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Abstract

In this survey article we highlight some recent works on ψ-density
point, ψ-density topology, ψ-approximately continuous functions etc.
where ψ is a suitable real valued function of the real variable. When-
ever possible, comparisons between these ideas with the corresponding
classical ideas on density point, density topology etc. have been elicited.

1. Introduction

The primary object of this survey article is to highlight the main works on
ψ-density topology, where ψ is a suitable continuous real valued function of a
real variable, found recently by workers in this field. In fact, the paper [18]
is the beginning of this theory the authors of which started the investigations
and published several papers after the paper of Taylor [17] on Lebesgue density
theorem. Therefore a collective information of works done so far is warranted
for a total view of the subject and to encourage researchers in the related fields
to resume their investigations in this branch of modern analysis. It is now well-
known that the theory of classical density topology has a prominent position
in the literature of real analysis, topology and measure theory in which various
workers are currently interested to pursue their investigations from various
angles of this fine branch of modern analysis. Attention of interested readers
may be drawn to two survey articles { [10], [11]} which focussed on the basic
ideas related to classical density topology.
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approximately continuous functions.
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It appears that the theory of ψ-density topology, so far established, is anal-
ogous in nature to the corresponding theory of classical density topology, but
the proofs in the new theory are entirely different and highly sophisticated. For
convenience of readers, in Section 2 we summarise in brief, the basic definitions
and ideas on classical density theory to have an idea how the comparable results
on ψ-density theory has been generated. In Section 3, we explain the queries
of Taylor [17] on Lebesgue density theorem which ultimately becomes the basis
of ψ-density subject. Section 4 outlines the details of ψ-density points and
ψ-density topology. In Section 5 we present comparisons of ψ-density topolo-
gies for various functions ψ. Section 6 treats with the interior operation in a
ψ-density topology. Section 7 discusses the nature of ψ-density topology for
function ψ with continuity dropped. In Section 8, we observe how the idea
of ψ-approximately continuous functions are introduced and properties of such
functions are found out. Various properties of the real line equipped with the
ψ-density topology are presented in section 9, and we discuss the union of
ψ-density topologies in Section 10.

Notations : (a) R stands for the set of all real numbers with the usual topology,
τ says, unless otherwise stated, (b) R+ is the set of all positive real numbers
and Q+ is the set of all positive rational numbers, (c) sets are always subsets
of R and points are in R, (d) N stands for the set of all positive integers, (e)
if A is a set, then Ac stands for the complement of A in R, (f) A − B is the
set of points in A which are not in B, (g) AΔB is the symmetric difference of
the sets A and B, i.e. AΔB = (A− B) ∪ (B − A), (h) if A is a set and x is a
point then A−x = {a−x; a ∈ A}, (i) measurable means Lebesgue measurable,
(j) m∗(A) denotes the Lebesgue outer measure of A and m(A) is the Lebesgue
measure of A.

2. Classical density topology and approximate

continuity

If E ⊂ R and x0 ∈ R, then the outer right upper (lower) density of E at x0 is
defined as

lim sup
x→x+

0

m∗(E ∩ [x0, x])
|x− x0|

(
lim inf
x→x+

0

m∗(E ∩ [x0, x])
|x− x0|

)
. (1)

Similarly the outer left upper (lower) density of E at x0 is defined as

lim sup
x→x−

0

m∗(E ∩ [x, x0])
|x− x0|

(
lim inf
x→x−

0

m∗(E ∩ [x, x0])
|x− x0|

)
. (2)
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If all the four densities of E at x0 are equal then the common value is written
as

lim
h→0

m∗(E ∩ [x0 − h, x0 + h])
2h

(3)

and is denoted by D∗(E, x0) and the outer density of E is said to exist at x0.
Similarly, we denote by D

∗
(E, x0) and D∗(E, x0) respectively the outer upper

and outer lower densities of E at x0 when they exist. If D∗(E, x0) = 1 then x0

is called an outer density point of E and if D∗(E, x0) = 0 then x0 is called an
outer dispersion point of E. If E is measurable then in (1) - (3) m∗ is replaced
by m and the term outer is dropped everywhere. D∗(E, x0), D

∗
(E, x0) and

D∗(E, x0) are then denoted by D(E, x0), D(E, x0) and D(E, x0) respectively.
In the theory of density of sets, the following theorem plays a prominent

role.

