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Abstract

In this work we study left-symmetric algebra over a field K with
characteristic # 2, which are power-associative algebras.

1. PRELIMINARIES

Let A be a nonassociative algebra over a field K. We call A left-symmetric
algebra if it satisfies the identity:

(x,y, Z) = (y,x,z) (1)

where (x,y,2) = (zy)z — x(yz). Right-symmetric algebras are defined by the
identity (x,y,2) = (x,z,y). Right-symmetric algebras are sometimes called
Vinberg-algebras (see, [8]).

If A is a left-symmetric algebra, then A is a left Novikov algebra if the iden-
tity (zy)z = (xz)y is validin A. We call A right Novikov algebra it the identities
(z,y,2) = (z,2,y) and z(yz) = y(xz) are valid in A. Right Novikov algebras
were introduced by Balinskii and Novikov in [1], and have also been studied
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by Zelmanov [9] and Fillipov [3]. Left Novikov algebras were investigated by
Cherkashin [2] and Osborn [4], [5], [6].

We define the right principal powers of x € A by 2! = z and z"*! = 2"z
for all n» > 1. An element x € A is called right nilpotent if there exists n > 1
such that ™ = 0, and x € A is called right nilpotent with right nilindex n > 2
if 2" = 0 and 2"~ # 0. If any element in A is right nilpotent, then A is called
a right nilalgebra. A is called a right nilalgebra with right nilindex n > 2 if
2™ = 0 for all x € A and there exists y € A such that y"~1 # 0. It is known
that A is a power-associative algebra if for all x € A we have z'z? = 217 for
all i, 7 > 1. A is a flexible algebra, if (z,y,2) =0 for all x, y € A. A is a right
alternative algebra, if (y,x,z) = 0 for all z, y € A. Similarly, we define left
alternative algebra.

If B, D are subspaces of A then BD is the subspace of A spanned by all
products bd with b in B, d in D. We define the right principal powers of B by
B! = B and B"*! = B"B for all n > 1. If there exists an element k& > 1 such
that B¥ = 0 then B is called right nilpotent.

A is called nilpotent if for some integer positive n the product of any n
elements from the algebra A, with any arrangement of parentheses, equals
Z€ero.

An element e of A is called an idempotent in case e = e # 0. An idempotent
e € A is called principal in case there is no idempotent u € A such that
eu = ue = 0.

2. POWER-ASSOCIATIVE LEFT-SYMMETRIC
ALGEBRAS

In this section, A is a left-symmetric algebra over a field K with characteristic
# 2. It is known that when A is a commutative algebra, then A is associative.
Also it is known that, left-symmetric algebras are Lie-admissibbe, i.e., under
the commutator [a, b] = ab — ba, we obtain a Lie algebra.

Proposition 2.1 The following conditions are equivalent:

2 3 2

(a) za? =23 for all x € A, where 23 = 22z.

(b) A is a power-associative algebra.
Proof Suppose that (a) is valid. That is, z2? = 2%z for all x € A. The
linearized form of the identity zx? = 2%z is (x,2,y) + (z,2,9) + (2,9, 2) +

(z,y,7) + (y,z,2) + (y,2,2) = 0. Using this last relation and since A is a
left-symmetric algebra, we obtain that the following identities are valid in A :

(x,z,y)+(x,y,z)+(y,z,x):O (2)

(x,y,z)+(z,x,y)+(z,y,x):O (3)
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For x € A, we will prove first that zaz" = z"*! for all n > 1, where
2"t = g"z. We consider n > 2 and suppose that za* = z**! for all k with
1<k<n.

Replacing z by =, y by 2"~ in (2) and using the inductive hypothesis

we obtain that 2" 12? = 222"~!. Now (z,22, 2" 1) = (22,2, 2" !) implies

.73(.732.73”_1) — .732.23”,

(z" Y 2, 1) = (x, 2" L, x) implies 2"~ '2? = za™ = 2", and (z,2",2) =
(z™, z, ) implies 2" ! = 222, Thus we get z2" ! = z(z"122) = z(222" 1) =
222", which implies that z2"T! = 2"2? = 222". Replacing z by z and y by
2™ in (2), we obtain that zz" ! = 2" 1. So we prove that zz™ = 2" for all
n > 1.

