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Abstract

We prove that Choquet Theorem does not hold for C[0, 1], the space
of all continuous real-valued functions on the unit interval [0, 1].

1 Introduction

Choquet Theorem for locally compact separable Hausdorff spaces is foundation
in several areas of applied mathematics, including probability. However, for
non-locally compact space, Choquet Theorem does not hold. In fact, a negative
version of Choquet Theorem for the Hilbert space

P ={z= () [Jzll = (O 22)7 <o}

was given in [4].

In this note we consider Choquet Theorem for C10, 1], the space of all con-
tinuous real-valued functions on the unit interval [0,1]. As one of the most
important domains in probability, see Billingsley [1], it is of interest to know
whether Choquet Theorem holds for C[0,1]. Our aim is to seek a version of
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Choquet Theorem for the space C[0,1]. As in [4] our result again shows that
Choquet Theorem fails for this space.

To state our result for the space C[0,1], we first describe the Choquet
Theorem in the locally compact setting. Let £ be a locally compact separable
Hausdorff space. Let I, F,G and B denote the classes of all compact subsets,
closed subsets, open subsets and Borel subsets of F, respectively. For A C E,
we denote

Fa={FcF:FNA#0}and FA={Fc F:FNnA=0(}.

To topologize the space F we define a base of open neighborhoods for F' € F
of the form

{F&, G, K€K;Gi,...,Gn €G; and n € N},

where
FE o =FKnNFen...0nFq,.

Then U(F) = FE, . is aneighborhood of F € F if and only if FNK = () and
FNG;#0fori=1,...,n. We will refer to this as the miss-and-hit topology.

It was shown in [3] that for a locally compact separable Hausdorff space F,
the space F with the miss-and-hit topology is compact, Hausdorff and sepa-
rable. Let o(F) denote the family of all Borel sets of F in the miss-and-hit
topology. A random closed set on E is a probability measure P on the mea-
surable space (F, o(F)).

By a capacity functional T : K — [0, 1] we mean a monotone set function
defined on K with values in [0, 1] satisfying the following conditions:

(i) T(0) = 0;

(i) T is alternating of infinite order: For any compact sets K;, i = 1,2,...,n;

n > 2, we have
n

(K< Y (0# o K,

i=1 I€Z(n) i€l

where Z(n) = {I C {1,...,n}, I # 0} and #I denotes the cardinality of I;
(iii) T is upper continuous in the miss-and-hit topology on K, i.e., K, 11 C
K, for every n € Nand K = (,_, K, then T(K,,) \, T(K).
The following result, known as Choquet Theorem, provides ways to specify
probability measures on the measurable space (F,o(F)) as follows.

1.1. Choquet Theorem ([2],[3]). Let E be a locally compact separable
Hausdorff space. Then there exists a bijection between probability measures P
on o(F) and capacity functional T : K — [0, 00) satisfying

P(Fk) =T(K) for every K € K.

Choquet Theorem is equivalent to the theorem below, called an open version
of Choquet Theorem.
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1.2. An open version of Choquet Theorem ([2],[3]). Let E be a locally
compact separable Hausdorff space and let T : G — [0,00) be a set function.
Then there exists unique a probability measure P on o(F) satisfying

P(Fg) =T(G) for every G € G

if and only if T is a capacity functional on G, i.e.,
(1) T(0) =0,0< T < 1,T is monotone;
(i) T is alternating of infinite order on G, and
(#ii) If G, /G on G (i.e.,Gy, C Gpyq for everyn € N and G = Uzo:l G,), then
TG S T(C).

1.3. Remark By a Polish space we mean a complete, separable metric space.
It was shown in [5] that if E is a non-locally compact Polish space, then the
miss-and-hit topology on F is no longer Hausdorff. However, the space of all
bounded closed subsets of a metric space equipped with the Hausdorff metric
is Hausdorff. In the next section, we will use this topology to obtain a negative
version of Choquet Theorem for the space C0, 1].

2 A negative version of Choquet Theorem
In what follows E will denote the closed unit ball of C[0, 1], i.e.,
E ={z e C[0,1]: |lz|| = supp; <l z(t)] < 1}.

Note that E is a bounded Polish space which is not locally compact. Let F,G
and B denote the families of all closed subsets, open subsets and Borel subsets
of E, respectively. The space F will be equipped with the Hausdorff metric

maX{SupIGSHx—T||,supr€T||x—S||} lfs#(baT?é(b
d(S,T) =140 ifS=T=70 (2.1)
2 otherwise,

where ||z — S|| = inf{||x — y|| : y € S}. Let o(F) denote the family of all Borel
sets (with respect to the Hausdorff metric) of F.

2.1. Proposition. The topology induced by the Hausdorff metric is stronger
than the miss-and-hit topology.
Proof. We equip F with the topology induced by the Hausdorff metric. It
suffices to prove that Fg and FX are open in F for G € G and K € K.

