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Abstract

Let R be a prime ring of characteristic different from 2, with ex-
tended centroid C, d and g derivations of R, I a non-zero right ideal
of R and s4 the standard identity of degree 4. If [d([x, y]), [x, y]][x, y] −
[x, y][g([x, y]), [x, y]] = 0, for all x, y ∈ I , then one of the following holds:

(i) s4(x1, x2, x3, x4)x5 is an identity for I ;
(ii) d(x) = [a, x], with (a − α)I = 0 for a suitable α ∈ C and g = 0.

Let R be a prime ring with center Z(R) and extended centroid C, Q its
Martindale quotient ring. Here we will consider some related problems con-
cerning derivations in prime rings which satisfy some commuting conditions.
Our aim is to study the relationship between the behaviour of such derivations
and the structure of R.

Recall that a mapping F from R to R is said to be commuting on R if
[F (x), x] = 0, for all x ∈ R, and is said to be centralizing on R if [F (x), x] ∈
Z(R), for all x ∈ R. There has been considerable interest in commuting,
centralizing and related mappings in prime and semiprime rings (see for istance
[2]).

In [11] Posner proved that the existence of a non centralizing derivation d on
a prime ring R, forces R to be commutative. Later in [12] Vukman has proved
that in case there exists a non-zero derivation d on R, where R is a prime ring
of characteristic different from 2 and 3, such that the mapping x −→ [d(x), x]
is centralizing on R, then R is commutative. In a recent paper [7] Jun and
Kim proved that if d(x)x − xg(x) ∈ Z(R), for d and g derivations of R and
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202 Commuting mappings on right ideals in prime rings

any x ∈ R then either R is commutative or d and g must be zero. The main
result of this note is then motived by the previous ones. More precisely here
we prove the following:

Theorem 1. Let R be a prime ring of characteristic different from 2, with ex-
tended centroid C, d and g derivations of R, I a non-zero right ideal of R and s4

the standard identity of degree 4. If [d([x, y]), [x, y]][x, y]−[x, y][g([x, y]), [x, y]] =
0, for all x, y ∈ I, then one of the following holds:
(i) s4(x1, x2, x3, x4)x5 is an identity for I;
(ii) d(x) = [a, x], with (a − α)I = 0 for a suitable α ∈ C and g = 0.

In all that follows R will be a prime ring of characteristic �= 2, d and g
derivations of R and I a non-zero right ideal of R.

For any ring S, Z(S) will denote its center, and [a, b] = ab− ba. In addition
s4 will denote the standard identity in 4 variables.

The related object we need to mention is the Martindale quotient ring Q
of a ring R (sometimes, as in [1], Q is called the maximal two-sided ring of
quotients).

The definitions, the axiomatic formulations and the properties of this quo-
tient ring Q can be found in [1].

In any case, when R is a prime ring, all that we need here about Q is that
R ⊆ Q, Q is a prime ring and the center of Q, denoted by C, is a field which
is called the extended centroid of R.

We make also a frequent use of the theory of generalized polynomial iden-
tities and differential identities (see [1], [3], [8], [9]). In particular we need to
recall that, when R is prime and I a non-zero right ideal of R, then I, IR and
IQ satisfy the same generalized polynomial identities [3].

We begin with the following:

Lemma 2. Let R = Mk(F ), the ring of k × k matrices over the field F , with
k > 1, a, b non-central elements of R such that [a, [x, y]]2[x, y]−[x, y][b, [x, y]]2 =
0, for all x, y ∈ R. Then a, b ∈ Z(R) unless when k = 2 and a + b ∈ Z(R).

Proof Say a =
∑

ij aijeij, b =
∑

ij bijeij , where aij, bij ∈ F , and eij are the
usual unit matrices. Let [x, y] = [eij, eji] = eii − ejj, for all i �= j. Thus

[a, eii − ejj ]2(eii − ejj) − (eii − ejj)[b, eii − ejj]2 = 0.

Right multiplying by ejj and left multiplying by eii, we get −4(aij +bij)eij = 0.
Since char(R) �= 2, we have that the matrix a + b is diagonal in Mk(F ).

For any ϕ ∈ AutF (R), we have

[ϕ(a), [ϕ(x), ϕ(y)]]2[ϕ(x), ϕ(y)] − [ϕ(x), ϕ(y)][ϕ(b), [ϕ(x), ϕ(y)]]2 = 0
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for all x, y ∈ R, and so, by the previous case, ϕ(a) + ϕ(b) must be a diagonal
matrix in Mk(F ) for any k ≥ 2.