Finally we will prove that x’z/ = 2°%J for all4,j > 1.If j = 1, then we know
that 2’z = 2+, If we suppose that z'z? = 27, then (2%, x,27) = (z, 2%, 27)
implies 2?27+ =zt = 2+ Tt is clear that (b) implies (a).

Proposition 2.2 The following conditions are equivalent:
(a) A is a right alternative algebra.

)
(b) A is a flexible algebra.

(¢) A is a left alternative algebra.
(d)

d) A is a associative algebra.

Proof Since (z,y,z) = (y,x,x) forall z, y € A, then (a) and (b) are equivalent.
We observe that if (a), (b) or (¢) are valid, then by proposition 2.1, A is a power-
associative algebra.

Replacing z by y and y by x in (3), we obtain that 2(y, z,x) = —(x, z, y).
Thus clearly (a) and (¢) are equivalent. Suppose that A is flexible. The lin-
earized form of the flexible law is (z,y, 2) + (z,y,2) = 0 for all z, y, z in A.
Using the identity (3) we obtain that (z,z,y) = 0 for all z, y, z in A, and
therefore A is a associative algebra. Finally we conclude that (a), (b), (¢) and
(d) are equivalent.

Proposition 2.3 If A is a power-associative algebra, which contains an idem-
potent e #£ 0, then A is the vector space direct sum A = A11® A19 D Ap1 ® Aoo,
where Aju ={x€A/ex=xe=z}, Ajp={x€A/ex=ux ze=0},
Apn={zxz€A/ex=0,ze=x2} and Agp={x€A/ex=2e=0 }.

Proof Replacing z by e and y by e in (3), we get $(L2 — L) = R? — R.,
and therefore Lo(R? — R.) = (R? — R¢)L.. Now (z,e,e) = (e, z,¢e) implies
LeRe = ReLe+ Re — R2. We have Lo(R2 — R,) = (LeRe)Re — LeRe = (Re Lo +
Re — R))R, — LeRe = ReLoRe + R2 — R? — L.R. = Ro(ReLe + Re — R?) +
R~ R®— L.R. = R2L. + 2R? — 2R® — (RoLe + Re — R?) = R?L. — R.L. —
2R3+ 3R%? — R. = (R? — R.) L., which implies that 2R> — 3R? 4+ R, = 0. That
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is, f(Re) = 0 where f(\) = (A — 1)(2\ — 1)A. Hence A is the vector space
direct sum A = Uy @ Uy ® Uy, where Uy = {z € A Jze =2 }, Uy ={
v €A /ze=73x}and Uy ={zec A/ xe=0} We wil prove that
Uy = 0. We consider y € Uy and ey = yo. Now L? — L, = 2(R? — R.) implies
eyo = yo — 3y and (e, y,€) = (y, e, e) implies yoe = 3yo — 7y. Using the above
results we have that (e,yo,€) = (yo, e, €) implies y = 2yg. Therefore ype = 0
and y = 2ye = 4yge = 0. Hence we prove that U% =0, and thus A = Uy & Up.
We obtain now that R? = R., L? = L. and L.R. = R.L. ( i.e., L. and R,
are commuting projections ). It follows that A is the vector space direct sum
A= All ® AlO ® AOl &) A()(), where Al'j = { Tij / €T = ixij, Tij€ = jxij}, i,
j€{0,1}.

Proposition 2.4 If A is a power-associative algebra, e € A an idempotent and
A= A1 ® Ao @ Aor @ Ago, then: Afl C Ap1, A11Arg C Agg, A1 =0,
A1 401 C Ago, Ao1A1r C Agr + A11Ao1 C Aor + Aoo, A11Aoo = AgoA11 =0,
A3y =0, AjpAo1 C Ar1, AoiAio C Ao, AooAro C A1, A1gAoo C AgoAio +
A10 C Ay + AlO, A(Q)l =0, A01A00 =0, A00A01 C A01 and A(Q]O C A()()-

Proof For to prove that A%l C A1, we consider x, y € Ay;. Thusexr = xe = x
and ey = ye = y. Replacing z by e in (2), we obtain (zy)e = zy, and (z,e,y) =
(e,x,y) implies e(zy) = xy. Hence A2, C Aj;. To prove that A;3A19 C Agp
and AjgA1; = 0, we consider x € Ay; and y € Ajg. Thusex =zxe=x, ey =y
and ye = 0. Since (y,e,x) = (e,y, z), then e(yz) = 2yx. But we know that the
characteristic roots of L. are 1 and 0, and so e(yz) = 2yz implies that yx = 0.
Therefore A1gA11 = 0. Now (z,¢,y) = (e, z,y) implies e(zy) = xy. Replacing
z by e in (3) and since yx = 0, e(zy) = zy, we get (zy)e = 0. Therefore we
conclude that A1 419 C Aio.