Theorem 1 (Lebesgue Density Theorem, [15], p. 17) If E ⊂ R, then almost
all points of E are points of outer density of E. Further if E is measurable
then almost all points of Ec are points of dispersion of E.

If E ⊂ R is measurable, let

φ(E) = {x ∈ R, D(E, x) = 1}.
By Theorem 1, φ(E) is measurable and the set function φ(E) has the fol-

lowing properties :

Theorem 2 (cf. [15], p. 88) If A,B are measurable sets and if A ∼ B means
m(AΔB) = 0, then

(i) φ(A) ∼ A.
(ii) A ∼ B implies φ(A) = φ(B).
(iii) φ(Φ) = Φ and φ(R) = R where Φ is the empty set.
(iv) φ(A ∩B) = φ(A) ∩ φ(B).
(v) A ⊂ B implies φ(A) ⊂ φ(B).

Such a function φ is called a lower density.

Definition 1 { [7]; [15], p. 90}. If D = {A ⊂ R;A is measurable and A ⊂
φ(A)}, then D is a topology called the density topology on R (Td - topology in
short).

It is known that Td-topology is finer than the Euclidean topology τ and
thus Td-topology is Hausdorff [7].

Theorem 3 ([7], [8]) The density topology is regular, not normal, neither first
countable, nor Lindelöff.

Definition 2 (cf. [7]) If E is measurable, then the interior of E in the Td-
topology is the set of all density points of E which are contained in E.
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In other words Td − Int(E) = E ∩ φ(E).
The following theorem which is proved for R in [13] and for higher dimen-

sional Euclidean spaces in [8] is the well-known Lusin-Menchoff theorem (see
[19]).

Theorem 4 Let E ⊂ R be a Borel set and let X ⊂ E be a closed set such that
D(E, x) = 1 for every x ∈ X. Then there is a perfect set P such that

(1) X ⊂ P ⊂ E,
(2) D(P, x) = 1 for every x ∈ X.
Next theorem heavily depends on Theorem 4.

Theorem 5 ([8]) The Td-topology on R is completely regular.

Definition 3 ([7]) A mapping f from R to a topological space is called approx-
imately continuous at a point p ∈ R if D∗(f−1(G), p) = 1 for every open set G
containing f(p).

It is clear that an approximately continuous function is continuous in the
Td-topology and that any continuous function is approximately continuous but
the converse is not true.

Definition 4 A subset E of a topological space is said to have the property of
Baire [9, p. 87] if E = GΔP where G is open and P is of first category. A
mapping f : R → X where X is a metric space is said to have the property of
Baire if for every open set U in X, f−1(U) has the property of Baire.

We now observe that an approximately continuous function enjoys the fol-
lowing fundamental properties.

Theorem 6 ([7]) An approximately continuous function is of Baire class 1 and
also has the property of Baire.

Theorem 7 ([7]) The image of R under an approximately continuous mapping
to a metric space is separable. Also such a mapping takes d-regular sets (regular
sets in Td-topology) into connected sets.

The following theorem shows that the measurability of a mapping has a
close relationship with its approximate continuity.

Theorem 8 ([16], p. 132) A function f : R → R is measurable if and only if
it is approximately continuous almost everywhere.

Most of the above descriptions may be found in the survey articles [10] and
[11].
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3. Basis of ψ-density ideas

We note that in the definition of outer density of sets (3), one can replace
the symmetric closed intervals by closed intervals I containing x0 without any
material change so that we may write the definition as

D∗(E, x0) = lim
x0∈I,m(I)→0

m∗(E ∩ I)
m(I)

(4)

provided the limit exists. In view of (4) the second part of Lebesgue density
theorem (Theorem 1) infers that if E is measurable, then

lim
x∈I,m(I)→0

m(Ec ∩ I)
m(I)

= 0 (5)

for all points x of E except for a possible subset E′ of E of measure zero.
Taylor [17] asked whether the above result (i.e. (5)) can be improved either

for a particular measurable set E or uniformly for all measurable sets. He
proposed four problems in this direction, of which we are interested for the
present on the following two problems.