In particular, for any r �= s, if ϕ(x) = (1 + ers)x(1 − ers), then

ϕ(a) + ϕ(b) = ϕ(a + b) = (a + b) + ers(a + b) − (a + b)ers − ers(a + b)ers =

(a + b) + (ass + bss − arr − brr)ers.

This means arr + brr = ass + bss, for all r �= s, that is a + b must be central.
Let now k ≥ 3. Since a + b = c ∈ Z(R), the main assumption says that

0 = [a, [x, y]]2[x, y]− [x, y][b, [x, y]]2 =

[−b + c, [x, y]]2[x, y] − [x, y][b, [x, y]]2 =

−[b, [x, y]]2[x, y]− [x, y][b, [x, y]]2.

As above let [x, y] = eii − ejj , for i �= j. Thus

0 = [b, [x, y]]2[x, y]+[x, y][b, [x, y]]2 = [b, eii−ejj ]2(eii−ejj)−(eii−ejj)[b, eii−ejj ]2.

Left multiplying by ekk, for all k �= i, j, and right multiplying by eii, it follows
ekkbeii = 0. This means that b is a diagonal matrix. The same above argument,
shows that b is central in Mk(F ), as well as a. �

The first part of this paper is dedicated to study the case when d and g are
both Q-inner derivations, that is there exist a, b ∈ Q such that d(x) = [a, x]
and g(x) = [b, x], for all x ∈ R.

Theorem 3. Let d and g be Q-inner derivations.
If [d([x, y]), [x, y]][x, y]− [x, y][g([x, y]), [x, y]] = 0, for all x, y ∈ R, then R

satisfy the standard identity s4, unless when d = g = 0.

Proof Let d be the inner derivation induced by the element a ∈ Q, and g the
one induced by b ∈ Q. Trivially the set {a, b} is not contained in the extended
centroid C, which is the center of Q, otherwise there is nothing to prove.
These assumptions say that R satisfies the generalized polynomial identity
[a, [x, y]]2[x, y] − [x, y][b, [x, y]]2 = 0. By a theorem due to Chuang [3] this
generalized polynomial identity is also satisfied by Q. In case C is infinite,
we have [a, [x, y]]2[x, y] − [x, y][b, [x, y]]2 = 0 for all x, y ∈ Q

⊗
C C, where C

is the algebraic closure of C. Since both Q and Q
⊗

C C are centrally closed,
we may replace R by Q or Q

⊗
C C according as C is finite or infinite. Thus

we may assume that R is centrally closed over C which is either finite or
algebraically closed and [a, [x, y]]2[x, y] − [x, y][b, [x, y]]2 = 0, for all x, y ∈ R.
By Martindale’s theorem [10], R is a primitive ring having a non-zero socle
with C as the associated division ring. In light of Jacobson’s theorem [6, pag
75] R is isomorphic to a dense ring of linear transformations on some vector
space V over C.
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Assume first that V is finite-dimensional over C. Then the density of R on
V implies that R ∼= Mk(C), the ring of all k × k matrices over C. In this case,
by our lemma, k = 2 and R satisfies s4.

Assume next that V is infinite-dimensional over C. We will prove that in
this case we get a contradiction. Since V is infinite dimensional over C then,
as in lemma 2 in [13], the set [R, R] is dense on R and so from [a, [x, y]]2[x, y]−
[x, y][b, [x, y]]2 = 0, for all x, y ∈ R, we have [a, r]2r− r[b, r]2 = 0, for all r ∈ R.
Suppose there exists v ∈ V such that {v, va} are linearly C-independent. By
the density of R, there exist w ∈ V and x0 ∈ R such that {v, va, w} are
linearly C-independent and vx0 = 0, vax0 = w, wx0 = va. From this, we have
the contradiction

0 = v([a, x0]2x0 − x0[b, x0]2) = w �= 0.

Therefore {v, va} are linearly C-dependent, for all v ∈ V , which implies that
a ∈ C, a contradiction.