To prove that A11A01 C AOO and A01A11 C A01 + A11A01 C A01 + A()(),
we consider x € Aj; and y € Apy. Thus ex = ze = z, ey = 0 and ye = y.
Now (e,z,y) = (x,e,y) implies e(zy) = 0, and (e,y,x) = (y,e,x) implies
e(yz) = 0. Replacing z by e in (3) we get (zy)e = 0, and replacing z by e, z
by y, y by x in (3), we obtain yx = (yx)e + zy. We note that 0 = e(yx) =
e((yz)e + zy) = e((yx)e) and (yx)e = ((yx)e + xzy)e = ((yx)e)e, which implies
that (yx)e € Ap;. With the above results we get that Ay1A4¢91 C Agy and
A01A11 C A()l + A11A01 C A()l + AOO- In a similar form, it is possible to prove
the relations of the remaining cases.

Lemma 2.5 Let A be a finite-dimensional power-associative algebra, e € A an
idempotent and A = Ay1 ® A10 D A1 @© Ago- Then e is principal idempotent of
A if and only if the subalgebra Ay is a nilalgebra.

Proof Suppose that e € A is a principal idempotent. If Agg is not a nilalgebra,
then there exists an idempotent u € Agg. Since e € A1 and A1 499 = 0, we
obtain that eu = ue = 0, which is a contradiction. Conversely, suppose that
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Agp is a nilalgebra. If e € A is not a principal idempotent, then there exists an
idempotent u € A such that eu = ue = 0. We consider u = w11 +u10 +uo1 + oo
where u;; € A;; with 4,5 € {0,1}. Now 0 = eu = w11 + uip and 0 = we =
u11 + up1 imply w11 = u1g = up1 = 0, and so u = ugg € Ago, a contradiction.

Proposition 2.6 If A is a power-associative algebra, e € A an idempotent and
A= A1 P AP Ao D Ao, then the subspace B = (A10A01 —|—AO0A10) + Ao+
A()l + (AOlAlO + A11A01) s an ideal Of A.

Proof We consider u;; in A;; with ¢,7 € {0,1}. We will prove that for all
i, € {0,1}, A;;(A10401) and (A19Ao1)A;jare subsets of B. Using the re-

lations of proposition 2.4, we obtain that: (ui1,uo1,u10) = (w11u01)U10 —
un(umulo) € AgoAig + A11Agy = AgoAig and (u01, Uu10, un) = (u01u10)u11 -
’(1,01(’(1,10’(1,11) = 0. Now using (3), we get (un,ulo,um) = —(un,um,ulo) —

(’U,Ql, Uu10, 'Ufll) S A00A10 C B, which implies that un(uloum) - (’(1,11’(1,10)’(1,01 S
B. Hence un(uloum) [S B, and so All(A10A01) C B. Since (ulo,um,un) =
(uo1,u10,u11) = 0, then (uiouor)uir = wio(uoru1r) € Aigdor + Aol C
Aq19A01 + AgoAig + Ap C B, and thus (A10A01)A11 C B.

Now A1(A10401) C Arodrr = 0, (A10Ao1)Ar0 C A11Aig C Ao C B,
Ao1(A10401) C AptAnn C Aor + A1iAor C B, (A10do1)Aor C Apidor C
B and AOO(AlOAOl) = (AlOAOl)AOO = 0. Slmllarly, it is possible to prove
that the subspaces Al'j (AOOAl()), (A()OAlO)Al'j, Al'jAl(), AlOAij, AijAOla AOlAij;
Aij(AOlAlO); (AOlAlO)Aij; Aij(AllAOl) and (A11A01)A1'j are subsets Of B.
Therefore we conclude that B is an ideal of A.

