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Abstract

In this paper, we consider a version of the de Rham lemma that
clarifies the additional information on the trace of the potential. From
this we can improve the regularity of solutions of the Stokes system.

1 Introduction

The classical de Rham lemma says that a continuous and linear functional that
vanishes on all divergence-free H1 vector fields that equal zero on the boundary
can be represented as a gradient of an L2 potential function inside the domain.
For example, see Boyer and Fabrie [2, Theorem IV. 2.4]. However, the lemma
does not provide any information on the trace of the potential function on the
boundary.

For example, it is insufficient to show the regularity of solutions for the
Stokes problem. Pan [4] considered a version of the de Rham lemma. This
asserts that a continuous and linear functional that vanishes on all divergence-
free H1 vector fields that have zero tangential component on the boundary is a
gradient of the function p ∈ L2(Ω), and that p has zero trace on the boundary.
This additional information on the trace of p makes it possible to improve the
regularity of the solution of a Maxwell-Stokes type system.

In this paper, we consider the Lp version of the result obtained by [4].
Though we consult this paper [4], we must treat the arguments more carefully.
Our result is useful for the regularity of the Maxwell-Stokes problem in the Lp

version, which will appear in a future work .
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The paper is organized as follows. In section 2, we give some preliminaries
on the trace and the gradient of functions. In section 3, we give a main theorem
and its proof.

2 Preliminaries

In this section, we shall state some preliminaries that are necessary to state a
version of the de Rham lemma (Theorem 3.1). Let Ω be a bounded domain in
R

3 with a C2 boundary Γ, let 1 < p < ∞ and let p′ be the conjugate exponent
i.e., (1/p) + (1/p′) = 1. From now on we use C1(Ω), Lp(Ω), Wm,p(Ω) ( m ≥ 0,
integer ), W s,p(Γ) (s ∈ R), and so on, for the standard C1, Sobolev spaces
of functions. For any Banach space B, we denote B × B × B by boldface
character B. Hereafter, we use this character to denote vector and vector-
valued functions, and we denote the standard inner product of vectors a and b
in R

3 by a · b. Moreover, for the dual space B′, we denote the duality between
B′ and B by 〈·, ·〉B′,B. If Y (Ω) is a space of functions on Ω, we denote

Ẏ (Ω) = {φ ∈ Y (Ω);
∫

Ω

φdx = 0}.

Define a space

W 1,p
t0 (Ω) = {u ∈ W 1,p(Ω); uT = 0 on Γ},

where uT denotes the tangential component of u, namely, uT = (n×u)×n, n
is the outer unit normal vector to the boundary, and we denote its dual space
by W 1,p

t0 (Ω)′. Moreover, we define

W 1,p
t0 (Ω, div 0) = {u ∈ W 1,p

t0 (Ω); div u = 0 in Ω}.
We define the norm on Ċ1(Ω) by

‖φ‖p′,−1/p′ = ‖φ‖Lp′(Ω) + ‖γ0(φ)‖W−1/p′ ,p′(Γ), (2.1)

where γ0 is the restriction operator to the boundary, and the completion of
Ċ1(Ω) with respect to this norm by L̇p′,−1/p′

(Ω) and define

Lp′,−1/p′
(Ω) = L̇p′,−1/p′

(Ω) ⊕ R.

Beforehand, we state the celebrated Cattabriga theorem [3] (cf. Amrouche
and Girault [1, Theorem 4.1]) associated with the Stokes problem which will
be frequently used later. We consider the Stokes problem: for given f , ϕ, g,
find (u, π) such that ⎧⎨

⎩
−Δu + ∇π = f in Ω,
div u = ϕ in Ω,
u = g on Γ.

(2.2)
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The compatibility condition is
∫

Ω

ϕdx =
∫

Γ

g ·ndS, (2.3)

where dS denotes the surface area of Γ. Then the following holds.