The previous step implies that r[b, r]2 = 0, for all r ∈ R. Suppose that
there exists v ∈ V such that {v, vb} are linearly C-independent. Again by
the density of R, there exists x0 ∈ R such that vx0 = v, vbx0 = 0 so that
0 = vx0[b, x0]2 = vb �= 0. Therefore {v, vb} are linearly C-dependent, for all
v ∈ V , and also b ∈ C, a contradiction. �

As a consequence we get:

Corollary 4. Let g be a Q-inner derivation.
If [x, y][g([x, y]), [x, y]] = 0, for all x, y ∈ R, then R satisfy the standard

identity s4, unless when g = 0.

We will extend the previous theorem to one-sided case, as follows:

Theorem 5. Let d and g be inner derivations induced respectively by the
elements a and b in Q. If [d([x, y]), [x, y]][x, y]− [x, y][g([x, y]), [x, y]] = 0, for
all x, y ∈ I, a non-zero right ideal of R, then either I satisfy the identity
s4(x1, x2, x3, x4)x5, or there exist α, β ∈ C such that (a − α)I = 0 and b = β.

Proof We suppose that the conclusion s4(x1, x2, x3, x4)x5 = 0 in I does not
occur and prove that, in this case, there exist α, β ∈ C such that (a − α)I = 0
and b = β.

Our first aim is to show that R is a GPI-ring, that is it satisfies a non-trivial
generalized polynomial identity.

Let u ∈ I. If a and au are linearly C-dependent, then (a − γ)u = 0 for a
suitable γ ∈ C. Since a− γ and a induce the same inner derivation d, we have
that

0 = [d([ux, uy]), [ux, uy]][ux, uy]− [ux, uy][g([ux, uy]), [ux, uy]] =

−[ux, uy][b, [ux, uy]]2 (1)
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for all x, y ∈ R. If b and bu are linearly C-independent, the (1) is a non trivial
GPI for R. In the either case, there exists γ1 ∈ C such that bu = bγ1 and the
equation (1) becomes

−γ1[ux, uy]u[ux, uy]2 − [ux, uy]3b + 2γ1[ux, uy]2u[ux, uy]

which is again a non trivial GPI for R. A parallel proof shows that R is a
GPI-ring also when a and au are linearly C-independent.

Since R is GPI, by [10] RC is primitive with non-zero socle H . It follows
from [3] that [a, [x, y]]2[x, y]−[x, y][b, [x, y]]2 is a generalized polynomial identity
for IH . Let r1, r2, r3, r4, r5, w ∈ I such that s4(r1, r2, r3, r4)r5 �= 0. The first
aim is here to prove that (a − α)I = 0 for a suitable α ∈ C.

If, for any x ∈ I there exists αx ∈ C such that ax = αxx, then standard
well known arguments show that ax = αx for all x, where α is not depending
on the choice of x, so we are done.

Therefore suppose that there exists w ∈ I such that aw �= γ)w for all γ ∈ C.
Since RC is a regular ring, there exists e2 = e ∈ IH such that eRC =∑n+2

i=1 riRC + wRC and ri = eri for i = 1, .., 5, w = ew.
Since [a, [ex, ey]]2[ex, ey]− [ex, ey][b, [ex, ey]]2 is satisfied by RC, left multi-

plying by (1 − e), we get that RC satisfies (1 − e)a[ex, ey]3. By [4] it follows
that either (1 − e)ae = 0 or [ex, ey]e is a generalized identity for RC. On
the other hand this last case cannot occur, since 0 �= s4(er1, er2, er3, er4)er5 =
s4(r1, r2, r3, r4)r5, thus (1−e)ae = 0, that is ae = eae. Therefore [a, [x, y]]2[x, y]−
[x, y][b, [x, y]]2 is satisfied by eRCe.

By theorem 3, since 0 �= s4(er1, er2, er3, er4)er5 = s4(r1, r2, r3, r4)r5, we get
ae, ebe ∈ Ce. In particular ae = αe for some α ∈ C. But this drives to the
contradiction aw = aew = αw �= aw.

Hence we have that (a − α)I = 0, for a suitable α ∈ C. Since a and a − α
induce the same inner derivation d, we have that eRCe satisfies

[a, [x, y]]2[x, y]− [x, y][b, [x, y]]2 = [a − α, [x, y]]2[x, y]− [x, y][b, [x, y]]2 =

−[x, y][b, [x, y]]2.

Since eRCe does not satisfy s4, the previous corollary says that ebe ∈ Ce, that
is e(b − β)e = 0 for a suitable β ∈ C.

