A NOTE ON LEFT SYMMETRIC ALGEBRAS

Raúl Benavides[†], Cristián Mallol[‡] and Avelino Suazo^{*}

[†] Departamento de Matemática, Universidad de La Frontera Casilla 54-D, Temuco, Chile e-mail: rbenavid@ufro.cl

[‡] Departamento de Ingeniería Matemática, Universidad de La Frontera Casilla 54-D, Temuco, Chile e-mail: cmallol@ufro.cl

* Departamento de Matemática, Universidad de La Serena Cisternas 1200, La Serena, Chile e-mail: asuazo@userena.cl

Abstract

In this work we study left-symmetric algebra over a field K with characteristic $\neq 2$, which are power-associative algebras.

1. PRELIMINARIES

Let A be a nonassociative algebra over a field K. We call A left-symmetric algebra if it satisfies the identity:

$$(x, y, z) = (y, x, z) \tag{1}$$

where (x, y, z) = (xy)z - x(yz). Right-symmetric algebras are defined by the identity (x, y, z) = (x, z, y). Right-symmetric algebras are sometimes called Vinberg-algebras (see, [8]).

If A is a left-symmetric algebra, then A is a left Novikov algebra if the identity (xy)z = (xz)y is valid in A. We call A right Novikov algebra it the identities (x, y, z) = (x, z, y) and x(yz) = y(xz) are valid in A. Right Novikov algebras were introduced by Balinskii and Novikov in [1], and have also been studied

This article was supported by Fondecyt-Lineas Complementarias Grant $\rm N^0$ 8990001, and the third author by CNPq-Brazil Grant 300645/93-7.

Key words and phrases: Vinberg and Novikov Algebras. (2000) Mathematics Subject Classification: 17A30

²⁰⁰⁰⁾ Mathematics Subject Classification: 17A30

by Zelmanov [9] and Fillipov [3]. Left Novikov algebras were investigated by Cherkashin [2] and Osborn [4], [5], [6].

We define the right principal powers of $x \in A$ by $x^1 = x$ and $x^{n+1} = x^n x$ for all $n \ge 1$. An element $x \in A$ is called right nilpotent if there exists $n \ge 1$ such that $x^n = 0$, and $x \in A$ is called right nilpotent with right nilindex $n \ge 2$ if $x^n = 0$ and $x^{n-1} \ne 0$. If any element in A is right nilpotent, then A is called a right nilalgebra. A is called a right nilalgebra with right nilindex $n \ge 2$ if $x^n = 0$ for all $x \in A$ and there exists $y \in A$ such that $y^{n-1} \ne 0$. It is known that A is a power-associative algebra if for all $x \in A$ we have $x^i x^j = x^{i+j}$ for all $i, j \ge 1$. A is a flexible algebra, if (x, y, x) = 0 for all $x, y \in A$. A is a right alternative algebra, if (y, x, x) = 0 for all $x, y \in A$. Similarly, we define left alternative algebra.

If B, D are subspaces of A then BD is the subspace of A spanned by all products bd with b in B, d in D. We define the right principal powers of B by $B^1 = B$ and $B^{n+1} = B^n B$ for all $n \ge 1$. If there exists an element $k \ge 1$ such that $B^k = 0$ then B is called right nilpotent.

A is called nilpotent if for some integer positive n the product of any n elements from the algebra A, with any arrangement of parentheses, equals zero.

An element e of A is called an idempotent in case $e^2 = e \neq 0$. An idempotent $e \in A$ is called principal in case there is no idempotent $u \in A$ such that eu = ue = 0.

2. POWER-ASSOCIATIVE LEFT-SYMMETRIC ALGEBRAS

In this section, A is a left-symmetric algebra over a field K with characteristic $\neq 2$. It is known that when A is a commutative algebra, then A is associative. Also it is known that, left-symmetric algebras are Lie-admissible, i.e., under the commutator [a, b] = ab - ba, we obtain a Lie algebra.

Proposition 2.1 The following conditions are equivalent:

- (a) $xx^2 = x^3$ for all $x \in A$, where $x^3 = x^2x$.
- (b) A is a power-associative algebra.