Let S € Fg. Then SN G # (). Since G is open in E, there exist » > 0 and
2 € S such that the ball B(x,r) C G. Then it is easy to show that B(S,r) C Fg,
where B(S,r) denotes the ball in F (in the Hausdorff metric) with center S
and radius r. That means F¢ is open in F.
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For F € FKX we have N K = (). By the compactness of K we get
e=inf{|jlx — F||:z € K} > 0.

We claim that the ball B(F,e) C FX. Indeed, let T € B(F,¢). If TN K # 0,
then

supyer||y — Fll = supyernrlly — Fl
> infyernk|ly — F||
> infyexlly — Fll = ¢,

which contradicts T € B(F,¢€). Therefore, TN K = (), i.e., T € FX. Conse-
quently, F¥ is open in F. The proposition is proved. O

Note that the space F equipped with the miss-and-hit topology is not Haus-
dorff. Therefore, this topology is strictly weaker than the topology induced by
the Hausdorff metric.

Our main result in this paper is the following theorem.

2.2. Theorem (Main Theorem). There erists a monotone set function T :
G — [0, 1] with the following properties:

(i) T(0)=0,T(E)=1;

(i) T is lower continuous in the Hausdorff metric, i.e., if G, /* G (in the
Hausdorff metric), then T(G,) / T(G);

(#i) T is alternating of infinite order on G;

(iv) No probability measure P on o(F) satisfies the conditions

P(Fg) =T(G) for every G € G.

2.3. Remark. Obviously Theorem 2.2 is not a counter-example of Choquet
Theorem for the space C|0, 1], since we use the topology induced by Hausdorff
metric (2.1) instead of the miss-and-hit topology. However, in some sense,
Theorem 2.2 can be viewed as a "negative version” of Choquet Theorem for
the space C[0, 1].

To prove Theorem 2.2, we are going to define a set function 7' : G — [0, 1]
satisfying the conditions (7)-(iv) of the theorem. The proof of this theorem is
based on the proof of the Theorem 1 in [4].

3 Some auxiliary lemmas
Denote B(z,r) ={y € E: ||z — y|| < r}. For every G € G, let
T,(G)=inf {r >0:G C B(x1,7r)U...UB(xn,7)},

forn e Nand z1,...,2, € E.
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It is easy to see that {7}, (G)} is a descreasing sequence. Define

T(G) = lim T,(G) for every G € G. (3.1)

n—oo

Clearly T(G) = 0 if and only if G is compact. Accordingly T(G) is known as
Kuratowski measure of non-compactness of G € G. It is easy to see that T is
monotone and 0 < T < 1.

First we are going to construct a sequence {e,} C F of continuous functions
on the unit interval [0,1]. Let A = [a,a + d],a € R,d > 0. We first define
functions aa, fa : R — [—1,1] by

-1 ifa<t<a+0/3
oaalt) = 6(t—a)/6—3 ifa+d/3<t<a+2/3
A7 ifa+26/3<t<a+td
0 otherwise,
and
—6(t—a)/d+1 ifa<t<a+d/3
Ba(t) = -1 ifa+0/3<t<a+25/3
AU T 6(t—a)/5—5  ifatr20/3<t<atd
0 otherwise.
Clearly,
3t—3a—96|/0—13t—3a—26|/0 fa<t<a+d
oa(t) = {' o / | (3.2
0 otherwise,
and
3t—3a—6|/6+|3t—3a—26|/0—2 ifa<t<a+d
fat) = { | 7o+ d . (33)
0 otherwise.

For each n € N,(n > 1), we divide the unit interval [0,1] into 3"~! equal

subintervals of length 3 "*1, and denote
i—1 , .
An,i:[ﬁ,ﬁ]fOF’LZL...,B 1,

L(k)y={ie{l,....3" '}y : i=4l+k1cN} fork=1,234.  (3.4).

For each n € Nyn > 1, let

en = Z aa, ; + Z BAn.: — Z an, ., — Z Ban.is

i€l (1) i€1,(2) i€1,(3) i€l (4)
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where aa and Ba are defined by (3.2) and (3.3), respectively. From the def-
inition of aa and fa it follows that e, are continuous functions on [0, 1] and

|len|| = 1 for every n. Moreover, observe that
-1 fortel, Apg1i
enlt) = Dicinan) ntt (3.5)
1 fort € Uieln+1(3) An—i—l,i-

We prove the following lemmas.

3.1. Lemma a) Let m,n € N and 1 < m < n. Then for any i € L,,11(1) (or
1 € Iny1(3)) there exist j € Inya1(1) and k € I,,41(3) such that

An+17j C Am—i—l,i and An—i—l,k C Am—i—l,i- (36)

b) For any r € (0,1) and for any x € E, the ball B(x,r) contains at most one
en-

Proof of a). Clearly that it is sufficient to prove in the case n = m + 1. If
i € Im41(1), then ¢ =414+ 1,1 € N (see (3.4)). The interval A,, 1 ; is divided
into three equal subintervals denoted by Ay,12 5, Apyoj+1 and Aypo j10. We
have

§=3G0—-1)4+1=3@4+1—-1)+1=4@31) +1 € Lnia(1) = L1 (1).