Corolario 2.7 If A is of finite-dimensional simple power-associative algebra
with idempotent e £ 1 and A = A11DA10BAg1DAgo is the Peirce decomposition
OfA relative to e, then A1 = A19Ao1 + AgoAig and Agg = Ag1 Ao + A11401-

Proof By proposition 2.6, we know that B = (Aj0do1 + AooAio) + A1o +
Ao1 + (Ap1A10 + A11401) is an ideal of A. Since A is a simple algebra, then
we must to have that either B =00or B = A. If B =0 then A = A1 ® Aqp,
and A? = A implies A?, = Ay; and A3, = Ago. Since by hypothesis e # 1,
then Agp # 0. Moreover in this case Agg is an ideal of A, and so Agy = 4, a
contradiction. Therefore B = A which implies that Ay1 = A194p1 + AgoAio
and Ao = Ao1A10 + A11401.

Proposition 2.8 If A is a power-associative algebra and I is and ideal of A,
then I? is an ideal of A.

Proof We consider z, y in I and z € A. Now (2,z,y) = («,z,y) implies
z(xy) € I%. Since (x,2,y), (y, 2, 2) are elements in I2, then using (2) we get
(x,y,2) € I?, which implies that (zy)z € I°.

Proposition 2.9 Let A be a finite-dimensional power-associative algebra over
K of characteristic 0. If x is nilpotent, then R, is nilpotent.
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Proof Since the identity (y, z,x) = (z,y, x) is valid in A, then:
R,L, — LyR,=R,R, — Ry, 4)

forallz, y € A. Now as trace(RyLy) = trace(LyR;), we obtain that trace(R; R,) =
trace(Ry,) for all z, y € A. We will prove that trace(RyR,) = trace(Rpn(y))

for all n > 1. Suppose that trace(R}R,) = trace(Rgn(y)) for all z, y € A. We
observe that trace(RIR;L,) = trace(Ry(R}Ly)) = trace(R}LyR,). There-
fore using (4) and the inductive hypothesis we get that trace(R"™'R,) =
trace(Ry Ry.) = trace(RRn(ye)), as desired. Now it is clear that trace(Rj') =
trace(R,m) for all m > 1. Since there exists n > 1 such that 2™ = 0, then for

all i > 1 we have trace((R?)?) = 0, which implies that R” is nilpotent. Clearly

we get that R, is nilpotent.

We consider the algebra A1, with multiplication defined by z-y = %(xy+yx)
for x, y in A. It is known that when A is power-associative, then AT is a
commutative power-associative algebra.

Proposition 2.10 If A is a power-associative algebra, then the following
conditions are equivalent:

(a) AT is a Jordan algebra.

(b) RyRy2 = Ry2R, for all x € A.

Proof We note first that (x,2%,y) = (2% z,y) implies z(2%y) = z2(zy),
that is LyLy2 = Ly2Ly. If (a) is valid, then (- 2)- (y-2) = ((z - z) - y) -
for all #, y € A, which implies that z2(yx) + z2(xy) + (yz)z? + (zy)z? =
x(2?y) + 2(yz?) + (2%y)x + (yz?)z. Hence L2 Ry + Ly2 Ly + Ryp2 Ry + Ry2 Ly =
Lyl 2+L,Ry2+R;L,2+R,R,2. Since L, L,2 = L,2L, and replacing L2 R, =
R,L,>—R,R,2+ R,s and L,R,> = R;2L, — R;2 R, + R,s in this last relation,
we obtain (b). It is easy to prove that (b) implies (a).

Proposition 2.11 Let A be a finite-dimensional power-associative algebra
over K of characteristic 0, e € A an principal idempotent and we consider
w : A — K defined by w(z) = trace(R,), which clearly is a linear map. If
Ker(w) is a subalgebra of A, then A is a baric algebra.

Proof We note that w(e) = trace(R.) = dimg (A11) + dimg (A1) # 0, and
so A = Ke ® Ker(w). To prove that Ker(w) is an ideal of A, we consider
z € Ker(w). Thus trace(R;) = 0. Let x = x11 + 210 + ®o1 + Too € A11 &
A0 ® Ao1 @ Ago- Since z19, 21 and xgo are nilpotent (By Lemma 2.5, Ay is
a nilalgebra), then proposition 2.9 implies that trace(R;) = trace(R,,,) = 0.
Using (4) we get that trace(ReRy) = trace(Rey) = trace(Ry,, ) +trace(Ry,,) =
trace(R,,,) = 0. We conclude that w(ex) = 0, and thus ex € Ker(w). Similarly,
it is possible to prove that ze € Ker(w), and therefore Ker(w) is an ideal of
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A. Finally, since e = ¢? € A% and e ¢ Ker(w), we conclude that A is a baric
algebra.
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