Problem 1 : Given a measurable set E ⊂ R, whether there exists a real
function ψ(x), depending on E, monotone increasing, and defined for positive
x with lim

x→0+
ψ(x) = 0 such that

lim
x∈I,m(I)→0

m(Ec ∩ I)
m(I).ψ(m(I))

= 0 (6)

for almost all points x of E.
The answer to this question is affirmative as the following theorem shows.

Theorem 9 ([17]) Given any Lebesgue measurable set E, there exists a function
ψ(x) which is defined for positive x, is continuous and decreases to zero, such
that

lim
x∈I,m(I)→0

m(Ec ∩ I)
m(I).ψ(m(I))

= 0

for all x in E except for a subset of Lebesgue measure zero.
The above result implies that for a given measurable set E, the Lebesgue

density theorem (see (5)) can be strengthened in the sense that the conclusion
remains the same even with an additional factor in the denominator that tends
to zero.

Problem 2 : Taylor [17] asked if a fixed function ψ(x) of the above type exists
such that (6) holds for almost all points of every measurable set E.

He answered this query by proving that no such function ψ(x) exists.
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Theorem 10 ([17]) Given any function ψ(x), defined for 0 < x < 1, which
decreases to zero as x decreases to zero, and a real number α, 0 < α < 1, there
exists a perfect set E ⊂ [0, 1] with m(E) = α such that

lim
x∈I,m(I)→0

m(Ec ∩ I)
m(I).ψ(m(I))

=∝

for all x ∈ E.

Theorems 9 and 10 appear to be the basis of the ideas of ψ-density points,
ψ-density topology etc. initiated by Terepeta and Bojakowska [18].

4. ψ-density points and ψ-density topology

Let C denote the family of all continuous non-decreasing functions ψ : R+ →
R+ such that lim

x→0+
ψ(x) = 0. The concept of ψ-density points and eventually ψ-

density topology was introduced by Terepeta and Bojakowska [18] which arises
from relation (6) formulated by Taylor [17]. To keep the analogy more closely
with the classical case, instead of the closed interval I as in (6), they considered
only symmetric closed intervals i.e. if x ∈ R and E ⊂ R is measurable then the
following relation

lim
h→0+

m(Ec ∩ [x− h, x+ h])
2h.ψ(2h)

= 0 (7)

where ψ ∈ C is considered instead of (6).
Clearly (6) implies (7) because lim

x→0+
ψ(x) = 0. But (7) need not imply (6)

as shown by the following theorem.

Theorem 11 ([18]) There exists a measurable set A and a function ψ ∈ C
such that for x = 0 the condition (7) is fulfilled but (6) does not hold.

Taking account of the smallest symmetric interval centered at x, Theorem 10
has the following analogous version.

Theorem 12 ([18]) For each function ψ ∈ C and real number α, 0 < α < 1,
there exists a perfect set E ⊂ [0, 1] such that m(E) = α and

lim sup
h→0+

m(Ec ∩ [x− h, x+ h])
2h.ψ(2h)

=∝

for all x ∈ E.

Throughout this section as well as for the rest ψ will be a function from C,
unless otherwise stated.

We are now in a position to present the definition of ψ-density point and
related concepts.
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Definition 5 ([18]) We say that 0 is a ψ-density point of a measurable set A
if and only if

lim
h→0+

m(Ac ∩ [−h, h])
2h.ψ(2h)

= 0.

x ∈ R is called a ψ-density point of A if and only if 0 is a ψ-density point
of A− x. x is a ψ-dispersion point of A if and only if x is a ψ-density point of
Ac i.e.

lim
h→0+

m(A ∩ [x− h, x+ h])
2h.ψ(2h)

= 0.

For a measurable set A, let

φψ(A) = {x ∈ R; x is a ψ − density point of A}.

Then φψ(A) ⊂ φ(A) (for φ(A), see Section 2) and so

φψ(A) −A ⊂ φ(A) −A.

Hence it follows from Theorem 1 that

m(φψ(A) − A) = 0.

In view of the definition of φψ(A), Theorem 12 may be restated as follows:
Given ψ ∈ C and α ∈ (0, 1) there exists a perfect set E ⊂ [0, 1] such that

m(E) = α and φψ(E) = Φ

and thus
m(EΔφψ(E)) = α. (8)

This again shows that for an arbitrary ψ ∈ C, Lebesgue density theorem (The-
orem 1) does not hold uniformly for all measurable sets.