Proposition 2.1. Let m > 0 integer, 1 < p < ∞, and let Ω be a bounded
domain in R

3 with a boundary Γ that is Cm class if m ≥ 2 and C2 class if
m = 1. Assume that f ∈ W m−2,p(Ω), ϕ ∈ Wm−1,p(Ω) and g ∈ W m−1/p,p(Γ)
satisfy the compatibility condition (2.3). Then the Stokes problem (2.2) has a
unique solution (u, π) ∈ W m,p(Ω)×Wm−1.p(Ω)/R, and there exists a constant
C > 0 depending only on m, r and Ω such that

‖u‖W m,p(Ω) + ‖π‖Wm−1.p(Ω)/R

≤ C(‖f‖W m−2,p(Ω) + ‖ϕ‖Wm−1.p(Ω) + ‖g‖W m−1/p,p(Γ)) (2.4)

We give a proposition associated with the trace and the gradient.

Proposition 2.2. Let Ω be a bounded domain in R
3 with a C2 boundary Γ.

Then the following holds.
(i) There exists a trace map γ : Lp′,−1/p′

(Ω) → W−1/p′,p′
(Γ) such that if

φ ∈ Ċ1(Ω), then γ(φ) = γ0(φ).
(ii) Given φ ∈ Lp′,−1/p′

(Ω), we define a bounded linear functional on W 1,p
t0 (Ω),

which is denoted by ∇φ, for all w ∈ W 1,p
t0 (Ω),

〈∇φ, w〉W 1,p
t0 (Ω)′,W 1,p

t0 (Ω)

= −
∫

Ω

φ divwdx + 〈γ(φ), n · w〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ).

If we write

grad Lp′,−1/p′
(Ω) = {∇φ ∈ W 1,p

t0 (Ω)′; φ ∈ Lp′,−1/p′
(Ω)},

then grad Lp′,−1/p′
(Ω) is a closed subspace of W 1,p

t0 (Ω)′, and it is homeomorphic
to L̇p′,−1/p′

(Ω).

Proof. (i) Let φ0 ∈ L̇p′,−1/p′
(Ω). Then there exists {φj} ⊂ Ċ1(Ω) such that

‖φj − φ0‖p′,−1/p′ → 0 as j → ∞. Hence φj → φ0 in Lp′
(Ω) and {γ0(φj)} is

a Cauchy sequence in W−1/p′,p′
(Γ). Therefore there exists γ0 ∈ W−1/p′,p′

(Γ)
such that γ0(φj) → γ0 in W−1/p′,p′

(Γ). Here we show that γ0 is determined
independently of the choice of {φj} ⊂ Ċ1(Ω) such that ‖φj − φ0‖p′,−1/p′ → 0
as j → ∞. In fact, let {φ′

j} ⊂ Ċ1(Ω) be an another sequence such that
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‖φ′
j − φ0‖p′,−1/p′ → 0 as j → ∞. Then φ′

j → φ0 in Lp′
(Ω) and there exists a

γ′
0 ∈ W−1/p′,p′

(Γ) such that γ0(φ′
j) → γ′

0 in W−1/p′,p′
(Γ). Hence

‖γ0 − γ′
0‖W−1/p′ ,p′(Γ) ≤ ‖γ0 − γ0(φj)‖W−1/p′ ,p′(Γ)

+ ‖γ0(φj) − γ0(φ′
j)‖W−1/p′ ,p′

(Γ) + ‖γ0(φ′
j) − γ′

0‖W−1/p′ ,p′
(Γ)

Here

‖γ0(φj) − γ0(φ′
j)‖W−1/p′ ,p′(Γ) ≤ C(p, Ω)‖φj − φ′

j‖p′,−1/p′

≤ C(p, Ω)(‖φj − φ0‖p′,−1/p′ + ‖φ0 − φ′
j‖p′,−1/p′) → 0.