Proof Suppose that (a) is valid. That is, $xx^2 = x^2x$ for all $x \in A$. The linearized form of the identity $xx^2 = x^2x$ is (x, z, y) + (z, x, y) + (x, y, z) + (z, y, x) + (y, z, z) + (y, z, x) = 0. Using this last relation and since A is a left-symmetric algebra, we obtain that the following identities are valid in A:

$$(x, z, y) + (x, y, z) + (y, z, x) = 0$$
(2)

$$(x, y, z) + (z, x, y) + (z, y, x) = 0$$
(3)

R. BENAVIDES, C. MALLOL and A. SUAZO

For $x \in A$, we will prove first that $xx^n = x^{n+1}$ for all $n \ge 1$, where $x^{n+1} = x^n x$. We consider $n \ge 2$ and suppose that $xx^k = x^{k+1}$ for all k with $1 \le k \le n$.

Replacing z by x, y by x^{n-1} in (2) and using the inductive hypothesis we obtain that $x^{n-1}x^2 = x^2x^{n-1}$. Now $(x, x^2, x^{n-1}) = (x^2, x, x^{n-1})$ implies $x(x^2x^{n-1}) = x^2x^n$,

 $(x^{n-1}, x, x) = (x, x^{n-1}, x)$ implies $x^{n-1}x^2 = xx^n = x^{n+1}$, and $(x, x^n, x) = (x^n, x, x)$ implies $xx^{n+1} = x^nx^2$. Thus we get $xx^{n+1} = x(x^{n-1}x^2) = x(x^2x^{n-1}) = x^2x^n$, which implies that $xx^{n+1} = x^nx^2 = x^2x^n$. Replacing z by x and y by x^n in (2), we obtain that $xx^{n+1} = x^{n+1}x$. So we prove that $xx^n = x^{n+1}$ for all $n \ge 1$.

Finally we will prove that $x^i x^j = x^{i+j}$ for all $i, j \ge 1$. If j = 1, then we know that $x^i x = x^{i+1}$. If we suppose that $x^i x^j = x^{i+j}$, then $(x^i, x, x^j) = (x, x^i, x^j)$ implies $x^i x^{j+1} = x x^{i+j} = x^{i+j+1}$. It is clear that (b) implies (a).

Proposition 2.2 The following conditions are equivalent:

- (a) A is a right alternative algebra.
- (b) A is a flexible algebra.
- (c) A is a left alternative algebra.
- (d) A is a associative algebra.

Proof Since (x, y, x) = (y, x, x) for all $x, y \in A$, then (a) and (b) are equivalent. We observe that if (a), (b) or (c) are valid, then by proposition 2.1, A is a powerassociative algebra.

Replacing z by y and y by x in (3), we obtain that 2(y, x, x) = -(x, x, y). Thus clearly (a) and (c) are equivalent. Suppose that A is flexible. The linearized form of the flexible law is (x, y, z) + (z, y, x) = 0 for all x, y, z in A. Using the identity (3) we obtain that (z, x, y) = 0 for all x, y, z in A, and therefore A is a associative algebra. Finally we conclude that (a), (b), (c) and (d) are equivalent.

Proposition 2.3 If A is a power-associative algebra, which contains an idempotent $e \neq 0$, then A is the vector space direct sum $A = A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, where $A_{11} = \{ x \in A \mid ex = xe = x \}$, $A_{10} = \{ x \in A \mid ex = x, xe = 0 \}$, $A_{01} = \{ x \in A \mid ex = 0, xe = x \}$ and $A_{00} = \{ x \in A \mid ex = xe = 0 \}$.

