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Abstract

Using commutativity of rings satisfying (xy)n(x,y) = xy proved by
Searcoid and MacHale [16], Ligh and Luh [13] have given a direct sum
decomposition for rings with the mentioned condition. Further Bell and
Ligh [9] sharpened the result and obtained a decomposition theorem for
rings with the property xy = (xy)2f(x, y) where f(X, Y ) ∈ Z < X, Y >,
the ring of polynomials in two noncommuting indeterminates. In the
present paper we continue the study and investigate structure of certain
rings and near rings satisfying the following condition which is more
general than the mentioned conditions : xy = p(x, y), where p(x, y) is
an admissible polynomial in Z < X,Y >. Moreover we deduce the
commutativity of such rings.

1 Introduction

Throughout the paper R will denote an associative ring (may be without unity
1) and N the set of all nilpotent elements of R. A ring R is called zero-
commutative if for all x, y ∈ R, xy = 0 implies that yx = 0. An element x ∈ R
with the property x = xn(x) for some integer n(x) > 1 will be called potent.
The set of all potent elements will be denoted by P . If P = R, we shall call R
a J-ring. By the well known x = xn(x) theorem of Jacobson [12], J-rings are
necessarily commutative.

Let Z < X, Y > denote the ring of polynomials with integer coefficients
in two noncommuting indeterminates X and Y . The symbol w(X, Y ) will
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denote a word in X and Y -ie. an element of Z < X, Y > of the form
Y j1Xk1Y j2Xk2 · · ·Y jsXks where the ji and ki are nonnegative integers such
that

∑s
i=1 ji + ki > 0; and the symbols |w|x and |w|y will denote

∑s
i=1 ki

and
∑8

i=1 ji respectively. We shall call P (X, Y ) ∈ Z < X, Y > an admissible
polynomial if P (X, Y ) =

∑k
i=1 niwi(X, Y ), where each ni is an integer and

each wi(X, Y ) is a word with |wi|x ≥ 2 and |wi|y ≥ 2.

A sufficient condition for R to be periodic is Chacron’s criterion: For each
x ∈ R there exists an integer m = m(x) ≥ 1 and a polynomial f(X) ∈ Z[X]
such that xm = xm+1f(x) ([10]). It is shown in [5] that if R is a periodic
ring, then every element x ∈ R can be written in the form x = a + u, where
a ∈ P and u ∈ N . In a very surprising structural result (signified as theorem
B in sequel) Bell [7] remarked that if in a periodic ring R every element has a
unique representation as above, then P and N both are ideals and R = P

⊕
N .

2. A decomposition theorem for rings

Theorem 2.1 Let R be a ring such that for each x, y ∈ R there exists an
admissible p(X, Y ) ∈ Z < X, Y > for which

xy = p(x, y). (P )

Then R is a direct sum of a J-ring and a zero ring.

Proof By taking y = x in conditon (P ), we see that R satisfies Chacron’s
condition for periodicity and u2 = 0 for all u ∈ N . Now let u ∈ N and x ∈ R.
Then (ux)u = P (ux, u), where P (X, Y ) =

∑t
i=1 niwi(X, Y ) as mentioned in

section 1. If Y precedes an X in wi(X, Y ), then clearly wi(ux, u) = 0; otherwise
wi(X, Y ) = XjY k with j, k ≥ 2, and again wi(ux, u) = 0. Thus (ux)u = 0,
and it follows easily that xu = ux = 0. Thus

RN = NR = {0}. (2.1)

Since R is periodic, every element x in R can be written in the form x =
a + u, where a ∈ P and u ∈ N ; and by [7, Theorem B] it is sufficient to show
that the above representation is unique. Let a + u = b + v where a, b ∈ P and
u, v ∈ N . Then

a − b = v − u. (2.2)

Since a, b ∈ P , there exist odd integers p = p(a) > 1 and q = q(b) > 1 such
that ap = a and bq = b; and letting k = (p−1)q−(p−2) = (q−1)p−(q−2), we
see that ak = a and bk = b. Note that e = ak−1 and f = bk−1 are idempotents
such that ea = a and fb = b. Multiplying (2.2) by a and b from both sides
gives a2 = ab = ba and b2 = ab = ba, which yields that a2 = b2; and
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since k − 1 is even, we have e = f . Now multiplying (2.2) by e shows that
a = b. Hence the proof is complete. �

In view of (2.1), we conclude that the nilpotent elements of R annihilate
R on both sides and hence are central. Since J-rings are commutative, a
consequence of the above theorem is the following corollary.

Corollary 2.1 Let R be a ring such that for each x, y ∈ R there exists an
admissible p(X, Y ) ∈ Z < X, Y > for which condition (P) is satisfied. Then R
is commutative.