Thus we see that γ0 = γ′
0 in W−1/p′,p′

(Ω).
Define a linear map γ : L̇p′,−1/p′

(Ω) → W−1/p′,p′
(Ω) by γ(φ0) = γ0 for

φ0 ∈ L̇p′,−1/p′
(Ω). Then we have

‖γ(φ0)‖W−1/p′ ,p′
(Γ) = lim

j→∞
‖γ0(φj)‖W−1/p′ ,p′

(Γ)

≤ lim
j→∞

‖φj‖p′,−1/p′

= ‖φ0‖p′,−1/p′ .

If φ ∈ Ċ(Ω), taking φj = φ, it is easily seen that γ(φ) = γ0(φ).
(ii) For φ ∈ Lp′−1/p′

(Ω), define a functional Tφ on W 1,p
t0 (Ω) by

Tφ[w] = −
∫

Ω

φ divwdx + 〈γ(φ), n · w〉W−1/p′ ,p′
(Γ),W1−1/p,p(Γ),

for w ∈ W 1,p
t0 (Ω). We note that if φ = c = const., it follows from the divergence

theorem that Tc = 0. Let φ ∈ L̇p′,−1/p′
(Ω). Since

|Tφ[w]| ≤ ‖φ‖Lp′
(Ω)‖div w‖Lp(Ω) + ‖γ(φ)‖W−1/p′ ,p′

(Γ)‖w‖W 1−1/p,p(Γ)

≤ C‖φ‖p′,−1/p′‖w‖W 1,p(Ω),

we see that Tφ is a bounded linear functional on W 1,p
t0 (Ω), so Tφ ∈ W 1,p

t0 (Ω)′

and
‖Tφ‖W

1,p
t0 (Ω)′ ≤ C‖φ‖p′,−1/p′ . (2.5)

For any η ∈ W 1−1/p,p(Γ), define hη = 1
|Ω|

∫
Γ

ηdS = const.. If we apply Propo-
sition 2.1 with m = 1, f = 0, ϕ = hη and g = ηn, then the compatibility
condition trivially holds. Hence the problem

{ −Δuη + ∇pη = 0, div uη = hη in Ω,
uη = ηn on Γ
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has a unique solution (uη, pη) ∈ W 1,p(Ω) × Lp(Ω)/R, and there exists a con-
stant C = C(p, Ω) > 0 such that

‖uη‖W 1,p(Ω) + ‖pη‖Lp(Ω)/R ≤ C(‖hη‖Lp(Ω) + ‖η‖W1−1/p,p(Γ)).

Since it follows from the Hölder inequality that

‖hη‖Lp(Ω) ≤ C(Ω)‖η‖W1−1/p,p(Γ),

we can see that
‖uη‖W 1,p(Ω) ≤ C(p, Ω)‖η‖W1−1/p,p(Γ). (2.6)

Since clearly uη,T = 0 on Γ, we see that uη ∈ W 1,p
t0 (Ω). Moreover, since∫

Ω

φ divuηdx = hη

∫
Ω

φdx = 0,

it follows from (2.6) that

〈γ(φ), η〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ) = 〈γ(φ), n · uη〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ)

= Tφ[uη]
≤ ‖Tφ‖W 1,p(Ω)′‖uη‖W 1,p

t0 (Ω)

≤ C(p, Ω)‖Tφ‖W 1,p
t0 (Ω)′‖η‖W1−1/p,p(Γ).

Since η ∈ W 1−1/p,p(Γ) is arbitrary, we have

‖γ(φ)‖W−1/p′ ,p′ (Γ) ≤ C(p, Ω)‖Tφ‖W 1,p
t0 (Ω)′ . (2.7)

On the other hand, let φ ∈ L̇p′,−1/p′
(Ω). For any ϕ ∈ L̇p(Ω), we consider

the following Stokes problem: to find (vϕ, qϕ) such that
{ −Δvϕ + ∇qϕ = 0, div vϕ = ϕ in Ω,

vϕ = 0 on Γ.
(2.8)