Proof Replacing x by e and y by e in (3), we get $\frac{1}{2}(L_e^2 - L_e) = R_e^2 - R_e$, and therefore $L_e(R_e^2 - R_e) = (R_e^2 - R_e)L_e$. Now (z, e, e) = (e, z, e) implies $L_eR_e = R_eL_e + R_e - R_e^2$. We have $L_e(R_e^2 - R_e) = (L_eR_e)R_e - L_eR_e = (R_eL_e + R_e - R_e^2)R_e - L_eR_e = R_eL_eR_e + R_e^2 - R_e^3 - L_eR_e = R_e(R_eL_e + R_e - R_e^2) + R_e^2 - R_e^3 - L_eR_e = R_e^2L_e + 2R_e^2 - 2R_e^3 - (R_eL_e + R_e - R_e^2) = R_e^2L_e - R_eL_e - 2R_e^3 + 3R_e^2 - R_e = (R_e^2 - R_e)L_e$, which implies that $2R_e^3 - 3R_e^2 + R_e = 0$. That is, $f(R_e) = 0$ where $f(\lambda) = (\lambda - 1)(2\lambda - 1)\lambda$. Hence A is the vector space direct sum $A = U_1 \oplus U_{\frac{1}{2}} \oplus U_0$, where $U_1 = \{ x \in A \mid xe = x \}, U_{\frac{1}{2}} = \{ x \in A \mid xe = \frac{1}{2}x \}$ and $U_0 = \{ x \in A \mid xe = 0 \}$. We will prove that $U_{\frac{1}{2}} = 0$. We consider $y \in U_{\frac{1}{2}}$ and $ey = y_0$. Now $L_e^2 - L_e = 2(R_e^2 - R_e)$ implies $ey_0 = y_0 - \frac{1}{2}y$ and (e, y, e) = (y, e, e) implies $y_0e = \frac{1}{2}y_0 - \frac{1}{4}y$. Using the above results we have that $(e, y_0, e) = (y_0, e, e)$ implies $y = 2y_0$. Therefore $y_0e = 0$ and $y = 2ye = 4y_0e = 0$. Hence we prove that $U_{\frac{1}{2}} = 0$, and thus $A = U_1 \oplus U_0$. We obtain now that $R_e^2 = R_e, L_e^2 = L_e$ and $L_eR_e = R_eL_e$ (i.e., L_e and R_e are commuting projections). It follows that A is the vector space direct sum $A = A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, where $A_{ij} = \{ x_{ij} \mid ex_{ij} = ix_{ij}, x_{ij}e = jx_{ij} \}, i, j \in \{0, 1\}.$

Proposition 2.4 If A is a power-associative algebra, $e \in A$ an idempotent and $A = A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, then: $A_{11}^2 \subset A_{11}$, $A_{11}A_{10} \subset A_{10}$, $A_{10}A_{11} = 0$, $A_{11}A_{01} \subset A_{00}$, $A_{01}A_{11} \subset A_{01} + A_{11}A_{01} \subset A_{01} + A_{00}$, $A_{11}A_{00} = A_{00}A_{11} = 0$, $A_{10}^2 = 0$, $A_{10}A_{01} \subset A_{11}$, $A_{01}A_{10} \subset A_{00}$, $A_{00}A_{10} \subset A_{11}$, $A_{10}A_{00} \subset A_{00}A_{10} + A_{10}A_{10} \subset A_{11}$, $A_{10}A_{00} \subset A_{00}A_{10} + A_{10} \subset A_{11} + A_{10}$, $A_{01}^2 = 0$, $A_{01}A_{00} = 0$, $A_{00}A_{01} \subset A_{01}$ and $A_{00}^2 \subset A_{00}$.

Proof For to prove that $A_{11}^2 \subset A_{11}$, we consider $x, y \in A_{11}$. Thus ex = xe = xand ey = ye = y. Replacing z by e in (2), we obtain (xy)e = xy, and (x, e, y) =(e, x, y) implies e(xy) = xy. Hence $A_{11}^2 \subset A_{11}$. To prove that $A_{11}A_{10} \subset A_{10}$ and $A_{10}A_{11} = 0$, we consider $x \in A_{11}$ and $y \in A_{10}$. Thus ex = xe = x, ey = yand ye = 0. Since (y, e, x) = (e, y, x), then e(yx) = 2yx. But we know that the characteristic roots of L_e are 1 and 0, and so e(yx) = 2yx implies that yx = 0. Therefore $A_{10}A_{11} = 0$. Now (x, e, y) = (e, x, y) implies e(xy) = xy. Replacing z by e in (3) and since yx = 0, e(xy) = xy, we get (xy)e = 0. Therefore we conclude that $A_{11}A_{10} \subset A_{10}$.

