 2$ and suppose that $x x^{k}=x^{k+1}$ for all k with $1 \leq k \leq n$.

Replacing z by x, y by x^{n-1} in (2) and using the inductive hypothesis we obtain that $x^{n-1} x^{2}=x^{2} x^{n-1}$. Now $\left(x, x^{2}, x^{n-1}\right)=\left(x^{2}, x, x^{n-1}\right)$ implies $x\left(x^{2} x^{n-1}\right)=x^{2} x^{n}$,
$\left(x^{n-1}, x, x\right)=\left(x, x^{n-1}, x\right)$ implies $x^{n-1} x^{2}=x x^{n}=x^{n+1}$, and $\left(x, x^{n}, x\right)=$ $\left(x^{n}, x, x\right)$ implies $x x^{n+1}=x^{n} x^{2}$. Thus we get $x x^{n+1}=x\left(x^{n-1} x^{2}\right)=x\left(x^{2} x^{n-1}\right)=$ $x^{2} x^{n}$, which implies that $x x^{n+1}=x^{n} x^{2}=x^{2} x^{n}$. Replacing z by x and y by x^{n} in (2), we obtain that $x x^{n+1}=x^{n+1} x$. So we prove that $x x^{n}=x^{n+1}$ for all $n \geq 1$.

Finally we will prove that $x^{i} x^{j}=x^{i+j}$ for all $i, j \geq 1$. If $j=1$, then we know that $x^{i} x=x^{i+1}$. If we suppose that $x^{i} x^{j}=x^{i+j}$, then $\left(x^{i}, x, x^{j}\right)=\left(x, x^{i}, x^{j}\right)$ implies $x^{i} x^{j+1}=x x^{i+j}=x^{i+j+1}$. It is clear that (b) implies (a).

Proposition 2.2 The following conditions are equivalent:
(a) A is a right alternative algebra.
(b) A is a flexible algebra.
(c) A is a left alternative algebra.
(d) A is a associative algebra.

Proof Since $(x, y, x)=(y, x, x)$ for all $x, y \in A$, then (a) and (b) are equivalent. We observe that if $(a),(b)$ or (c) are valid, then by proposition $2.1, A$ is a powerassociative algebra.

Replacing z by y and y by x in (3), we obtain that $2(y, x, x)=-(x, x, y)$. Thus clearly (a) and (c) are equivalent. Suppose that A is flexible. The linearized form of the flexible law is $(x, y, z)+(z, y, x)=0$ for all x, y, z in A. Using the identity (3) we obtain that $(z, x, y)=0$ for all x, y, z in A, and therefore A is a associative algebra. Finally we conclude that $(a),(b),(c)$ and (d) are equivalent.

