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Abstract

In this work we study left-symmetric algebra over a field K with
characteristic �= 2, which are power-associative algebras.

1. PRELIMINARIES

Let A be a nonassociative algebra over a field K. We call A left-symmetric
algebra if it satisfies the identity:

(x, y, z) = (y, x, z) (1)

where (x, y, z) = (xy)z − x(yz). Right-symmetric algebras are defined by the
identity (x, y, z) = (x, z, y). Right-symmetric algebras are sometimes called
Vinberg-algebras (see, [8]).

If A is a left-symmetric algebra, then A is a left Novikov algebra if the iden-
tity (xy)z = (xz)y is valid in A. We call A right Novikov algebra it the identities
(x, y, z) = (x, z, y) and x(yz) = y(xz) are valid in A. Right Novikov algebras
were introduced by Balinskii and Novikov in [1] , and have also been studied
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by Zelmanov [9] and Fillipov [3] . Left Novikov algebras were investigated by
Cherkashin [2] and Osborn [4] , [5] , [6] .

We define the right principal powers of x ∈ A by x1 = x and xn+1 = xnx
for all n ≥ 1. An element x ∈ A is called right nilpotent if there exists n ≥ 1
such that xn = 0, and x ∈ A is called right nilpotent with right nilindex n ≥ 2
if xn = 0 and xn−1 �= 0. If any element in A is right nilpotent, then A is called
a right nilalgebra. A is called a right nilalgebra with right nilindex n ≥ 2 if
xn = 0 for all x ∈ A and there exists y ∈ A such that yn−1 �= 0. It is known
that A is a power-associative algebra if for all x ∈ A we have xixj = xi+j for
all i, j ≥ 1. A is a flexible algebra, if (x, y, x) = 0 for all x, y ∈ A. A is a right
alternative algebra, if (y, x, x) = 0 for all x, y ∈ A. Similarly, we define left
alternative algebra.

If B, D are subspaces of A then BD is the subspace of A spanned by all
products bd with b in B, d in D. We define the right principal powers of B by
B1 = B and Bn+1 = BnB for all n ≥ 1. If there exists an element k ≥ 1 such
that Bk = 0 then B is called right nilpotent.

A is called nilpotent if for some integer positive n the product of any n
elements from the algebra A, with any arrangement of parentheses, equals
zero.

An element e of A is called an idempotent in case e2 = e �= 0. An idempotent
e ∈ A is called principal in case there is no idempotent u ∈ A such that
eu = ue = 0.

2. POWER-ASSOCIATIVE LEFT-SYMMETRIC

ALGEBRAS

In this section, A is a left-symmetric algebra over a field K with characteristic
�= 2. It is known that when A is a commutative algebra, then A is associative.
Also it is known that, left-symmetric algebras are Lie-admissibbe, i.e., under
the commutator [a, b] = ab − ba, we obtain a Lie algebra.
Proposition 2.1 The following conditions are equivalent:

(a) xx2 = x3 for all x ∈ A, where x3 = x2x.

(b) A is a power-associative algebra.

Proof Suppose that (a) is valid. That is, xx2 = x2x for all x ∈ A. The
linearized form of the identity xx2 = x2x is (x, z, y) + (z, x, y) + (x, y, z) +
(z, y, x) + (y, x, z) + (y, z, x) = 0. Using this last relation and since A is a
left-symmetric algebra, we obtain that the following identities are valid in A :

(x, z, y) + (x, y, z) + (y, z, x) = 0 (2)

(x, y, z) + (z, x, y) + (z, y, x) = 0 (3)
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For x ∈ A, we will prove first that xxn = xn+1 for all n ≥ 1, where
xn+1 = xnx. We consider n ≥ 2 and suppose that xxk = xk+1 for all k with
1 ≤ k ≤ n.

Replacing z by x, y by xn−1 in (2) and using the inductive hypothesis
we obtain that xn−1x2 = x2xn−1. Now (x, x2, xn−1) = (x2, x, xn−1) implies
x(x2xn−1) = x2xn,

(xn−1, x, x) = (x, xn−1, x) implies xn−1x2 = xxn = xn+1, and (x, xn, x) =
(xn, x, x) implies xxn+1 = xnx2. Thus we get xxn+1 = x(xn−1x2) = x(x2xn−1) =
x2xn, which implies that xxn+1 = xnx2 = x2xn. Replacing z by x and y by
xn in (2), we obtain that xxn+1 = xn+1x. So we prove that xxn = xn+1 for all
n ≥ 1.

Finally we will prove that xixj = xi+j for all i, j ≥ 1. If j = 1, then we know
that xix = xi+1. If we suppose that xixj = xi+j, then (xi, x, xj) = (x, xi, xj)
implies xixj+1 = xxi+j = xi+j+1. It is clear that (b) implies (a).