To prove that $A_{11}A_{01} \subset A_{00}$ and $A_{01}A_{11} \subset A_{01} + A_{11}A_{01} \subset A_{01} + A_{00}$, we consider $x \in A_{11}$ and $y \in A_{01}$. Thus ex = xe = x, ey = 0 and ye = y. Now (e, x, y) = (x, e, y) implies e(xy) = 0, and (e, y, x) = (y, e, x) implies e(yx) = 0. Replacing z by e in (3) we get (xy)e = 0, and replacing z by e, x by y, y by x in (3), we obtain yx = (yx)e + xy. We note that 0 = e(yx) =e((yx)e + xy) = e((yx)e) and (yx)e = ((yx)e + xy)e = ((yx)e)e, which implies that $(yx)e \in A_{01}$. With the above results we get that $A_{11}A_{01} \subset A_{00}$ and $A_{01}A_{11} \subset A_{01} + A_{11}A_{01} \subset A_{01} + A_{00}$. In a similar form, it is possible to prove the relations of the remaining cases.

Lemma 2.5 Let A be a finite-dimensional power-associative algebra, $e \in A$ an idempotent and $A = A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$. Then e is principal idempotent of A if and only if the subalgebra A_{00} is a nilalgebra.

Proof Suppose that $e \in A$ is a principal idempotent. If A_{00} is not a nilalgebra, then there exists an idempotent $u \in A_{00}$. Since $e \in A_{11}$ and $A_{11}A_{00} = 0$, we obtain that eu = ue = 0, which is a contradiction. Conversely, suppose that

 A_{00} is a nilalgebra. If $e \in A$ is not a principal idempotent, then there exists an idempotent $u \in A$ such that eu = ue = 0. We consider $u = u_{11} + u_{10} + u_{01} + u_{00}$ where $u_{ij} \in A_{ij}$ with $i, j \in \{0, 1\}$. Now $0 = eu = u_{11} + u_{10}$ and $0 = ue = u_{11} + u_{01}$ imply $u_{11} = u_{10} = u_{01} = 0$, and so $u = u_{00} \in A_{00}$, a contradiction.

Proposition 2.6 If A is a power-associative algebra, $e \in A$ an idempotent and $A = A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$, then the subspace $B = (A_{10}A_{01} + A_{00}A_{10}) + A_{10} + A_{01} + (A_{01}A_{10} + A_{11}A_{01})$ is an ideal of A.

Proof We consider u_{ij} in A_{ij} with $i, j \in \{0, 1\}$. We will prove that for all $i, j \in \{0, 1\}$, $A_{ij}(A_{10}A_{01})$ and $(A_{10}A_{01})A_{ij}$ are subsets of B. Using the relations of proposition 2.4, we obtain that: $(u_{11}, u_{01}, u_{10}) = (u_{11}u_{01})u_{10} - u_{11}(u_{01}u_{10}) \in A_{00}A_{10} + A_{11}A_{00} = A_{00}A_{10}$ and $(u_{01}, u_{10}, u_{11}) = (u_{01}u_{10})u_{11} - u_{01}(u_{10}u_{11}) = 0$. Now using (3), we get $(u_{11}, u_{10}, u_{01}) = -(u_{11}, u_{01}, u_{10}) - (u_{01}, u_{10}, u_{11}) \in A_{00}A_{10} \subset B$, which implies that $u_{11}(u_{10}u_{01}) - (u_{11}u_{10})u_{01} \in B$. Hence $u_{11}(u_{10}u_{01}) \in B$, and so $A_{11}(A_{10}A_{01}) \subset B$. Since $(u_{10}, u_{01}, u_{11}) = (u_{01}, u_{10}, u_{11}) = 0$, then $(u_{10}u_{01})u_{11} = u_{10}(u_{01}u_{11}) \in A_{10}A_{01} + A_{10}A_{00} \subset A_{10}A_{01} + A_{00}A_{10} + A_{10} \subset B$, and thus $(A_{10}A_{01})A_{11} \subset B$.

