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Abstract

We prove that Choquet Theorem does not hold for C[0, 1], the space
of all continuous real-valued functions on the unit interval [0, 1].

1 Introduction

Choquet Theorem for locally compact separable Hausdorff spaces is foundation
in several areas of applied mathematics, including probability. However, for
non-locally compact space, Choquet Theorem does not hold. In fact, a negative
version of Choquet Theorem for the Hilbert space

l2 = {x = (xn) : ||x|| = (
∞∑

n=1

x2
n)

1
2 < ∞}

was given in [4].
In this note we consider Choquet Theorem for C[0, 1], the space of all con-

tinuous real-valued functions on the unit interval [0, 1]. As one of the most
important domains in probability, see Billingsley [1], it is of interest to know
whether Choquet Theorem holds for C[0, 1]. Our aim is to seek a version of
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Choquet Theorem for the space C[0, 1]. As in [4] our result again shows that
Choquet Theorem fails for this space.

To state our result for the space C[0, 1], we first describe the Choquet
Theorem in the locally compact setting. Let E be a locally compact separable
Hausdorff space. Let K,F , G and B denote the classes of all compact subsets,
closed subsets, open subsets and Borel subsets of E, respectively. For A ⊂ E,
we denote

FA = {F ∈ F : F ∩ A �= ∅} and FA = {F ∈ F : F ∩ A = ∅}.
To topologize the space F we define a base of open neighborhoods for F ∈ F
of the form

{FK
G1...Gn

: K ∈ K; G1, ..., Gn ∈ G; and n ∈ N},
where

FK
G1...Gn

= FK ∩ FG1 ∩ . . .∩ FGn .

Then U(F ) = FK
G1...Gn

is a neighborhood of F ∈ F if and only if F ∩K = ∅ and
F ∩ Gi �= ∅ for i = 1, . . . , n. We will refer to this as the miss-and-hit topology.

It was shown in [3] that for a locally compact separable Hausdorff space E,
the space F with the miss-and-hit topology is compact, Hausdorff and sepa-
rable. Let σ(F) denote the family of all Borel sets of F in the miss-and-hit
topology. A random closed set on E is a probability measure P on the mea-
surable space (F , σ(F)).

By a capacity functional T : K → [0, 1] we mean a monotone set function
defined on K with values in [0, 1] satisfying the following conditions:

(i) T (∅) = 0;
(ii) T is alternating of infinite order: For any compact sets Ki, i = 1, 2, . . . , n;

n ≥ 2, we have

T (
n⋂

i=1

Ki) �
∑

I∈I(n)

(−1)#I+1T (
⋃
i∈I

Ki),

where I(n) = {I ⊂ {1, . . . , n}, I �= ∅} and #I denotes the cardinality of I;
(iii) T is upper continuous in the miss-and-hit topology on K, i.e., Kn+1 ⊂

Kn for every n ∈ N and K =
⋂∞

n=1 Kn, then T (Kn) ↘ T (K).
The following result, known as Choquet Theorem, provides ways to specify

probability measures on the measurable space (F , σ(F)) as follows.

1.1. Choquet Theorem ([2],[3]). Let E be a locally compact separable
Hausdorff space. Then there exists a bijection between probability measures P
on σ(F) and capacity functional T : K → [0,∞) satisfying

P (FK) = T (K) for every K ∈ K.

Choquet Theorem is equivalent to the theorem below, called an open version
of Choquet Theorem.
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1.2. An open version of Choquet Theorem ([2],[3]). Let E be a locally
compact separable Hausdorff space and let T : G → [0,∞) be a set function.
Then there exists unique a probability measure P on σ(F) satisfying

P (FG) = T (G) for every G ∈ G

if and only if T is a capacity functional on G, i.e.,
(i) T (∅) = 0, 0 � T � 1, T is monotone;
(ii) T is alternating of infinite order on G, and
(iii) If Gn ↗ G on G (i.e.,Gn ⊂ Gn+1 for every n ∈ N and G =

⋃∞
n=1 Gn), then

T (Gn) ↗ T (G).