If [b, I]I = 0, then 0 = [b, e]e = [b − β, e]e = (b − β)e. Since b and b − β
induce the same inner derivation g, it follows that RC satisfies

[ex, ey][b − β, [ex, ey]]2 = [ex, ey]3(b − β).

Again by [4] either [ex, ey]e = 0 or b = β. Since the first conclusion contradicts
with s4(er1, er2, er3, er4)er5 �= 0, then b ∈ C and we are done.

Finally consider the case when there exist u, v ∈ I such that [b, u]v �= 0, in
particular we may assume u, v ∈ eRC. By Litoff’s theorem [5] there exists an
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idempotent f ∈ H
⊗

C C, where C is the algebraic closure of C, such that

e, be, eb, u, v, bu, ub, bv, vb ∈ f(H
⊗

C

C)f ∼= Mm(C) m > 2.

For x, y ∈ ef(H
⊗

C C)f , by assumption we have

0 = f [x, y][b, [x, y]]2f = [x, y][fbf, [x, y]]2.

By our lemma, for m > 2, [fbf, ef(H
⊗

C C)f ]ef(H
⊗

C C)f = 0, but 0 �=
[b, u]v = [fbf, efuf ]efvf ∈ [fbf, ef(H

⊗
C C)f ]ef(H

⊗
C C)f = 0. This gives

a contradiction and the theorem is finished. �
Now we premit a simple result which will be useful in the proof of main

theorem:

Theorem 6. Let R be a prime ring of characteristic different from 2. Define
the following polynomials on R:

f1 = [[x1, x2], [x3, x2]][x3, x2] − α[x3, x2][[x1, x2], [x3, x2]] − 1 �= α ∈ Z(R);

f2 = [[x1, x2], [x3, x2]][x3, x2];

f3 = [x1, x2][x3, x2]2 − [x3, x2]2[x1, x2].

If R satisfies f1 or f2 then it is commutative. If R satisfies f3 then it satisfies
the standard identity s4.

Proof Since R is a ring satisfying a polynomial identity, it is well known that
there exists a field F such that R ⊆ Mk(F ), moreover Mk(F ) satisfies the same
identities of R. If k = 1 there is nothing to prove. Let k ≥ 2.

Fix x1 = e12, x2 = e11 − e22, x3 = e21, then we get the contradictions

f1 = 8e21 + 8αe21 �= 0 f2 = 8e21 �= 0.

On the other hand, for k ≥ 3, let x1 = e23 − e22, x2 = e12, x3 = e21, and again
we have the contradiction

f3 = e13 �= 0.

�
Before beginnig the proof of the main theorem, for the sake of completeness,

we prefer to recall some basic notations, definitions and some easy consequences
of the result of Kharchenko [8] about the differential identities on a prime ring
R. We refer to [1, Chapter 7] for a complete and detaleid description of the
theory of generalized polynomial identities involving derivations.

It is well known that any derivation of a prime ring R can be uniquely ex-
tended to a derivation of its Martindale quotients ring Q, and so any derivation
of R can be defined on the whole Q [1, pg. 87].
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Now, we denote by Der(Q) the set of all derivations on Q. By a derivation
word we mean an additive map Δ of the form Δ = d1d2 . . . dm, with each
di ∈ Der(Q). Then a differential polynomial is a generalized polynomial, with
coefficents in Q, of the form Φ(Δj xi) involving noncommutative indeterminates
xi on which the derivations words Δj act as unary operations. The differential
polynomial Φ(Δj xi) is said a differential identity on a subset T of Q if it vanishes
for any assignment of values from T to its indeterminates xi.

Let Dint be the C-subspace of Der(Q) consisting of all inner derivations on
Q and let d and g be two non-zero derivations on R. By [8, Theorem 2] we have
the following result (see also [9, Theorem 1]):

Remark 7. Let R be a prime ring of characteristic different from 2, if d and g
are C−linearly indipendent modulo Dint and Φ(Δj xi) is a differential identity
on R, where Δj are derivations words of the following form g, d, then Φ(yji) is
a generalized polynomial identity on R, where yji are distinct indeterminates.

As a particular case, we have:

Remark 8. If d is a non-zero derivation on R and Φ(x1, .., xn, dx1, ..,
dxn) is

a differential identity on R, then one of the following holds:
(i) either d ∈ Dint

(ii) or R satisfies the generalized polynomial identity

Φ(x1, .., xn, y1, .., yn).