3. A decomposition theorem for near-rings

For the purpose of this section R will denote a left-near ring with multiplicative
center Z. An element x ∈ R is said to be distributive if (y + z)x = yx + zx
for all y, z ∈ R. If every element of R is distributive, then R is said to be
a distributive near ring. A near ring R is said to be distributively generated
(d − g) if it contains a multiplicative subsemigroup of distributive elements
which generates the additive group (R, +).

An ideal of a near ring R is a normal subgroup I of (R, +) such that
(i) RI ⊆ I and (ii) (x + s)y − xy ∈ I for x, y ∈ R and s ∈ I.

It is natural to question whether the analogous hypotheses yield the direct
sum decomposition in the case of near rings. An example due to Clay (cf.
[11, Example H-29, page 342]) shows that it is not possible to obtain such a
decomposition.

Consider the non-abelian additive group (R, +), isomorphic to the sym-
metric group S3, and define addition and multiplication in R as follows :

+ 0 a b c u v
0 0 a b c u v
a a 0 v u c b
b b u 0 v a c
c c v u 0 b a
u u b c a v 0
v v c a b 0 u

. 0 a b c u v
0 0 0 0 0 0 0
a 0 a a a 0 0
b 0 a a a 0 0
c 0 a a a 0 0
u 0 0 0 0 0 0
v 0 0 0 0 0 0

It is easy to see that (R, +, ·) is a commutative (distributive) near ring
satisfying xy = xy2x, for all x, y ∈ R. However P = {0, a} is not an ideal of
R.
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Hence, following [9], we define a weaker notion of orthogonal sum. A near
ring R is an orthogonal sum of subnear rings A and B denoted by R = A�B
if AB = BA = {0} and each element of R has a unique representation in
the form a + b with a ∈ A and b ∈ B.

In this section we shall obtain an orthogonal sum decomposition for cer-
tain near rings R satisfying condition (P ).

Theorem 3.1 Let R be a d-g near ring such that for each x, y ∈ R there exists
an admissible p(X, Y ) ∈ Z < X, Y > for which condition (P) is satisfied. Then
R is periodic and commutative. Moreover, R = P � N , where P is a subring
and N is a subnear ring with trivial multiplication.

Before starting the proof of the above theorem we state the following
known results which are essentially found in [2],[4],[6] and [9] respectively.

Lemma 3.1 Let R be a zero symmetric near ring satisfying properties :
(i) For each x in R, there exists an integer n(x) > 1 such that xn(x) = x.
(ii) Every non-trivial homomorphic image of R contains a non zero central

idempotent.
Then (R, +) is abelian.

Lemma 3.2 If R is a d-g near ring such that N ⊆ Z, then N is an ideal.

Lemma 3.3 Let R be a d-g near ring such that for each x ∈ R, there exist a
positive integer n = n(x) and an element s in the subnear ring generated by x
for which xn = xns. If N ⊆ Z, then R is periodic and commutative.

Lemma 3.4 Let R be a near ring in which idempotents are multiplicatively
central. If e and f are any idempotents, there exists an idempotent g such that
ge = e and gf = f.

Lemma 3.5 If R is a zero commutative periodic near ring, then R = P + N .

Proof of theorem 3.1 Let R satisfy condition (P ). Using the fact that d− g
near rings are zero symmetric and arguing in the similar manner as we have
done in the proof of theorem 2.1, we obtain

NR = RN = {0}. (3.1)

Thus using (3.1), we have N ⊆ Z and N2 = {0}. Replacing y by x in (P )
we get an element R in the subnear ring generated by x such that x2 = x2r.
Hence by Lemma 3.3 R is periodic and commutative. Every element x ∈ R
can be expressed in the form x = a + u, where a ∈ P and u ∈ N .

Next we show that P is a subring. Let a, b ∈ P and choose
integers p = p(a) > 1 and q = q(b) > 1 such that ap = a and bq = b. Let
r = (p − 1)q − (p − 2) = (q − 1)p − (q − 2). Then it is clear that ar = a and
br = b. Note that e = ar−1 and f = br−1 are idempotents with ea = a and
fb = b. Obviously (ab)r = arbr = ab, hence ab ∈ P . Moreover, by Lemma
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3.2 N is an ideal. Since R/N has the xt = x property we have an integer j > 1
such that

(a − b)j = a − b + u ; u ∈ N (3.2)

Using Lemma 3.4 we can choose an idempotent g for which ge = e and
gf = f . Therefore, ga = a and gb = b. Now multiplying (3.2) by g we
have (a − b)j = a − b i.e. a − b ∈ P . Also by Lemma 3.1 (P, +) is abelian.
Hence P is a subring.

Trivially P ∩ N = {0}. Let a + u = b + v, where a, b ∈ P and u, v ∈ N .
Then a − b = v − u ∈ P ∩ N = {0}, which yields a = b and v = u. Hence
R = P � N .
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