We observe that φψ transforms measurable sets into measurable sets.

Theorem 13 ([18]) If A is measurable then φψ(A) is also measurable.

The proof follows from the fact that if we put

F (x, h) =
m(Ac ∩ [x− h, x+ h])

2h.ψ(2h)

for x ∈ R and h ∈ R+, then φψ(A) can be shown to be of the form

φψ(A) = ∩
n∈N

∪
δ∈Q+

∩
0<h<δ

{x ∈ R; F (x, h) ≤ 1
n
}

so that φψ(A) is a set of Fσδ type.

Theorem 14 ([18]) If A,B are measurable, then
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(i) A ⊂ B implies φψ(A) ⊂ φψ(B);

(ii) If A ∼ B then φψ(A) = φψ(B);

(iii) φψ(A ∩B) = φψ(A) ∩ φψ(B);

(iv) φψ(Φ) = Φ and φψ(R) = R where Φ is the empty set and A ∼ B means
m(AΔB) = 0.

The operation φψ is not Oxtoby’s “lower density” (see Theorem 2) because
as was observed in (8), A ∼ φψ(A) does not hold for all measurable sets A.

Definition 6 ([18]) Let Tψ = {A ⊂ R;A is measurable and A ⊂ φψ(A)}.

Theorem 15 ([18]) Tψ is a topology on the real line called ψ-density topol-
ogy which is stronger than the Euclidean topology but weaker than the density
topology.

Since open sets in the Td-topology are measurable [7], from Theorem 15 it
therefore follows that open sets in Tψ-topology are also measurable.

5. Comparison of ψ-density topologies and translation of
sets

The primary object in this section is to present investigations on compar-
isons of ψ-density topologies for various ψ’s, all members of C. To study this
phenomenon, comparisons of ψ’s from different aspects are necessary.

If ψ1, ψ2 ∈ C and for measurable A, the fact that x is a ψ1 dispersion point
of A implies that x is a ψ2-dispersion point of A, then clearly Tψ1 ⊂ Tψ2 . For
example if ψ1(x) ≤ ψ2(x) or more generally if ψ1(x) ≤ k.ψ2(x) for some k ∈ R+

and for all x ∈ R+ then Tψ1 ⊂ Tψ2 .

Definition 7 ([18]) If ψ1, ψ2 ∈ C, then ψ1 is said to precede ψ2 if and only if

lim sup
h→0+

ψ1(h)
ψ2(h)

<∝ .

This fact is denoted by the notation ψ1 ≺ ψ2.

Theorem 16 ([18]) If ψ1 ≺ ψ2, then Tψ1 ⊂ Tψ2 .

Definition 8 ([18]) Two functions ψ1, ψ2 ∈ C are said to be equivalent if and
only if there exist positive numbers α, β, δ such that for each h ∈ (0, δ),

α <
ψ1(h)
ψ2(h)

< β.
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Clearly, ψ1, ψ2 are equivalent if and only if

lim sup
h→0+

ψ1(h)
ψ2(h)

<∝

and

lim inf
h→0+

ψ1(h)
ψ2(h)

> 0.

We see that equivalent functions generate the same ψ-density topologies.

Theorem 17 ([18]) If the functions ψ1, ψ2 ∈ C are equivalent then Tψ1 = Tψ2 .

However the equivalence condition is only sufficient but not necessary as
shown by

Theorem 18 ([18]) There exist two functions ψ1, ψ2 ∈ C such that

lim inf
h→0+

ψ1(h)
ψ2(h)

= 0

and

0 < lim sup
h→0+

ψ1(h)
ψ2(h)

<∝

for which Tψ1 = Tψ2 .

If lim
h→0+

ψ1(h)
ψ2(h)

= 0, then the situation becomes more clear as it follows from

the following theorem.

Theorem 19 ([18]) Let ψ1, ψ2 ∈ C. If

lim
h→0+

ψ1(h)
ψ2(h)

= 0

then there exists a measurable set A ⊂ R+ such that 0 is a ψ2-dispersion point
of A but it is not a ψ1-dispersion point of A.