Proposition 2.2 The following conditions are equivalent:

(a) A is a right alternative algebra.

(b) A is a flexible algebra.

(c) A is a left alternative algebra.

(d) A is a associative algebra.

Proof Since (x, y, x) = (y, x, x) for all x, y ∈ A, then (a) and (b) are equivalent.
We observe that if (a), (b) or (c) are valid, then by proposition 2.1, A is a power-
associative algebra.

Replacing z by y and y by x in (3), we obtain that 2(y, x, x) = −(x, x, y).
Thus clearly (a) and (c) are equivalent. Suppose that A is flexible. The lin-
earized form of the flexible law is (x, y, z) + (z, y, x) = 0 for all x, y, z in A.
Using the identity (3) we obtain that (z, x, y) = 0 for all x, y, z in A, and
therefore A is a associative algebra. Finally we conclude that (a), (b), (c) and
(d) are equivalent.

Proposition 2.3 If A is a power-associative algebra, which contains an idem-
potent e �= 0, then A is the vector space direct sum A = A11⊕A10 ⊕A01 ⊕A00,
where A11 = { x ∈ A / ex = xe = x }, A10 = { x ∈ A / ex = x, xe = 0 },
A01 = { x ∈ A / ex = 0, xe = x } and A00 = { x ∈ A / ex = xe = 0 }.
Proof Replacing x by e and y by e in (3), we get 1

2
(L2

e − Le) = R2
e − Re,

and therefore Le(R2
e − Re) = (R2

e − Re)Le. Now (z, e, e) = (e, z, e) implies
LeRe = ReLe +Re−R2

e. We have Le(R2
e −Re) = (LeRe)Re−LeRe = (ReLe +

Re − R2
e)Re − LeRe = ReLeRe + R2

e − R3
e − LeRe = Re(ReLe + Re − R2

e) +
R2

e − R3
e − LeRe = R2

eLe + 2R2
e − 2R3

e − (ReLe + Re − R2
e) = R2

eLe − ReLe −
2R3

e + 3R2
e −Re = (R2

e −Re)Le, which implies that 2R3
e − 3R2

e + Re = 0. That
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is, f(Re) = 0 where f(λ) = (λ − 1)(2λ − 1)λ. Hence A is the vector space
direct sum A = U1 ⊕ U 1

2
⊕ U0, where U1 = { x ∈ A / xe = x }, U 1

2
= {

x ∈ A / xe = 1
2
x } and U0 = { x ∈ A / xe = 0 }. We will prove that

U 1
2

= 0. We consider y ∈ U 1
2

and ey = y0. Now L2
e − Le = 2(R2

e − Re) implies
ey0 = y0 − 1

2y and (e, y, e) = (y, e, e) implies y0e = 1
2y0 − 1

4y. Using the above
results we have that (e, y0, e) = (y0, e, e) implies y = 2y0. Therefore y0e = 0
and y = 2ye = 4y0e = 0. Hence we prove that U 1

2
= 0, and thus A = U1 ⊕ U0.

We obtain now that R2
e = Re, L2

e = Le and LeRe = ReLe ( i.e., Le and Re

are commuting projections ). It follows that A is the vector space direct sum
A = A11 ⊕ A10 ⊕ A01 ⊕ A00, where Aij = { xij / exij = ixij, xije = jxij}, i,
j ∈ {0, 1}.

Proposition 2.4 If A is a power-associative algebra, e ∈ A an idempotent and
A = A11 ⊕ A10 ⊕ A01 ⊕ A00, then: A2

11 ⊂ A11, A11A10 ⊂ A10, A10A11 = 0,
A11A01 ⊂ A00, A01A11 ⊂ A01 + A11A01 ⊂ A01 + A00, A11A00 = A00A11 = 0,
A2

10 = 0, A10A01 ⊂ A11, A01A10 ⊂ A00, A00A10 ⊂ A11, A10A00 ⊂ A00A10 +
A10 ⊂ A11 + A10, A2

01 = 0, A01A00 = 0, A00A01 ⊂ A01 and A2
00 ⊂ A00.

Proof For to prove that A2
11 ⊂ A11, we consider x, y ∈ A11. Thus ex = xe = x

and ey = ye = y. Replacing z by e in (2), we obtain (xy)e = xy, and (x, e, y) =
(e, x, y) implies e(xy) = xy. Hence A2

11 ⊂ A11. To prove that A11A10 ⊂ A10

and A10A11 = 0, we consider x ∈ A11 and y ∈ A10. Thus ex = xe = x, ey = y
and ye = 0. Since (y, e, x) = (e, y, x), then e(yx) = 2yx. But we know that the
characteristic roots of Le are 1 and 0, and so e(yx) = 2yx implies that yx = 0.
Therefore A10A11 = 0. Now (x, e, y) = (e, x, y) implies e(xy) = xy. Replacing
z by e in (3) and since yx = 0, e(xy) = xy, we get (xy)e = 0. Therefore we
conclude that A11A10 ⊂ A10.