1.3. Remark By a Polish space we mean a complete, separable metric space.
It was shown in [5] that if E is a non-locally compact Polish space, then the
miss-and-hit topology on F is no longer Hausdorff. However, the space of all
bounded closed subsets of a metric space equipped with the Hausdorff metric
is Hausdorff. In the next section, we will use this topology to obtain a negative
version of Choquet Theorem for the space C[0, 1].

2 A negative version of Choquet Theorem

In what follows E will denote the closed unit ball of C[0, 1], i.e.,

E = {x ∈ C[0, 1] : ||x|| = sup0�t�1|x(t)| � 1}.

Note that E is a bounded Polish space which is not locally compact. Let F , G
and B denote the families of all closed subsets, open subsets and Borel subsets
of E, respectively. The space F will be equipped with the Hausdorff metric

d(S, T ) =

⎧⎪⎨
⎪⎩

max{supx∈S ||x− T ||, supx∈T ||x− S||} if S �= ∅, T �= ∅
0 if S = T = ∅
2 otherwise,

(2.1)

where ||x− S|| = inf{||x− y|| : y ∈ S}. Let σ(F) denote the family of all Borel
sets (with respect to the Hausdorff metric) of F .

2.1. Proposition. The topology induced by the Hausdorff metric is stronger
than the miss-and-hit topology.
Proof. We equip F with the topology induced by the Hausdorff metric. It
suffices to prove that FG and FK are open in F for G ∈ G and K ∈ K.

Let S ∈ FG. Then S ∩ G �= ∅. Since G is open in E, there exist r > 0 and
x ∈ S such that the ball B(x, r) ⊂ G. Then it is easy to show that B(S, r) ⊂ FG,
where B(S, r) denotes the ball in F (in the Hausdorff metric) with center S
and radius r. That means FG is open in F .
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For F ∈ FK we have F ∩ K = ∅. By the compactness of K we get

ε = inf{||x− F || : x ∈ K} > 0.

We claim that the ball B(F, ε) ⊂ FK . Indeed, let T ∈ B(F, ε). If T ∩ K �= ∅,
then

supy∈T ||y − F || ≥ supy∈T∩K ||y − F ||
≥ infy∈T∩K ||y − F ||
≥ infy∈K ||y − F || = ε,

which contradicts T ∈ B(F, ε). Therefore, T ∩ K = ∅, i.e., T ∈ FK . Conse-
quently, FK is open in F . The proposition is proved. �

Note that the space F equipped with the miss-and-hit topology is not Haus-
dorff. Therefore, this topology is strictly weaker than the topology induced by
the Hausdorff metric.

Our main result in this paper is the following theorem.

2.2. Theorem (Main Theorem). There exists a monotone set function T :
G → [0, 1] with the following properties:

(i) T (∅) = 0, T (E) = 1;
(ii) T is lower continuous in the Hausdorff metric, i.e., if Gn ↗ G (in the

Hausdorff metric), then T (Gn) ↗ T (G);
(iii) T is alternating of infinite order on G;
(iv) No probability measure P on σ(F) satisfies the conditions

P (FG) = T (G) for every G ∈ G.

2.3. Remark. Obviously Theorem 2.2 is not a counter-example of Choquet
Theorem for the space C[0, 1], since we use the topology induced by Hausdorff
metric (2.1) instead of the miss-and-hit topology. However, in some sense,
Theorem 2.2 can be viewed as a ”negative version” of Choquet Theorem for
the space C[0, 1].

To prove Theorem 2.2, we are going to define a set function T : G → [0, 1]
satisfying the conditions (i)-(iv) of the theorem. The proof of this theorem is
based on the proof of the Theorem 1 in [4].

3 Some auxiliary lemmas

Denote B(x, r) = {y ∈ E : ||x− y|| < r}. For every G ∈ G, let

Tn(G) = inf {r > 0 : G ⊂ B(x1, r) ∪ . . .∪ B(xn, r)},
for n ∈ N and x1, . . . , xn ∈ E.
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It is easy to see that {Tn(G)} is a descreasing sequence. Define

T (G) = lim
n→∞Tn(G) for every G ∈ G. (3.1)

Clearly T (G) = 0 if and only if G is compact. Accordingly T (G) is known as
Kuratowski measure of non-compactness of G ∈ G. It is easy to see that T is
monotone and 0 � T � 1.