Now $A_{10}(A_{10}A_{01}) \subset A_{10}A_{11} = 0$, $(A_{10}A_{01})A_{10} \subset A_{11}A_{10} \subset A_{10} \subset B$, $A_{01}(A_{10}A_{01}) \subset A_{01}A_{11} \subset A_{01} + A_{11}A_{01} \subset B$, $(A_{10}A_{01})A_{01} \subset A_{11}A_{01} \subset B$ and $A_{00}(A_{10}A_{01}) = (A_{10}A_{01})A_{00} = 0$. Similarly, it is possible to prove that the subspaces $A_{ij}(A_{00}A_{10})$, $(A_{00}A_{10})A_{ij}$, $A_{ij}A_{10}$, $A_{10}A_{ij}$, $A_{ij}A_{01}$, $A_{01}A_{ij}$, $A_{ij}(A_{01}A_{10})$, $(A_{01}A_{10})A_{ij}$, $A_{ij}(A_{11}A_{01})A_{ij}$ are subsets of B. Therefore we conclude that B is an ideal of A.

Corolario 2.7 If A is of finite-dimensional simple power-associative algebra with idempotent $e \neq 1$ and $A = A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$ is the Peirce decomposition of A relative to e, then $A_{11} = A_{10}A_{01} + A_{00}A_{10}$ and $A_{00} = A_{01}A_{10} + A_{11}A_{01}$.

Proof By proposition 2.6, we know that $B = (A_{10}A_{01} + A_{00}A_{10}) + A_{10} + A_{01} + (A_{01}A_{10} + A_{11}A_{01})$ is an ideal of A. Since A is a simple algebra, then we must to have that either B = 0 or B = A. If B = 0 then $A = A_{11} \oplus A_{00}$, and $A^2 = A$ implies $A_{11}^2 = A_{11}$ and $A_{00}^2 = A_{00}$. Since by hypothesis $e \neq 1$, then $A_{00} \neq 0$. Moreover in this case A_{00} is an ideal of A, and so $A_{00} = A$, a contradiction. Therefore B = A which implies that $A_{11} = A_{10}A_{01} + A_{00}A_{10}$ and $A_{00} = A_{01}A_{10} + A_{11}A_{01}$.

Proposition 2.8 If A is a power-associative algebra and I is and ideal of A, then I^2 is an ideal of A.

Proof We consider x, y in I and $z \in A$. Now (z, x, y) = (x, z, y) implies $z(xy) \in I^2$. Since (x, z, y), (y, z, x) are elements in I^2 , then using (2) we get $(x, y, z) \in I^2$, which implies that $(xy)z \in I^2$.

Proposition 2.9 Let A be a finite-dimensional power-associative algebra over K of characteristic 0. If x is nilpotent, then R_x is nilpotent.

Proof Since the identity (y, z, x) = (z, y, x) is valid in A, then:

$$R_x L_y - L_y R_x = R_x R_y - R_{yx} \tag{4}$$

for all $x, y \in A$. Now as $trace(R_x L_y) = trace(L_y R_x)$, we obtain that $trace(R_x R_y) = trace(R_{yx})$ for all $x, y \in A$. We will prove that $trace(R_x^n R_y) = trace(R_{R_x^n}(y))$ for all $n \ge 1$. Suppose that $trace(R_x^n R_y) = trace(R_{R_x^n}(y))$ for all $x, y \in A$. We observe that $trace(R_x^n R_x L_y) = trace(R_x(R_x^n L_y)) = trace(R_x^n L_y R_x)$. Therefore using (4) and the inductive hypothesis we get that $trace(R_x^{m+1} R_y) = trace(R_x^n R_{yx}) = trace(R_x^n R_{yx}) = trace(R_x^n R_x)$, as desired. Now it is clear that $trace(R_x^m) = trace(R_x^m)$ for all $m \ge 1$. Since there exists $n \ge 1$ such that $x^n = 0$, then for all $i \ge 1$ we have $trace((R_x^n)^i) = 0$, which implies that R_x^n is nilpotent. Clearly we get that R_x is nilpotent.

We consider the algebra A^+ , with multiplication defined by $x \cdot y = \frac{1}{2}(xy+yx)$ for x, y in A. It is known that when A is power-associative, then A^+ is a commutative power-associative algebra.

Proposition 2.10 If A is a power-associative algebra, then the following conditions are equivalent:

- (a) A^+ is a Jordan algebra.
- (b) $R_x R_{x^2} = R_{x^2} R_x$ for all $x \in A$.