Proposition 2.3 If A is a power-associative algebra, which contains an idempotent $e \neq 0$, then A is the vector space direct sum $A=A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, where $A_{11}=\{x \in A / e x=x e=x\}, A_{10}=\{x \in A / e x=x, x e=0\}$, $A_{01}=\{x \in A / e x=0, x e=x\}$ and $A_{00}=\{x \in A / e x=x e=0\}$.
Proof Replacing x by e and y by e in (3), we get $\frac{1}{2}\left(L_{e}^{2}-L_{e}\right)=R_{e}^{2}-R_{e}$, and therefore $L_{e}\left(R_{e}^{2}-R_{e}\right)=\left(R_{e}^{2}-R_{e}\right) L_{e}$. Now $(z, e, e)=(e, z, e)$ implies $L_{e} R_{e}=R_{e} L_{e}+R_{e}-R_{e}^{2}$. We have $L_{e}\left(R_{e}^{2}-R_{e}\right)=\left(L_{e} R_{e}\right) R_{e}-L_{e} R_{e}=\left(R_{e} L_{e}+\right.$ $\left.R_{e}-R_{e}^{2}\right) R_{e}-L_{e} R_{e}=R_{e} L_{e} R_{e}+R_{e}^{2}-R_{e}^{3}-L_{e} R_{e}=R_{e}\left(R_{e} L_{e}+R_{e}-R_{e}^{2}\right)+$ $R_{e}^{2}-R_{e}^{3}-L_{e} R_{e}=R_{e}^{2} L_{e}+2 R_{e}^{2}-2 R_{e}^{3}-\left(R_{e} L_{e}+R_{e}-R_{e}^{2}\right)=R_{e}^{2} L_{e}-R_{e} L_{e}-$ $2 R_{e}^{3}+3 R_{e}^{2}-R_{e}=\left(R_{e}^{2}-R_{e}\right) L_{e}$, which implies that $2 R_{e}^{3}-3 R_{e}^{2}+R_{e}=0$. That
is, $f\left(R_{e}\right)=0$ where $f(\lambda)=(\lambda-1)(2 \lambda-1) \lambda$. Hence A is the vector space direct $\operatorname{sum} A=U_{1} \oplus U_{\frac{1}{2}} \oplus U_{0}$, where $U_{1}=\{x \in A / x e=x\}, U_{\frac{1}{2}}=\{$ $\left.x \in A / x e=\frac{1}{2} x\right\}$ and $U_{0}=\{x \in A / x e=0\}$. We will prove that $U_{\frac{1}{2}}=0$. We consider $y \in U_{\frac{1}{2}}$ and $e y=y_{0}$. Now $L_{e}^{2}-L_{e}=2\left(R_{e}^{2}-R_{e}\right)$ implies $e y_{0}=y_{0}-\frac{1}{2} y$ and $(e, y, e)=(y, e, e)$ implies $y_{0} e=\frac{1}{2} y_{0}-\frac{1}{4} y$. Using the above results we have that $\left(e, y_{0}, e\right)=\left(y_{0}, e, e\right)$ implies $y=2 y_{0}$. Therefore $y_{0} e=0$ and $y=2 y e=4 y_{0} e=0$. Hence we prove that $U_{\frac{1}{2}}=0$, and thus $A=U_{1} \oplus U_{0}$. We obtain now that $R_{e}^{2}=R_{e}, L_{e}^{2}=L_{e}$ and $L_{e} R_{e}=R_{e} L_{e}$ (i.e., L_{e} and R_{e} are commuting projections). It follows that A is the vector space direct sum $A=A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, where $A_{i j}=\left\{x_{i j} / e x_{i j}=i x_{i j}, x_{i j} e=j x_{i j}\right\}, i$, $j \in\{0,1\}$.

Proposition 2.4 If A is a power-associative algebra, $e \in A$ an idempotent and $A=A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, then $: A_{11}^{2} \subset A_{11}, A_{11} A_{10} \subset A_{10}, A_{10} A_{11}=0$, $A_{11} A_{01} \subset A_{00}, A_{01} A_{11} \subset A_{01}+A_{11} A_{01} \subset A_{01}+A_{00}, A_{11} A_{00}=A_{00} A_{11}=0$, $A_{10}^{2}=0, A_{10} A_{01} \subset A_{11}, A_{01} A_{10} \subset A_{00}, A_{00} A_{10} \subset A_{11}, A_{10} A_{00} \subset A_{00} A_{10}+$ $A_{10} \subset A_{11}+A_{10}, A_{01}^{2}=0, A_{01} A_{00}=0, A_{00} A_{01} \subset A_{01}$ and $A_{00}^{2} \subset A_{00}$.