We observe an interesting phenomenon below how the ψ-density topology
generated by an arbitrary ψ ∈ C identifies with the ψ-density topology gener-
ated by some piece-wise linear function.

Definition 9 ([18]) A function L : R+ → R+ is piecewise linear if and only if
there exists a decreasing sequence {tn} convergent to 0 such that L is linear on
each interval [tn+1, tn] for n ∈ N and L is arbitrary for x > t1.

Theorem 20 ([18]) For arbitrary ψ ∈ C there exists a piecewise linear function
L ∈ C such that Tψ = TL.
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If U ⊂ R is open in the Euclidean topology and Z is a subset of R of
measure zero, let O∗ be the collection of all sets of the form U −Z which forms
a topology. This topology is known as Hashimoto topology. Interestingly, the
intersection of all ψ-density topologies is a Hashimoto topology. More precisely.

Theorem 21 ([18]) ∩
ψ∈C

Tψ = O∗.

Definition 10 If α ∈ R and A ⊂ R, then αA = {αa; a ∈ A}.
So αA is a translation of the set A in the multiplicative sense. We notice

now that ψ-dispersion point is invariant with respect to translation of sets.

Theorem 22 ([18]) Let A be measurable, ψ ∈ C and α ≥ 1. If 0 is a ψ-
dispersion point of A, then 0 is a ψ-dispersion point of αA.

However, for α < 1, we have

Theorem 23 ([18]) Let ψ ∈ C and α < 1. If,

lim inf
x→0+

ψ(αx)
ψ(x)

= 0,

then there exists a measurable set A such that 0 is a ψ-dispersion point of A,
but is not a ψ-dispersion point of αA.

Further study is made in [2] on the comparison of ψ-dispersion points and
ψ-density topologies for various ψ’s by constructing suitably different sets of
points in R+.

For ψ1, ψ2 ∈ C let

A+
k = {x ∈ R+; ψ1(2x) <

1
k
ψ2(2x)},

B+
k = {x ∈ R+; ψ2(2x) <

1
k
ψ1(2x)}.

Ak = A+
k ∪ (−A+

k ), Bk = B+
k ∪ (−B+

k ) for k ∈ N where for a set A,−A =
{−a; a ∈ A}.

Using Ak, the following is the first comparison theorem.

Theorem 24[2]. Let ψ1, ψ2 ∈ C and

∈k= lim sup
x→0+

m(Ak ∩ [−x, x])
2x.ψ1(2x)

for k ∈ N . If lim
k→∝

∈k= 0 and 0 is a ψ2-dispersion point of a measurable set E,

then 0 is a ψ1 dispersion point of E.

Corollary 1 ([2]) Under the assumptions of Theorem 24, Tψ2 ⊂ Tψ1 .
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Corollary 2 ([2]) Let ψ1, ψ2 ∈ C,

∈k= lim sup
x→0+

m(Ak ∩ [−x, x])
2x.ψ1(2x)

and
ηk = lim sup

x→0+

m(Bk ∩ [−x, x])
2x.ψ2(2x)

.

If lim
k→∝

∈k= lim
k→∞

ηk = 0, then Tψ1 = Tψ2 .

If however, lim
k→∞

∈k> 0 then we have

Theorem 25([2])Let ψ1, ψ2 ∈ C and

∈k= lim sup
x→0+

m(Ak ∩ [−x, x])
2x.ψ1(2x)

for k ∈ N . If lim
k→∞

∈k> 0, then there exists a measurable set E ⊂ R such that

0 is a ψ2-dispersion point of E, but it is not a ψ1-dispersion point of E.

Corollary 3 ([2]) Under the assumptions of Theorem 25, Tψ1 − Tψ2 �= Φ.

Ultimately we observe the necessary and sufficient condition for two topolo-
gies Tψ1 and Tψ2 to be identical in terms of ∈k and ηk.

Theorem 26 ([2]) Let ψ1, ψ2 ∈ C,

∈k= lim sup
x→0+

m(Ak ∩ [−x, x])
2x.ψ1(2x)

and ηk = lim sup
x→0+

m(Bk ∩ [−x, x])
2x.ψ2(2x)

.

The topologies Tψ1 and Tψ2 are equal if and only if

lim
k→∞

∈k= lim
k→∞

ηk = 0.