First we are going to construct a sequence {en} ⊂ E of continuous functions
on the unit interval [0, 1]. Let Δ = [a, a + δ], a ∈ R, δ > 0. We first define
functions αΔ, βΔ : R → [−1, 1] by

αΔ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if a � t � a + δ/3
6(t − a)/δ − 3 if a + δ/3 < t < a + 2δ/3
1 if a + 2δ/3 � t � a + δ

0 otherwise,

and

βΔ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−6(t − a)/δ + 1 if a < t < a + δ/3
−1 if a + δ/3 � t � a + 2δ/3
6(t − a)/δ − 5 if a + 2δ/3 < t < a + δ

0 otherwise.

Clearly,

αΔ(t) =

{
|3t − 3a − δ|/δ − |3t− 3a − 2δ|/δ if a � t � a + δ

0 otherwise,
(3.2)

and

βΔ(t) =

{
|3t − 3a − δ|/δ + |3t− 3a − 2δ|/δ − 2 if a < t < a + δ

0 otherwise.
(3.3)

For each n ∈ N, (n ≥ 1), we divide the unit interval [0, 1] into 3n−1 equal
subintervals of length 3−n+1, and denote

Δn,i = [
i − 1
3n−1

,
i

3n−1
] for i = 1, . . . , 3n−1,

In(k) = {i ∈ {1, . . . , 3n−1} : i = 4l + k, l ∈ N} for k = 1, 2, 3, 4. (3.4).

For each n ∈ N, n ≥ 1, let

en =
∑

i∈In(1)

αΔn,i +
∑

i∈In(2)

βΔn,i −
∑

i∈In(3)

αΔn,i −
∑

i∈In(4)

βΔn,i ,
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where αΔ and βΔ are defined by (3.2) and (3.3), respectively. From the def-
inition of αΔ and βΔ it follows that en are continuous functions on [0, 1] and
||en|| = 1 for every n. Moreover, observe that

en(t) =

{
−1 for t ∈ ⋃

i∈In+1(1) Δn+1,i

1 for t ∈ ⋃
i∈In+1(3) Δn+1,i.

(3.5)

We prove the following lemmas.

3.1. Lemma a) Let m, n ∈ N and 1 � m < n. Then for any i ∈ Im+1(1) (or
i ∈ Im+1(3)) there exist j ∈ In+1(1) and k ∈ In+1(3) such that

Δn+1,j ⊂ Δm+1,i and Δn+1,k ⊂ Δm+1,i. (3.6)

b) For any r ∈ (0, 1) and for any x ∈ E, the ball B(x, r) contains at most one
en.
Proof of a). Clearly that it is sufficient to prove in the case n = m + 1. If
i ∈ Im+1(1), then i = 4l + 1, l ∈ N (see (3.4)). The interval Δm+1,i is divided
into three equal subintervals denoted by Δm+2,j , Δm+2,j+1 and Δm+2,j+2. We
have

j = 3(i − 1) + 1 = 3(4l + 1 − 1) + 1 = 4(3l) + 1 ∈ Im+2(1) = In+1(1).

Hence j ∈ In+1(1) and k = j + 2 ∈ In+1(3) satisfy inclusions (3.6). If
i ∈ Im+1(3), then i = 4l + 3, l ∈ N (see (3.4)). In the same way, the in-
terval Δm+1,i is divided into three equal subintervals Δm+2,j , Δm+2,j+1 and
Δm+2,j+2. Observe that

j = 3(i − 1) + 1 = 3(4l + 3 − 1) + 1 = 4(3l + 1) + 3 ∈ Im+2(3) = In+1(3).

Hence j + 2 ∈ In+1(1) and k = j ∈ In+1(3) satisfy inclusions (3.6).
Proof of b). If b) does not hold, there are em, en ∈ B(x, r) with n �= m.
Assume that n ≥ m + 1. Let i ∈ Im+1(3). By a) there exists j ∈ In+1(1) such
that Δn+1,j ⊂ Δm+1,i. For t ∈ Δn+1,j, from (3.5) we have

2 = |em(t) − en(t)| � ||en − em||
� ||en − x||+ ||em − x|| < 2r < 2,

a contradiction. The lemma is proved. �

3.2. Lemma. T (G) = 1 for any open subset G of E containing {en : n ∈ N}.
Proof. Asumme on the contrary that T (G) < 1. Take r > 0 with T (G) < r < 1.
By the definition of T there exists N ∈ N such that

G ⊂
N⋃

i=1

B(xi, r).
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Hence, there exists i0 ∈ {1, . . . , N} such that B(xi0 , r) contains infinitely many
en. By Lemma 3.1(b) we get a contradiction. Consequently T (G) = 1, and the
proof of the lemma is completed. �

Let E be a class of subsets of a set E which is closed under finite unions
and intersections. We say that a set function T is maxitive on E if

T (A ∪ B) = max{T (A), T (B)} for A, B ∈ E .