Hence j € I,11(1) and k = j 4+ 2 € I,41(3) satisfy inclusions (3.6). If
i € Lny1(3), then i = 41 4+ 3,1 € N (see (3.4)). In the same way, the in-
terval Ay,y14 is divided into three equal subintervals Ay,12 j, Apyo j+1 and
Am+2,j+2- Observe that

j=3G(—1)+1=3A+3-1)+1=40B1+1)+3 € Ini2(3) = I,41(3).

Hence j+2 € I,41(1) and k = j € I,,11(3) satisfy inclusions (3.6).

Proof of b). If b) does not hold, there are e,,,e, € B(x,r) with n # m.
Assume that n > m + 1. Let i € I,,,11(3). By a) there exists j € I,,41(1) such
that An+1,j C Am+1,1’- For t € An—i—l,j; from (35) we have

2 = lem(t) —en(t)] <|len — el
< len — 2l + |lem — || < 2r < 2,

a contradiction. The lemma is proved. O

3.2. Lemma. T(G) =1 for any open subset G of E containing {e, : n € N}.
Proof. Asumme on the contrary that T(G) < 1. Take r > 0 with T(G) < r < 1.
By the definition of T" there exists N € N such that

N

G C U B(xi,r).

=1
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Hence, there exists ig € {1,..., N} such that B(x;,,r) contains infinitely many
en. By Lemma 3.1(b) we get a contradiction. Consequently T(G) = 1, and the
proof of the lemma is completed. O

Let £ be a class of subsets of a set E which is closed under finite unions
and intersections. We say that a set function T' is mazitive on & if

T(AUB) =max{T(A),T(B)} for A,Be€ €.
The following lemma was shown in [4].

3.3. Lemma. Any mazitive set function is alternating of infinite order.

4. Proof of the main theorem

Our aim is to show that the set function T' defined by (3.1) satisfies the
conditions of Theorem 2.2.
Proof of (i). Obviously T() = 0, and the fact that T'(F) = 1 is a special case
of Lemma 3.2.
Proof of (ii). Asumme that

G,/ G CFE and sup ||z — G,|| = 0 as n — 0. (4.1)
zeG

Since T' is monotone, lim,, o, T(G,) < T(G). We claim that lim,—..T(G,) =
T(G). Suppose it is not the case, say lim,,—o, T(G,) < a < T(G), then we take
d > 0 such that a +§ < T(G). By (4.1) there exists N € N such that

G C (Gn)s; (4.2)

where (Gy)s ={z € E: ||z — Gn|| < ¢}
Since {G,} is increasing, T(Gy) < limy, 00 T(Gy) < a. By definition

GNn C B(z1,)U. ..U B(xg, «) for sufficiently large k € N,
which implies, see (4.2)
G C B(z1,a+6)U...UB(zg,a+9).

This follows that
T(G) < a+d6 <T(G),

a contradiction. Consequently,
T(Gn) / T(G),

and (ii) is established.
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Proof of (#i). In order to prove that T is alternating of infinite order, it suffices
to show by Lemma 3.3 that T is maxitive, i.e.,

T(UUV)=max{T(U),T(V)} for every U,V € G.
In fact, we have
T, (UUV) < max{T,(U),T,(V)} for every U,V € G.

Hence
TUUV) < max{T(U),T(V)} for every U,V € G,

which follows that
TUUV)=max{T(U),T(V)} for every U,V € G.

Consequently (iii) holds.
Proof of (iv). From Proposition 2.1 we have Fg € o(F) for any open set G of
E. For every n € N, we put

B, = conv{ey,...,e,} and B = U B,. (4.3)
n=1

Observe that B,, is a compact convex set of E for every n € N. We claim that.

Claim. For each n € N, there exists an open set GG,, O B,, such that
T(G,) <2 "L

Indeed, let € = 27"~ 1. Since B,, is compact, there are {B(x;,€),i = 1,...,k}
such that B,, C Ule B(z;,€). Denote G, = Ule B(zi,€). Then Gy, is an open
set containing B,, and

Tk (Gn) <€

which implies
T(G,) <e=2"""1

The claim is proved.
We now prove (iv). Assume on the contrary that there is a probability
measure P on o(F) such that

P(Fg) =T(G) for every G € G.

Then for each n € N, by the above claim there is an open set G,, O B,, such
that T(G,,) < 27" % Denote G = |J._; G,,. Then G is an open set containing
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B. Hence, from Lemma 3.2 and the above claim we get

P(Fg) = P(Fy= ,Gn) = P(| ] Fa.)
<Y P(Fa,) =) T(Gn)
< iz—"—l =_<1=T(G),

which contradicts Lemma 3.2. Therefore, (iv) holds. Consequently, the proof
of our main theorem is finished. ([
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