It is not difficult to see that the above conclusions hold if in the definitions
of A+

k , B
+
k , Ak, Bk we consider an arbitrary increasing sequence {ak}k∈N of

positive numbers tending to infinity instead of positive integers k.
We consider now the family A = {Tψ;ψ ∈ C} of all ψ-density topologies.

One can introduce a partial order relation in A using inclusion relation. Further
it can be shown that for arbitrary sequence {ψn}n∈N of functions from C there

exists a function ψ ∈ C such that lim
x→0+

ψn(x)
ψ(x)

= 0 for n ∈ N and consequently

Tψn ⊂ Tψ ∀n ∈ N ( see [18, Theorem 20]). So for each countable subset of A
there exists the upper bound of this set in A. Further this partial order in A
is dense as shown by
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Theorem 27 ([2]) For arbitrary ψ1, ψ2 ∈ C such that ψ1(x) ≤ ψ2(x) for x ∈
R+ and Tψ1 ⊂ Tψ2 , there exists a function ψ3 ∈ C such that Tψ1 ⊂ Tψ3 ⊂ Tψ2 .

Corollary 4 ([2])If Tψ1 ⊂ Tψ2 , then there exists a function ψ3 ∈ C such that
Tψ1 ⊂ Tψ3 ⊂ Tψ2 .

Finally one sees that there exists an uncountable number of functions from
C such that the corresponding density topologies are not comparable.

Theorem 28 ([2]) There exists a subfamily C0 ⊂ C such that card (C0) = c
where c is the power of the continuum and for each ψ1, ψ2 ∈ C0, ψ1 �= ψ2, the
topologies Tψ1 and Tψ2 are not comparable by inclusion.

6. The interior operation in a ψ-density topology

It is known [14] that the interior of an arbitrary set A ⊂ R in the density
topology can be shown to be equal to A ∩ φ(B) where B ⊂ A is a measurable
kernel of A and φ(B) is the set of all density points of B. However the prob-
lem of obtaining the interior of a set in a ψ-density topology appears to be
more complicated because the proof of the result of [14] referred to above uses
Lebesgue density theorem while φψ does not have the Lebesgue property (see
Section 4). Let ψ ∈ C be fixed. For convenience of notations, we shall denote
in this section φψ by φ and Tψ by T . If A is measurable, let φ1(A) = φ(A). If
α is an ordinal number, 1 < α < Ω, where Ω is the ordinal number of the set
of all order types of countable well ordered sets, an operator φα is defined in
the following way :

(i) If α has a predecessor i.e. α = β + 1, where 1 ≤ β < Ω, then

φα(A) = φ(φβ(A)).

(ii) If α is a limit number, then

φα(A) = ∩
1≤β<α

φβ(A).

With this provision the following theorem is true.

Theorem 29 ([3]) For each measurable A and each countable ordinal α greater
than zero

T − Int(A) ⊂ A ∩ φα(A).

There exists an ordinal β, 1 ≤ β < Ω such that

T − Int(A) = A ∩ φβ(A).
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If the measurability of A is dropped, then an analogous theorem for the
expression of interior of a set in a ψ-density topology is true.

Theorem 30 ([3]) For arbitrary A ⊂ R, we have

T − Int(A) = A ∩ φβ(B),

where B ⊂ A is a measurable kernel of A and β is some countable ordinal
greater than or equal to 1.

7. ψ-density topology for discontinuous regulator func-
tions

We observed in the preceding sections that the ψ-density topology has been
generated for ψ’s such that ψ : R+ → R+ is non-decreasing continuous and
lim
x→0+

ψ(x) = 0. Aversa and Wilczynski [1] investigated if the continuity condi-

tion on ψ may be dropped, but still generating the same family of ψ-density
topologies. As such let C∗ denote the class of all non-decreasing functions
ψ : R+ → R+ such that lim

x→0+
ψ(x) = 0. For a ψ ∈ C∗ one can define analo-

gously the ψ-density points, ψ-density topology etc. The following theorem is
the basis to draw the conclusion in this respect.