The following lemma was shown in [4].

3.3. Lemma. Any maxitive set function is alternating of infinite order.

4. Proof of the main theorem

Our aim is to show that the set function T defined by (3.1) satisfies the
conditions of Theorem 2.2.
Proof of (i). Obviously T (∅) = 0, and the fact that T (E) = 1 is a special case
of Lemma 3.2.
Proof of (ii). Asumme that

Gn ↗ G ⊂ E and sup
x∈G

||x− Gn|| → 0 as n → ∞. (4.1)

Since T is monotone, limn→∞ T (Gn) � T (G). We claim that limn→∞T (Gn) =
T (G). Suppose it is not the case, say limn→∞ T (Gn) < α < T (G), then we take
δ > 0 such that α + δ < T (G). By (4.1) there exists N ∈ N such that

G ⊂ (GN)δ , (4.2)

where (GN )δ = {x ∈ E : ||x− GN || < δ}.
Since {Gn} is increasing, T (GN) � limn→∞ T (Gn) < α. By definition

GN ⊂ B(x1, α) ∪ . . .∪ B(xk, α) for sufficiently large k ∈ N,

which implies, see (4.2)

G ⊂ B(x1, α + δ) ∪ . . . ∪ B(xk, α + δ).

This follows that
T (G) � α + δ < T (G),

a contradiction. Consequently,

T (Gn) ↗ T (G),

and (ii) is established.
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Proof of (iii). In order to prove that T is alternating of infinite order, it suffices
to show by Lemma 3.3 that T is maxitive, i.e.,

T (U ∪ V ) = max{T (U), T (V )} for every U, V ∈ G.

In fact, we have

T2n(U ∪ V ) � max{Tn(U), Tn(V )} for every U, V ∈ G.

Hence
T (U ∪ V ) � max{T (U), T (V )} for every U, V ∈ G,

which follows that

T (U ∪ V ) = max{T (U), T (V )} for every U, V ∈ G.

Consequently (iii) holds.
Proof of (iv). From Proposition 2.1 we have FG ∈ σ(F) for any open set G of
E. For every n ∈ N, we put

Bn = conv{e1, . . . , en} and B =
∞⋃

n=1

Bn. (4.3)

Observe that Bn is a compact convex set of E for every n ∈ N. We claim that.

Claim. For each n ∈ N, there exists an open set Gn ⊃ Bn such that

T (Gn) < 2−n−1.

Indeed, let ε = 2−n−1. Since Bn is compact, there are {B(xi, ε), i = 1, . . . , k}
such that Bn ⊂ ⋃k

i=1 B(xi, ε). Denote Gn =
⋃k

i=1 B(xi, ε). Then Gn is an open
set containing Bn and

Tk(Gn) � ε,

which implies
T (Gn) � ε = 2−n−1.

The claim is proved.
We now prove (iv). Assume on the contrary that there is a probability

measure P on σ(F) such that

P (FG) = T (G) for every G ∈ G.

Then for each n ∈ N, by the above claim there is an open set Gn ⊃ Bn such
that T (Gn) < 2−n−1. Denote G =

⋃∞
n=1 Gn. Then G is an open set containing
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B. Hence, from Lemma 3.2 and the above claim we get

P (FG) = P (F⋃∞
n=1

Gn) = P (
∞⋃

n=1

FGn)

�
∞∑

n=1

P (FGn) =
∞∑

n=1

T (Gn)

<

∞∑
n=1

2−n−1 =
1
2

< 1 = T (G),

which contradicts Lemma 3.2. Therefore, (iv) holds. Consequently, the proof
of our main theorem is finished. �
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