Proof For to prove that $A_{11}^{2} \subset A_{11}$, we consider $x, y \in A_{11}$. Thus $e x=x e=x$ and $e y=y e=y$. Replacing z by e in (2), we obtain $(x y) e=x y$, and $(x, e, y)=$ (e, x, y) implies $e(x y)=x y$. Hence $A_{11}^{2} \subset A_{11}$. To prove that $A_{11} A_{10} \subset A_{10}$ and $A_{10} A_{11}=0$, we consider $x \in A_{11}$ and $y \in A_{10}$. Thus $e x=x e=x, e y=y$ and $y e=0$. Since $(y, e, x)=(e, y, x)$, then $e(y x)=2 y x$. But we know that the characteristic roots of L_{e} are 1 and 0 , and so $e(y x)=2 y x$ implies that $y x=0$. Therefore $A_{10} A_{11}=0$. Now $(x, e, y)=(e, x, y)$ implies $e(x y)=x y$. Replacing z by e in (3) and since $y x=0, e(x y)=x y$, we get $(x y) e=0$. Therefore we conclude that $A_{11} A_{10} \subset A_{10}$.

To prove that $A_{11} A_{01} \subset A_{00}$ and $A_{01} A_{11} \subset A_{01}+A_{11} A_{01} \subset A_{01}+A_{00}$, we consider $x \in A_{11}$ and $y \in A_{01}$. Thus $e x=x e=x, e y=0$ and $y e=y$. Now $(e, x, y)=(x, e, y)$ implies $e(x y)=0$, and $(e, y, x)=(y, e, x)$ implies $e(y x)=0$. Replacing z by e in (3) we get $(x y) e=0$, and replacing z by e, x by y, y by x in (3), we obtain $y x=(y x) e+x y$. We note that $0=e(y x)=$ $e((y x) e+x y)=e((y x) e)$ and $(y x) e=((y x) e+x y) e=((y x) e) e$, which implies that $(y x) e \in A_{01}$. With the above results we get that $A_{11} A_{01} \subset A_{00}$ and $A_{01} A_{11} \subset A_{01}+A_{11} A_{01} \subset A_{01}+A_{00}$. In a similar form, it is possible to prove the relations of the remaining cases.

Lemma 2.5 Let A be a finite-dimensional power-associative algebra, $e \in A$ an idempotent and $A=A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$. Then e is principal idempotent of A if and only if the subalgebra A_{00} is a nilalgebra.

Proof Suppose that $e \in A$ is a principal idempotent. If A_{00} is not a nilalgebra, then there exists an idempotent $u \in A_{00}$. Since $e \in A_{11}$ and $A_{11} A_{00}=0$, we obtain that $e u=u e=0$, which is a contradiction. Conversely, suppose that
A_{00} is a nilalgebra. If $e \in A$ is not a principal idempotent, then there exists an idempotent $u \in A$ such that $e u=u e=0$. We consider $u=u_{11}+u_{10}+u_{01}+u_{00}$ where $u_{i j} \in A_{i j}$ with $i, j \in\{0,1\}$. Now $0=e u=u_{11}+u_{10}$ and $0=u e=$ $u_{11}+u_{01}$ imply $u_{11}=u_{10}=u_{01}=0$, and so $u=u_{00} \in A_{00}$, a contradiction.