Theorem 31 ([1]) If ψ ∈ C∗, then there exist two functions F,G ∈ C such
that

1) For each x ∈ (0, 2], F (x) ≤ ψ(x) ≤ G(x) (or, for each x ∈ (0, 1], F (2x)
≤ ψ(2x) ≤ G(2x));

2) if A+
2 = {x ∈ R+ : F (2x) < 1

2G(x)} and A2 = A+
2 ∪ (−A+

2 ) then

lim sup
x→0+

m(A2 ∩ [−x, x])
2x.F (2x)

= 0.

Using Theorem 31, the following theorem follows.

Theorem 32 ([1]) If ψ ∈ C∗, then there exists F ∈ C such that Tψ = TF .

As a final conclusion, one sees that the family of ψ-density topologies gen-
erated by functions from C is identical with that generated by functions from
C∗.

Corollary 5 ([1]) {Tψ ;ψ ∈ C} = {Tψ;ψ ∈ C∗}.

8. ψ-approximately continuous functions

To define ψ-approximately continuous functions, we need the idea of inner
ψ-density point. As usual ψ always is a member of C.
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Definition 11 ([18]) We say that 0 is the inner ψ-density point of A ⊂ R if and
only if there exists a measurable set B such that B ⊂ A and 0 is a ψ-density
point of B.

Definition 12 ([18]) We say that x is the inner ψ-density point of A ⊂ R if
and only if 0 is the inner ψ-density point of A− x.

It is therefore clear that for a measurable set A, the notion of ψ-density
point and inner ψ-density point are coincided. The following theorem now
follows easily.

Theorem 33 ([18]) A set A is open in the topology Tψ if and only if each point
of A is the inner ψ-density point of A.

We now give the definition of ψ-approximately continuous functions.

Definition 13 ([18]) We say that a function f : R → R is ψ-approximately
continuous at x0 if and only if x0 is the inner ψ-density point of f−1 [(f(x0)
− ∈, f(x0)+ ∈)] for each ∈> 0.

Definition 14 ([18]) We say that a function f : R → R is ψ-approximately
continuous if and only if f is ψ-approximately continuous at each point.

Theorem 34 ([18]) A function f : R → R is ψ-approximately continuous if
and only if for each interval (a, b) the set f−1(a, b) ∈ Tψ.

Analogous to the classical situation (see Theorem 8), measurability and
ψ-approximate continuity are closely connected.

Theorem 35 ([18])A function f : R → R is measurable if and only if there
exists a function ψ ∈ C such that f is ψ-approximately continuous almost
everywhere.

It is known { [6], p. 21; [7]} that an approximately continuous function is
Darboux Baire 1 function. Since ψ-approximate continuity implies approximate
continuity, it follows therefore that every ψ-approximately continuous function
is Darboux Baire 1 function. However the family of all ψ-approximately con-
tinuous functions is not contained in the class of Baire∗ 1 functions.

Definition 15 ([12]) A function f : [0, 1] → R is called Baire ∗1 function
(in short B∗1) if for every closed set F there is an open interval (a, b) with
(a, b) ∩ F �= Φ such that f/F is continuous on (a, b).

We now see that the family of ψ-approximately continuous functions is not
a subset of the family of Baire∗ 1 functions.

Theorem 36 ([4]) There exists a ψ-approximately continuous function f such
that f /∈ B∗1.
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In analogy with the classical case (see Section 2), a ψ-approximately con-
tinuous function is characterised by the following theorem.

Theorem 37 ([4]) A function f : R → R is ψ-approximately continuous at x0

if and only if there exists a measurable set E such that x0 ∈ E ∩ φψ(E) and
f/E is continuous at x0.

9. Properties of the topological space (R, Tψ)

In this section we are concerned with the real number space R equipped with
the ψ-density topology. To show that (R, Tψ) is completely regular, analogue
of Lusin-Menchoff type theorem { [6], p. 26; [8]} is needed which Bojakowska
[4] proved in the following theorem.

Theorem 38 ([4]) Let E ⊂ R be a Borel set and let F ⊂ E be a closed set such
that F ⊂ φψ(E). Then there exists a perfect set P such that

1) F ⊂ P ⊂ E and

2) F ⊂ φψ(P ).

The following Lemmas, which are analogous to Lemmas 11 and 12 of [19],
are helpful to derive several topological properties of (R, Tψ).