To prove that A11A01 ⊂ A00 and A01A11 ⊂ A01 + A11A01 ⊂ A01 + A00,
we consider x ∈ A11 and y ∈ A01. Thus ex = xe = x, ey = 0 and ye = y.
Now (e, x, y) = (x, e, y) implies e(xy) = 0, and (e, y, x) = (y, e, x) implies
e(yx) = 0. Replacing z by e in (3) we get (xy)e = 0, and replacing z by e, x
by y, y by x in (3), we obtain yx = (yx)e + xy. We note that 0 = e(yx) =
e((yx)e + xy) = e((yx)e) and (yx)e = ((yx)e + xy)e = ((yx)e)e, which implies
that (yx)e ∈ A01. With the above results we get that A11A01 ⊂ A00 and
A01A11 ⊂ A01 + A11A01 ⊂ A01 + A00. In a similar form, it is possible to prove
the relations of the remaining cases.

Lemma 2.5 Let A be a finite-dimensional power-associative algebra, e ∈ A an
idempotent and A = A11 ⊕A10 ⊕A01 ⊕ A00. Then e is principal idempotent of
A if and only if the subalgebra A00 is a nilalgebra.

Proof Suppose that e ∈ A is a principal idempotent. If A00 is not a nilalgebra,
then there exists an idempotent u ∈ A00. Since e ∈ A11 and A11A00 = 0, we
obtain that eu = ue = 0, which is a contradiction. Conversely, suppose that
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A00 is a nilalgebra. If e ∈ A is not a principal idempotent, then there exists an
idempotent u ∈ A such that eu = ue = 0. We consider u = u11+u10 +u01+u00

where uij ∈ Aij with i, j ∈ {0, 1}. Now 0 = eu = u11 + u10 and 0 = ue =
u11 + u01 imply u11 = u10 = u01 = 0, and so u = u00 ∈ A00, a contradiction.

Proposition 2.6 If A is a power-associative algebra, e ∈ A an idempotent and
A = A11 ⊕A10 ⊕A01 ⊕A00, then the subspace B = (A10A01 +A00A10)+A10 +
A01 + (A01A10 + A11A01) is an ideal of A.

Proof We consider uij in Aij with i, j ∈ {0, 1}. We will prove that for all
i, j ∈ {0, 1}, Aij(A10A01) and (A10A01)Aijare subsets of B. Using the re-
lations of proposition 2.4, we obtain that: (u11, u01, u10) = (u11u01)u10 −
u11(u01u10) ∈ A00A10 + A11A00 = A00A10 and (u01, u10, u11) = (u01u10)u11 −
u01(u10u11) = 0. Now using (3), we get (u11, u10, u01) = −(u11, u01, u10) −
(u01, u10, u11) ∈ A00A10 ⊂ B, which implies that u11(u10u01) − (u11u10)u01 ∈
B. Hence u11(u10u01) ∈ B, and so A11(A10A01) ⊂ B. Since (u10, u01, u11) =
(u01, u10, u11) = 0, then (u10u01)u11 = u10(u01u11) ∈ A10A01 + A10A00 ⊂
A10A01 + A00A10 + A10 ⊂ B, and thus (A10A01)A11 ⊂ B.

Now A10(A10A01) ⊂ A10A11 = 0, (A10A01)A10 ⊂ A11A10 ⊂ A10 ⊂ B,
A01(A10A01) ⊂ A01A11 ⊂ A01 + A11A01 ⊂ B, (A10A01)A01 ⊂ A11A01 ⊂
B and A00(A10A01) = (A10A01)A00 = 0. Similarly, it is possible to prove
that the subspaces Aij(A00A10), (A00A10)Aij , AijA10, A10Aij, AijA01, A01Aij,
Aij(A01A10), (A01A10)Aij , Aij(A11A01) and (A11A01)Aij are subsets of B.
Therefore we conclude that B is an ideal of A.

Corolario 2.7 If A is of finite-dimensional simple power-associative algebra
with idempotent e �= 1 and A = A11⊕A10⊕A01⊕A00 is the Peirce decomposition
of A relative to e, then A11 = A10A01 + A00A10 and A00 = A01A10 + A11A01.