Proposition 2.6 If A is a power-associative algebra, $e \in A$ an idempotent and $A=A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, then the subspace $B=\left(A_{10} A_{01}+A_{00} A_{10}\right)+A_{10}+$ $A_{01}+\left(A_{01} A_{10}+A_{11} A_{01}\right)$ is an ideal of A.
Proof We consider $u_{i j}$ in $A_{i j}$ with $i, j \in\{0,1\}$. We will prove that for all $i, j \in\{0,1\}, A_{i j}\left(A_{10} A_{01}\right)$ and $\left(A_{10} A_{01}\right) A_{i j}$ are subsets of B. Using the relations of proposition 2.4, we obtain that: $\left(u_{11}, u_{01}, u_{10}\right)=\left(u_{11} u_{01}\right) u_{10}-$ $u_{11}\left(u_{01} u_{10}\right) \in A_{00} A_{10}+A_{11} A_{00}=A_{00} A_{10}$ and $\left(u_{01}, u_{10}, u_{11}\right)=\left(u_{01} u_{10}\right) u_{11}-$ $u_{01}\left(u_{10} u_{11}\right)=0$. Now using (3), we get $\left(u_{11}, u_{10}, u_{01}\right)=-\left(u_{11}, u_{01}, u_{10}\right)-$ $\left(u_{01}, u_{10}, u_{11}\right) \in A_{00} A_{10} \subset B$, which implies that $u_{11}\left(u_{10} u_{01}\right)-\left(u_{11} u_{10}\right) u_{01} \in$ B. Hence $u_{11}\left(u_{10} u_{01}\right) \in B$, and so $A_{11}\left(A_{10} A_{01}\right) \subset B$. Since $\left(u_{10}, u_{01}, u_{11}\right)=$ $\left(u_{01}, u_{10}, u_{11}\right)=0$, then $\left(u_{10} u_{01}\right) u_{11}=u_{10}\left(u_{01} u_{11}\right) \in A_{10} A_{01}+A_{10} A_{00} \subset$ $A_{10} A_{01}+A_{00} A_{10}+A_{10} \subset B$, and thus $\left(A_{10} A_{01}\right) A_{11} \subset B$.

Now $A_{10}\left(A_{10} A_{01}\right) \subset A_{10} A_{11}=0,\left(A_{10} A_{01}\right) A_{10} \subset A_{11} A_{10} \subset A_{10} \subset B$, $A_{01}\left(A_{10} A_{01}\right) \subset A_{01} A_{11} \subset A_{01}+A_{11} A_{01} \subset B,\left(A_{10} A_{01}\right) A_{01} \subset A_{11} A_{01} \subset$ B and $A_{00}\left(A_{10} A_{01}\right)=\left(A_{10} A_{01}\right) A_{00}=0$. Similarly, it is possible to prove that the subspaces $A_{i j}\left(A_{00} A_{10}\right),\left(A_{00} A_{10}\right) A_{i j}, A_{i j} A_{10}, A_{10} A_{i j}, A_{i j} A_{01}, A_{01} A_{i j}$, $A_{i j}\left(A_{01} A_{10}\right),\left(A_{01} A_{10}\right) A_{i j}, A_{i j}\left(A_{11} A_{01}\right)$ and $\left(A_{11} A_{01}\right) A_{i j}$ are subsets of B. Therefore we conclude that B is an ideal of A.

Corolario 2.7 If A is of finite-dimensional simple power-associative algebra with idempotent $e \neq 1$ and $A=A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$ is the Peirce decomposition of A relative to e, then $A_{11}=A_{10} A_{01}+A_{00} A_{10}$ and $A_{00}=A_{01} A_{10}+A_{11} A_{01}$.
Proof By proposition 2.6, we know that $B=\left(A_{10} A_{01}+A_{00} A_{10}\right)+A_{10}+$ $A_{01}+\left(A_{01} A_{10}+A_{11} A_{01}\right)$ is an ideal of A. Since A is a simple algebra, then we must to have that either $B=0$ or $B=A$. If $B=0$ then $A=A_{11} \oplus A_{00}$, and $A^{2}=A$ implies $A_{11}^{2}=A_{11}$ and $A_{00}^{2}=A_{00}$. Since by hypothesis $e \neq 1$, then $A_{00} \neq 0$. Moreover in this case A_{00} is an ideal of A, and so $A_{00}=A$, a contradiction. Therefore $B=A$ which implies that $A_{11}=A_{10} A_{01}+A_{00} A_{10}$ and $A_{00}=A_{01} A_{10}+A_{11} A_{01}$.

Proposition 2.8 If A is a power-associative algebra and I is and ideal of A, then I^{2} is an ideal of A.
Proof We consider x, y in I and $z \in A$. Now $(z, x, y)=(x, z, y)$ implies $z(x y) \in I^{2}$. Since $(x, z, y),(y, z, x)$ are elements in I^{2}, then using (2) we get $(x, y, z) \in I^{2}$, which implies that $(x y) z \in I^{2}$.