Lemma 1 ([4]) Let E ⊂ R be a Tψ-open set and of type Fσ. Then there exists
a ψ-approximately continuous function f such that

0 < f(x) ≤ 1

for x ∈ E and
f(x) = 0

for x /∈ E.

Lemma 2 ([4]) Let E1, E2, H be pairwise disjoint subsets of R such that

(i) E1 ∪ E2 ∪H = R,

(ii) E1 ∪ H,E2 ∪ H are Tψ-open and of type Fσ. Then there exists a ψ-
approximately continuous function f such that

(iii) f(x) = 0 for x ∈ E1,

(iv) 0 < f(x) < 1 for x ∈ H,

(v) f(x) = 1 for x ∈ E2.
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We are now in a position to state the following theorem.

Theorem 39 ([4]) The space (R, Tψ) is completely regular.

We see that ifm(N) = 0 then N is Tψ-closed, φψ(N) = Φ and (for ψ-interior
see Section 6)

Tψ − Int(N) ⊂ N ∩ φψ(N) = Φ.

Thus N is nowhere dense in Tψ .
But not only sets of measure zero are nowhere dense in Tψ. Because referring

to [17, Theorem 4] and [18, Theorem 0.2], we see that there exists a perfect
nowhere dense set E of positive measure such that φψ(E) = Φ. Then E is
Tψ-closed and Tψ − Int(E) = Φ and thus E is nowhere dense in the topology
Tψ .

This section is concluded with the following remarkable theorem.

Theorem 40 ([4]) The space (R, Tψ) is of the first category.

10. Union of ψ-density topologies

We observed in Theorem 15 that for arbitrary ψ ∈ C the ψ-density topology
Tψ is stronger than the Euclidean topology but is weaker than the density
topology Td. We have also seen that ∩

ψ∈C
Tψ is the Hashimoto topology on R

(Theorem 21). Theorem 15 tells that for a measurable set A, every ψ-density
point of A is a density point of A. It therefore follows that

∪
ψ∈C

Tψ ⊂ Td.

Bojakowska and Wilczynski [5] asked if the above inclusion is proper and
answered the query in the affirmative by showing that for a measurable set A
and for any ψ ∈ C there exists a point xψ ∈ A such that xψ is a density point
of A but xψ is not a ψ-density point of A.

For this, they first constructed a Cantor type set of positive measure in R

in the following way.
Put

I0
1 = [0, 1]

and

∈0=
m(I0

1 )
23 + 2

.

Let I1
1 , I

1
2 be two closed intervals obtained by removing from the centre of

[0, 1] an open interval (a0
1, b

0
1) of length ∈0.

Now assume that the intervals (aji , b
j
i ) for j = 0, 1, . . . , n−1 and i = 1, . . . , 2j

have been defined. Let {Ini }, i = 1, . . . , 2n be the sequence of equal component
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closed intervals (numbered from left to right) of the set

[0, 1]/
n−1∪
j=0

2j

∪
i=1

(aji , b
j
i ).

Let
∈n= m(Ini )

2n+3 + 2
.

Let (ani , b
n
i ) be the open interval of length ∈n centered in the middle of Ini , i =

1, 2, . . . , 2n. We denote by In+1
2i−1 and In+1

2i the left and the right part of Ini
respectively, obtained after removing the interval (ani , b

n
i ) from Ini .

Continuing in this way, finally we let

A = [0, 1]/
∞∪
n=0

2n

∪
i=1

(ani , b
n
i ) =

∞∩
n=0

2n

∪
i=1
Ini .

Then A is a perfect nowhere dense set with m(A) > 0.

After constructing the set A the following theorem is obtained.

Theorem 41 ([5]) For each ψ ∈ C there exists a point xψ ∈ A such that xψ is
a density point of A but xψ is not a ψ-density point of A.

Corollary 6 ([5]) There exists a set A0 such that

A0 ∈ Td/ ∪
ψ∈C

Tψ.

The proof of the corollary follows on using Theorem 41 and taking A0 to
be the Td-interior of the set A.

However if T (A) denotes the coarsest topology including an arbitrary fam-
ily A of subsets of the real line, then [5] ultimately contains the following
interesting theorem.

Theorem 42 ([5]) Td = T ( ∪
ψ∈C

Tψ).
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