The compatibility condition (2.3) clearly holds. If we apply Proposition 2.1
with m = 1, f = 0, ϕ ∈ Lp(Ω) and g = 0, the equation (2.8) has a unique
solution (vϕ, qϕ) ∈ W 1,p(Ω) × Lp(Ω)/R, and there exists a constant C =
C(p, Ω) > 0 such that

‖vϕ‖W 1,p(Ω) + ‖qϕ‖Lp(Ω)/R ≤ C(p, Ω)‖ϕ‖Lp(Ω). (2.9)

From (2.8), since vϕ = 0 on Γ, we have
∣∣∣∣
∫

Ω

φ ϕdx

∣∣∣∣ =
∣∣∣∣
∫

Ω

φ divvϕdx

∣∣∣∣ = |Tφ[vϕ]|

≤ ‖Tφ‖W 1,p
t0 (Ω)′‖vϕ‖W 1,p

t0 (Ω) ≤ C(p, Ω)‖Tφ‖W 1,p
t0 (Ω)′‖ϕ‖Lp(Ω). (2.10)
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For any ϕ ∈ Lp(Ω), ϕ − cϕ ∈ L̇p(Ω), where cϕ = 1
|Ω|

∫
Ω

ϕdx. Since φ ∈
L̇p′,−1/p′

(Ω), we have
∫

Ω

φϕdx =
∫

Ω

φ(ϕ − cϕ)dx + cϕ

∫
Ω

φdx =
∫

Ω

φ(ϕ − cϕ)dx.

Hence from (2.10), we have
∣∣∣∣
∫

Ω

φϕdx

∣∣∣∣ ≤ C(p, Ω)‖Tφ‖W 1,p
t0 (Ω)′‖ϕ − cϕ‖Lp(Ω).

Since
‖cϕ‖Lp(Ω) = |cϕ||Ω|1/p ≤ ‖ϕ‖Lp(Ω),

we have ∣∣∣∣
∫

Ω

φϕdx

∣∣∣∣ ≤ 2C(p, Ω)‖Tφ‖W 1,p
t0 (Ω)′‖ϕ‖Lp(Ω)

for all ϕ ∈ Lp(Ω). Thus we have

‖φ‖Lp′(Ω) ≤ 2C(p, Ω)‖Tφ‖W 1,p
t0 (Ω)′ . (2.11)

Summing up (2.7) and (2.11), we have

‖φ‖Lp′,−1/p′
(Ω) ≤ C(p, Ω)‖Tφ‖W 1,p

t0 (Ω)′ . (2.12)

From (2.5) and (2.12), there exist positive constants C1 and C2 such that

C1‖Tφ‖W 1,p
t0 (Ω)′ ≤ ‖φ‖Lp′,−1/p′

(Ω) ≤ C2‖Tφ‖W 1,p
t0 (Ω)′ .

If we put Y = {Tφ; φ ∈ Lp′,−1/p′
(Ω)}, then Y is a linear subspace of W 1,p

t0 (Ω)′

and it is an isomorphism onto Lp′,−1/p′
(Ω). Since Lp′,−1/p′

(Ω) is complete,
we see that Y is a closed subspace of W 1,p

t0 (Ω)′. If we write Tφ by ∇φ, the
conclusion of (ii) holds.

3 The main theorem and the proof

In this section we give a Lp version of the de Rham lemma and its proof.

Theorem 3.1. Let Ω be a bounded domain in R
3 with a C2 boundary Γ.

Assume that T ∈ W 1,p
t0 (Ω)′ satisfies

〈T, w〉W 1,p
t0 (Ω)′,W 1,p

t0 (Ω) = 0 for all w ∈ W 1,p
t0 (Ω, div 0). (3.1)

Then there exists p ∈ Lp′,−1/p′
(Ω) with γ(p) = 0 on Γ such that T = ∇p on

W 1,p
t0 (Ω)′.
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Proof. Step 1. We first show that there exists p ∈ L̇p′,−1/p′
(Ω) such that

T = ∇p.
In general, let X be a Banach space with its dual X′. For A ⊂ X, we write

A⊥ = {f ∈ X′; 〈f, x〉X′,X = 0 for all x ∈ A}.