Proposition 2.9 Let A be a finite-dimensional power-associative algebra over K of characteristic 0 . If x is nilpotent, then R_{x} is nilpotent.

Proof Since the identity $(y, z, x)=(z, y, x)$ is valid in A, then:

$$
\begin{equation*}
R_{x} L_{y}-L_{y} R_{x}=R_{x} R_{y}-R_{y x} \tag{4}
\end{equation*}
$$

for all $x, y \in A$. Now as $\operatorname{trace}\left(R_{x} L_{y}\right)=\operatorname{trace}\left(L_{y} R_{x}\right)$, we obtain that $\operatorname{trace}\left(R_{x} R_{y}\right)=$ $\operatorname{trace}\left(R_{y x}\right)$ for all $x, y \in A$. We will prove that $\operatorname{trace}\left(R_{x}^{n} R_{y}\right)=\operatorname{trace}\left(R_{R_{x}^{n}(y)}\right)$ for all $n \geq 1$. Suppose that $\operatorname{trace}\left(R_{x}^{n} R_{y}\right)=\operatorname{trace}\left(R_{R_{x}^{n}(y)}\right)$ for all $x, y \in A$. We observe that $\operatorname{trace}\left(R_{x}^{n} R_{x} L_{y}\right)=\operatorname{trace}\left(R_{x}\left(R_{x}^{n} L_{y}\right)\right)=\operatorname{trace}\left(R_{x}^{n} L_{y} R_{x}\right)$. Therefore using (4) and the inductive hypothesis we get that $\operatorname{trace}\left(R_{x}^{n+1} R_{y}\right)=$ $\operatorname{trace}\left(R_{x}^{n} R_{y x}\right)=\operatorname{trace}\left(R_{R_{x}^{n}(y x)}\right)$, as desired. Now it is clear that $\operatorname{trace}\left(R_{x}^{m}\right)=$ $\operatorname{trace}\left(R_{x^{m}}\right)$ for all $m \geq 1$. Since there exists $n \geq 1$ such that $x^{n}=0$, then for all $i \geq 1$ we have $\operatorname{trace}\left(\left(R_{x}^{n}\right)^{i}\right)=0$, which implies that R_{x}^{n} is nilpotent. Clearly we get that R_{x} is nilpotent.

We consider the algebra A^{+}, with multiplication defined by $x \cdot y=\frac{1}{2}(x y+y x)$ for x, y in A. It is known that when A is power-associative, then A^{+}is a commutative power-associative algebra.

Proposition 2.10 If A is a power-associative algebra, then the following conditions are equivalent:
(a) A^{+}is a Jordan algebra.
(b) $R_{x} R_{x^{2}}=R_{x^{2}} R_{x}$ for all $x \in A$.

Proof We note first that $\left(x, x^{2}, y\right)=\left(x^{2}, x, y\right)$ implies $x\left(x^{2} y\right)=x^{2}(x y)$, that is $L_{x} L_{x^{2}}=L_{x^{2}} L_{x}$. If (a) is valid, then $(x \cdot x) \cdot(y \cdot x)=((x \cdot x) \cdot y) \cdot x$ for all $x, y \in A$, which implies that $x^{2}(y x)+x^{2}(x y)+(y x) x^{2}+(x y) x^{2}=$ $x\left(x^{2} y\right)+x\left(y x^{2}\right)+\left(x^{2} y\right) x+\left(y x^{2}\right) x$. Hence $L_{x^{2}} R_{x}+L_{x^{2}} L_{x}+R_{x^{2}} R_{x}+R_{x^{2}} L_{x}=$ $L_{x} L_{x^{2}}+L_{x} R_{x^{2}}+R_{x} L_{x^{2}}+R_{x} R_{x^{2}}$. Since $L_{x} L_{x^{2}}=L_{x^{2}} L_{x}$ and replacing $L_{x^{2}} R_{x}=$ $R_{x} L_{x^{2}}-R_{x} R_{x^{2}}+R_{x^{3}}$ and $L_{x} R_{x^{2}}=R_{x^{2}} L_{x}-R_{x^{2}} R_{x}+R_{x^{3}}$ in this last relation, we obtain (b). It is easy to prove that (b) implies (a).