The following two results will help us in the proof of main theorem:

Theorem 9. Let R be a prime ring of characteristic different from 2, d and g
derivations of R, I a non-zero right ideal of R such that [d([x, y]), [x, y]][x, y]−
[x, y][g([x, y]), [x, y]] = 0, for all x, y ∈ I. If d ang g are linearly C-independent
modulo Dint then [x1, x2]x3 is an identity for I.

Proof Let u ∈ I, then R satisfies the following

[d([ux, uy]), [ux, uy]][ux, uy]− [ux, uy][g([ux, uy]), [ux, uy]] =

[[d(u)x + ud(x), uy] + [ux, d(u)y + ud(y)], [ux, uy]][ux, uy]−
[ux, uy][[g(u)x+ ug(x), uy] + [ux, g(u)y + ug(y)], [ux, uy]].

Since d and g are linearly C-independent modulo Dint, it follows that R satisfies

[[d(u)x1 + ux2, ux3] + [ux1, d(u)x3 + ux4], [ux1, ux3]][ux1, ux3]−
[ux1, ux3][[g(u)x1 + ux5, ux3] + [ux1, g(u)x3 + ux6], [ux1, ux3]]

and in particular it satisfies the blended component

[[ux2, ux3], [ux1, ux3]][ux1, ux3].
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Hence R is a GPI-ring and, by [10], RC is primitive with non-zero socle H . It
follows from [3] that

[[x2, x3], [x1, x3]][x1, x3]

is a generalized polynomial identity for IH . Suppose by contradiction that
there exist r1, r2, r3 ∈ I such that [r1, r2]r3 �= 0.

Since RC is a regular ring, there exists e2 = e ∈ IH such that eRC =∑3
i=1 riRC and ri = eri for i = 1, 2, 3.
Since eRCe satisfies [[x2, x3], [x1, x3]][x1, x3], by theorem 6 eRCe is com-

mutative. This contradicts with [er1, er2]er3 = [r1, r2]r3 �= 0. �

Theorem 10. Let R be a prime ring of characteristic different from 2, d
and g non-zero derivations of R, I a non-zero right ideal of R such that
[d([x, y]), [x, y]][x, y] − [x, y][g([x, y]), [x, y]] = 0, for all x, y ∈ I. If g = αd,
for some α ∈ C, then s4(x1, x2, x3, x4)x5 is an identity for I.

Proof In this case I satisfies

[d([x, y]), [x, y]][x, y]− α[x, y][d([x, y]), [x, y]].

If d and g are both inner derivations, then we end up by theorem 5.
Let both d and g = αd be outer derivations. For u ∈ I, R satisfies the

following

[d([ux, uy]), [ux, uy]][ux, uy]− α[ux, uy][d([ux, uy]), [ux, uy]] =

[[d(u)x + ud(x), uy] + [ux, d(u)y + ud(y)], [ux, uy]][ux, uy]−
α[ux, uy][[d(u)x + ud(x), uy] + [ux, d(u)y + ud(y)], [ux, uy]].

By Kharchenko’s result in [8], as in theorem 9, R satisfies

[[d(u)x1 + ux2, ux3] + [ux1, d(u)x3 + ux4], [ux1, ux3]][ux1, ux3]−
α[ux1, ux3][[d(u)x1 + ux2, ux3] + [ux1, d(u)x3 + ux4], [ux1, ux3]]

and in particular it satisifes the blended component

[[ux2, ux3], [ux1, ux3]][ux1, ux3] − α[ux1, ux3][[ux2, ux3], [ux1, ux3]] (2).

Hence R is a GPI-ring and RC is primitive with non-zero socle H . Suppose
that there exist r1, r2, r3, r4, r5 ∈ I such that s4(r1, r2, r3, r4)r5 �= 0. So there
exists e2 = e ∈ IH such that eRC =

∑5
i=1 riRC and ri = eri for i = 1, .., 5.