Let X = W 1,p
t0 (Ω) and Z = W 1,p

t0 (Ω, div 0). Then Z is a closed subspace of X
and

Z⊥ = {T ∈ W 1,p
t0 (Ω)′; 〈T, w〉W 1,p

t0 (Ω)′,W 1,p
t0 (Ω) = 0 for all w ∈ Z}.

Hence it suffices to prove Z⊥ ⊂ Y := gradLp′,−1/p′
(Ω). Since X is reflexive,

we can write

Y ⊥ = {w ∈ W 1,p
t0 (Ω); 〈T, w〉W 1,p

t0 (Ω)′.W 1,p
t0 (Ω) = 0 for all T ∈ Y }.

Therefore it suffices to prove Y ⊥ ⊂ Z. Let u ∈ Y ⊥. For any φ ∈ Lp′,−1/p′
(Ω),

we have Tφ = ∇φ ∈ Y . Therefore, we have

〈Tφ, u〉W 1,p
t0 (Ω)′,W 1,p

t0 (Ω)

= −
∫

Ω

φ div udx + 〈γ(φ), n · u〉W−1/p′ ,p′ (Γ),W1−1/p,p(Γ) = 0

Taking φ ∈ W 1,p
0 (Ω) in the above equality, we have

−
∫

Ω

φ divudx = 0 for all φ ∈ W 1,p
0 (Ω).

Hence div u = 0 in Ω, so u ∈ W 1,p
t0 (Ω, div 0) = Z.

Step 2. We show that γ(p) = p0 is a constant. In fact, since T = ∇p, for
any w ∈ W 1,p

t0 (Ω, div 0),

0 = 〈∇p, w〉W 1,p
t0 (Ω)′,W 1,p

t0 (Ω)

= −
∫

Ω

p div wdx + 〈γ(p), n ·w〉W−1/p′ ,p′ (Γ),W1−1/p,p(Γ)

= 〈γ(p), n · w〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ). (3.2)

Define
p0 =

1
|Γ| 〈γ(p), 1〉W−1/p′ ,p′

(Γ),W1−1/p,p(Γ).

For any η ∈ W 1−1/p,p(Γ), define

η0 =
1
|Γ| 〈1, η〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ).
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We consider the following Stokes problem: to find (wη , qη) such that
{ −Δwη + ∇qη = 0, div wη = 0 in Ω,

wη = (η − η0)n on Γ.

Since
∫
Γ
(η − η0)dS = 0, the compatibility condition (2.3) holds. Therefore

if we apply Proposition 2.1 with m = 1, f = 0, ϕ = 0 and g = (η − η0)n,
then there exists a unique solution (wη , qη) ∈ W 1,p(Ω) × Lp(Ω)/R. Clearly
wη ∈ W 1,p

t0 (Ω, div 0). From (3.1), we see

0 = 〈γ(p), n ·wη〉W−1/p′ ,p′
(Γ),W1−1/p,p(Γ)

= 〈γ(p), η − η0〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ).

Since

〈γ(p), η〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ)

= 〈γ(p), η0〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ)

= η0〈γ(p), 1〉W−1/p′ ,p′
(Γ),W1−1/p,p(Γ)

=
1
|Γ| 〈1, η〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ)〈γ(p), 1〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ)

= 〈p0, η〉W−1/p′,p′
(Γ),W1−1/p,p(Γ),

where
p0 =

1
|Γ| 〈γ(p), 1〉W−1/p′ ,p′

(Γ),W1−1/p,p(Γ) = const.,

we have
〈γ(p) − p0, η〉W−1/p′ ,p′(Γ),W1−1/p,p(Γ) = 0

for all η ∈ W 1−1/p,p(Γ). Hence γ(p) = p0 is a constant. Since p − p0 ∈
Lp′,−1/p′

(Ω) and γ(p− p0) = 0 on Γ, and T = ∇(p− p0), the conclusion of this
theorem follows.
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