Proof By proposition 2.6, we know that B = (A10A01 + A00A10) + A10 +
A01 + (A01A10 + A11A01) is an ideal of A. Since A is a simple algebra, then
we must to have that either B = 0 or B = A. If B = 0 then A = A11 ⊕ A00,
and A2 = A implies A2

11 = A11 and A2
00 = A00. Since by hypothesis e �= 1,

then A00 �= 0. Moreover in this case A00 is an ideal of A, and so A00 = A, a
contradiction. Therefore B = A which implies that A11 = A10A01 + A00A10

and A00 = A01A10 + A11A01.

Proposition 2.8 If A is a power-associative algebra and I is and ideal of A,
then I2 is an ideal of A.

Proof We consider x, y in I and z ∈ A. Now (z, x, y) = (x, z, y) implies
z(xy) ∈ I2. Since (x, z, y), (y, z, x) are elements in I2, then using (2) we get
(x, y, z) ∈ I2, which implies that (xy)z ∈ I2.

Proposition 2.9 Let A be a finite-dimensional power-associative algebra over
K of characteristic 0. If x is nilpotent, then Rx is nilpotent.
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Proof Since the identity (y, z, x) = (z, y, x) is valid in A, then:

RxLy − LyRx = RxRy − Ryx (4)

for all x, y ∈ A. Now as trace(RxLy) = trace(LyRx), we obtain that trace(RxRy) =
trace(Ryx) for all x, y ∈ A. We will prove that trace(Rn

xRy) = trace(RRn
x (y))

for all n ≥ 1. Suppose that trace(Rn
xRy) = trace(RRn

x(y)) for all x, y ∈ A. We
observe that trace(Rn

xRxLy) = trace(Rx(Rn
xLy)) = trace(Rn

xLyRx). There-
fore using (4) and the inductive hypothesis we get that trace(Rn+1

x Ry) =
trace(Rn

xRyx) = trace(RRn
x(yx)), as desired. Now it is clear that trace(Rm

x ) =
trace(Rxm) for all m ≥ 1. Since there exists n ≥ 1 such that xn = 0, then for
all i ≥ 1 we have trace((Rn

x)i) = 0, which implies that Rn
x is nilpotent. Clearly

we get that Rx is nilpotent.

We consider the algebra A+, with multiplication defined by x·y = 1
2
(xy+yx)

for x, y in A. It is known that when A is power-associative, then A+ is a
commutative power-associative algebra.

Proposition 2.10 If A is a power-associative algebra, then the following
conditions are equivalent:

(a) A+ is a Jordan algebra.

(b) RxRx2 = Rx2Rx for all x ∈ A.

Proof We note first that (x, x2, y) = (x2, x, y) implies x(x2y) = x2(xy),
that is LxLx2 = Lx2Lx. If (a) is valid, then (x · x) · (y · x) = ((x · x) · y) · x
for all x, y ∈ A, which implies that x2(yx) + x2(xy) + (yx)x2 + (xy)x2 =
x(x2y)+x(yx2)+ (x2y)x +(yx2)x. Hence Lx2Rx +Lx2Lx +Rx2Rx +Rx2Lx =
LxLx2+LxRx2+RxLx2 +RxRx2 . Since LxLx2 = Lx2Lx and replacing Lx2Rx =
RxLx2 −RxRx2 +Rx3 and LxRx2 = Rx2Lx −Rx2Rx +Rx3 in this last relation,
we obtain (b). It is easy to prove that (b) implies (a).

Proposition 2.11 Let A be a finite-dimensional power-associative algebra
over K of characteristic 0, e ∈ A an principal idempotent and we consider
ω : A → K defined by ω(x) = trace(Rx), which clearly is a linear map. If
Ker(ω) is a subalgebra of A, then A is a baric algebra.

Proof We note that ω(e) = trace(Re) = dimK(A11) + dimK(A10) �= 0, and
so A = Ke ⊕ Ker(ω). To prove that Ker(ω) is an ideal of A, we consider
x ∈ Ker(ω). Thus trace(Rx) = 0. Let x = x11 + x10 + x01 + x00 ∈ A11 ⊕
A10 ⊕ A01 ⊕ A00. Since x10, x01 and x00 are nilpotent (By Lemma 2.5, A00 is
a nilalgebra), then proposition 2.9 implies that trace(Rx) = trace(Rx11) = 0.
Using (4) we get that trace(ReRx) = trace(Rex) = trace(Rx11)+trace(Rx10 ) =
trace(Rx11) = 0. We conclude that ω(ex) = 0, and thus ex ∈ Ker(ω). Similarly,
it is possible to prove that xe ∈ Ker(ω), and therefore Ker(ω) is an ideal of
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A. Finally, since e = e2 ∈ A2 and e /∈ Ker(ω), we conclude that A is a baric
algebra.
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