Moreover

[[x2, x3], [x1, x3]][x1, x3] − α[x1, x3][[x2, x3], [x1, x3]]

is polynomial identity for eRCe.
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By theorem 6, since s4(eRCe, eRCe, eRCe, eRCe) �= 0, we have α = −1,
that is g = −d and the equation (2) must be rewrite as follows:

[ux2, ux3][ux1, ux3]2 − [ux1, ux3]2[ux2, ux3] = 0

for all u ∈ I and x1, x2, x3 ∈ RC. In particular

[ex2, ex3][ex1, ex3]2 − [ex1, ex3]2[ex2, ex3] = 0.

Again by theorem 6, eRCe satisifes s4(x1, x2, x3, x4)x5, a contradiction. �
In light of previous results we may finally prove the following:

Theorem 11. Let R be a prime ring of characteristic different from 2, with ex-
tended centroid C, d and g derivations of R, I a non-zero right ideal of R and s4

the standard identity of degree 4. If [d([x, y]), [x, y]][x, y]− [x, y][g([x, y]), [x, y]],
for all x, y ∈ I, then one of the following holds:
(i) s4(x1, x2, x3, x4)x5 is an identity for I;
(ii) d(x) = [a, x], with (a − α)I = 0 for a suitable α ∈ C and g = 0.

Proof Thanks to theorems 9 and 10, we may consider the only case when
d and g are linearly C-dependent modulo Dint, that is there exist α ∈ C and
b ∈ Q such that g = αd+ad(b), where ad(b)(x) = [b, x], for all x ∈ R. Moreover
b /∈ C, since g /∈ Cd.

If d is an inner derivation, then so is also g and we end up by theorem 5.
Therefore let d be an outer derivation. We prove that if s4(I, I, I, I)I �= 0 then
a contradiction occurs.

For all u ∈ I, R satisifes

[d([ux, uy]), [ux, uy]][ux, uy]− [ux, uy][αd([ux, uy])+ [b, [ux, uy]], [ux, uy]] =

[[d(u)x + ud(x), uy] + [ux, d(u)y + ud(y)], [ux, uy]] [ux, uy]−
[ux, uy] [[αd(u)x + [b, u]x + uαd(x) + u[b, x], uy]+

[ux, αd(u)y + [b, u]y + uαd(y) + u[b, y]], [ux, uy]].

Since d is outer, by Kharchenko’s result in [8], R satisfies

[[d(u)x1 + ux2, ux3] + [ux1, d(u)x3 + ux4], [ux1, ux3]] [ux1, ux3]−
[ux1, ux3] [[αd(u)x1 + [b, u]x1 + uαx2 + u[b, x1], ux3]+

[ux1, αd(u)x3 + [b, u]x3 + uαx4 + u[b, x3]], [ux1, ux3]].

In particular R satisifes the blended component

[[ux2, ux3], [ux1, ux3]][ux1, ux3] − α[ux1, ux3][[ux2, ux3], [ux1, ux3]].

Hence R is a GPI-ring and RC is primitive with non-zero socle H . Suppose
that there exist r1, r2, r3, r4, r5 ∈ I such that s4(r1, r2, r3, r4)r5 �= 0. So there
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exists e2 = e ∈ IH such that eRC =
∑5

i=1 riRC and ri = eri for i = 1, .., 5.
Moreover

[[x2, x3], [x1, x3]][x1, x3] − α[x1, x3][[x2, x3], [x1, x3]]

is polynomial identity for eRCe.
By theorem 6, since s4(eRCe, eRCe, eRCe, eRCe) �= 0, we have α = −1,

that is g = −d + ad(b). Then R satisifes

[d([ex, ey]), [ex, ey]][ex, ey] + [ex, ey][d([ex, ey]) + [b, [ex, ey]], [ex, ey]] =

([d(e)x + ed(x), ey] + [ex, d(e)y + ed(y)]) [ex, ey]2−
[ex, ey]2 ([d(e)x + ed(x), ey] + [ex, d(e)y + ed(y)]) +

[ex, ey][b, [ex, ey]]2.

Again it follows that R satisfies

([d(e)x1 + ex2, ex3] + [ex1, d(e)x3 + ex4]) [ex1, ex3]2−

[ex1, ex3]2 ([d(e)x1 + ex2, ex3] + [ex1, d(e)x3 + ex4])+

[ex1, ex3][b, [ex1, ex3]]2

and also the blended component

[ex1, ex3]2[ex2, ex3] − [ex2, x3][ex1, ex3]2.

By theorem 6, since s4(eRCe, eRCe, eRCe, eRCe) �= 0, we get a contradiction.
�
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