Proposition 2.11 Let A be a finite-dimensional power-associative algebra over K of characteristic $0, e \in A$ an principal idempotent and we consider $\omega: A \rightarrow K$ defined by $\omega(x)=\operatorname{trace}\left(R_{x}\right)$, which clearly is a linear map. If $\operatorname{Ker}(\omega)$ is a subalgebra of A, then A is a baric algebra.
Proof We note that $\omega(e)=\operatorname{trace}\left(R_{e}\right)=\operatorname{dim}_{K}\left(A_{11}\right)+\operatorname{dim}_{K}\left(A_{10}\right) \neq 0$, and so $A=\operatorname{Ke} \oplus \operatorname{Ker}(\omega)$. To prove that $\operatorname{Ker}(\omega)$ is an ideal of A, we consider $x \in \operatorname{Ker}(\omega)$. Thus $\operatorname{trace}\left(R_{x}\right)=0$. Let $x=x_{11}+x_{10}+x_{01}+x_{00} \in A_{11} \oplus$ $A_{10} \oplus A_{01} \oplus A_{00}$. Since x_{10}, x_{01} and x_{00} are nilpotent (By Lemma 2.5, A_{00} is a nilalgebra), then proposition 2.9 implies that $\operatorname{trace}\left(R_{x}\right)=\operatorname{trace}\left(R_{x_{11}}\right)=0$. Using (4) we get that $\operatorname{trace}\left(R_{e} R_{x}\right)=\operatorname{trace}\left(R_{e x}\right)=\operatorname{trace}\left(R_{x_{11}}\right)+\operatorname{trace}\left(R_{x_{10}}\right)=$ $\operatorname{trace}\left(R_{x_{11}}\right)=0$. We conclude that $\omega(e x)=0$, and thus ex $\in \operatorname{Ker}(\omega)$. Similarly, it is possible to prove that $x e \in \operatorname{Ker}(\omega)$, and therefore $\operatorname{Ker}(\omega)$ is an ideal of
A. Finally, since $e=e^{2} \in A^{2}$ and $e \notin \operatorname{Ker}(\omega)$, we conclude that A is a baric algebra.

References

[1] A. A. Balinskii and S. P. Novikov, Poisson brackets of hydrodynamic type, Forbenius algebras and Lie algebras, Dokl. Akad. Nauk SSSR 283 (1985), 1036-1039; English transl. Soviet Math. Dokl. 32(1) (1985), 228-231.
[2] V. P. Cherkashin, Left-symmetric algebras with commuting right multiplications (Russian), Vestnik Moscov. Univ. Ser. I. Mat. Mekh., 5 (1988), 47-50.
[3] V. T. Filippov, A class of simple nonassociative algebras, Mat. Zametki, 45 (1989), 101-105.
[4] J. M. Osborn, Novikov Algebras, Nova Journal of Algebras and Geometry, 1 (1992), 1-14.
[5] J. M. Osborn, Simple algebras with an idempotent, Comm. Algebra 20(9) (1992), 2729-2753.
[6] J. M. Osborn, Infinite dimensional Novikov algebras of characteristic 0, J. Algebra 167 (1994), 146-167.
[7] R. D. Schafer, "An Introduction to Nonassociative Algebras", Academic Press, New York/London, 1966.
[8] E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340-403.
[9] E. I. Zelmanov, On a class of local translation invariant Lie algebras, Soviet Math. Dokl. 35 (1987), 216-218. English transl. Soviet Math. Dokl. 35 (1987), 216-218.
[10] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, "Rings That Are Nearly Associative", Academic Press, New York/London, 1992.