Proof We note first that $(x, x^2, y) = (x^2, x, y)$ implies $x(x^2y) = x^2(xy)$, that is $L_x L_{x^2} = L_{x^2} L_x$. If (a) is valid, then $(x \cdot x) \cdot (y \cdot x) = ((x \cdot x) \cdot y) \cdot x$ for all $x, y \in A$, which implies that $x^2(yx) + x^2(xy) + (yx)x^2 + (xy)x^2 = x(x^2y) + x(yx^2) + (x^2y)x + (yx^2)x$. Hence $L_{x^2}R_x + L_{x^2}L_x + R_{x^2}R_x + R_{x^2}L_x = L_x L_{x^2} + L_x R_{x^2} + R_x L_{x^2} + R_x R_{x^2}$. Since $L_x L_{x^2} = L_x L_x$ and replacing $L_x R_x = R_x L_{x^2} - R_x R_{x^2} + R_{x^3}$ and $L_x R_{x^2} = R_{x^2} L_x - R_{x^2} R_x + R_{x^3}$ in this last relation, we obtain (b). It is easy to prove that (b) implies (a).

Proposition 2.11 Let A be a finite-dimensional power-associative algebra over K of characteristic $0, e \in A$ an principal idempotent and we consider $\omega : A \to K$ defined by $\omega(x) = trace(R_x)$, which clearly is a linear map. If $Ker(\omega)$ is a subalgebra of A, then A is a baric algebra.

Proof We note that $\omega(e) = trace(R_e) = \dim_K(A_{11}) + \dim_K(A_{10}) \neq 0$, and so $A = Ke \oplus Ker(\omega)$. To prove that $Ker(\omega)$ is an ideal of A, we consider $x \in Ker(\omega)$. Thus $trace(R_x) = 0$. Let $x = x_{11} + x_{10} + x_{01} + x_{00} \in A_{11} \oplus A_{10} \oplus A_{01} \oplus A_{00}$. Since x_{10} , x_{01} and x_{00} are nilpotent (By Lemma 2.5, A_{00} is a nilalgebra), then proposition 2.9 implies that $trace(R_x) = trace(R_{x_{11}}) = 0$. Using (4) we get that $trace(R_eR_x) = trace(R_{ex}) = trace(R_{x_{11}}) + trace(R_{x_{10}}) = trace(R_{x_{11}}) = 0$. We conclude that $\omega(ex) = 0$, and thus $ex \in Ker(\omega)$. Similarly, it is possible to prove that $xe \in Ker(\omega)$, and therefore $Ker(\omega)$ is an ideal of A. Finally, since $e = e^2 \in A^2$ and $e \notin Ker(\omega)$, we conclude that A is a baric algebra.

References

- A. A. Balinskii and S. P. Novikov, Poisson brackets of hydrodynamic type, Forbenius algebras and Lie algebras, Dokl. Akad. Nauk SSSR 283 (1985), 1036-1039; English transl. Soviet Math. Dokl. 32(1) (1985), 228-231.
- [2] V. P. Cherkashin, Left-symmetric algebras with commuting right multiplications (Russian), Vestnik Moscov. Univ. Ser. I. Mat. Mekh., 5 (1988), 47-50.
- [3] V. T. Filippov, A class of simple nonassociative algebras, Mat. Zametki, 45 (1989), 101-105.
- [4] J. M. Osborn, Novikov Algebras, Nova Journal of Algebras and Geometry, 1 (1992), 1-14.
- [5] J. M. Osborn, Simple algebras with an idempotent, Comm. Algebra 20(9) (1992), 2729-2753.
- [6] J. M. Osborn, Infinite dimensional Novikov algebras of characteristic 0, J. Algebra 167 (1994), 146-167.
- [7] R. D. Schafer, "An Introduction to Nonassociative Algebras", Academic Press, New York/London, 1966.
- [8] E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340-403.
- [9] E. I. Zelmanov, On a class of local translation invariant Lie algebras, Soviet Math. Dokl. 35 (1987), 216-218. English transl. Soviet Math. Dokl. 35 (1987), 216-218.
- [10] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, "Rings That Are Nearly Associative", Academic Press, New York/London, 1992.