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Abstract

We introduce the concept of ideal co-transforms which is in some
sense dual to the concept of ideal transform of M. P. Brodmann. We also
study some basic properties of ideal co-transforms of linearly compact
modules.

1 Introduction

Throughout, R is a Noetherian commutative ring and has a topological
structure. Let I be an ideal of R. It is well-known that in local cohomology
theory of A. Grothendieck there is the concept of ideal transform DI(M) of an
R−module M with respect to I defined by DI(M) = lim−→

t

HomR(It;M), which

provides a powerful tool in commutative algebra (see [1]). Moreover, we defined
in [2] the local homology modules HI

i (M) of an R−module M with respect to I
by HI

i (M) = lim←−
t

TorR
i (R/It;M). Some basic properties for this local homology

modules were shown in [2] when M was Artinian, and in [3] when M was
linearly compact. It should be noted that our definition of local homology
modules is coincident with that of J. P. C. Greenless and J. P. May [6] in case
of linearly compact R−modules and in some sense dual to the definition of local
cohomology of A. Grothendieck [7]. Therefore, it is natural to define ideal co-
transforms CI

i (M) of an R−module M by CI
i (M) = lim←−

t

TorR
i (It;M) (i ≥ 0).
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The purpose of this paper is to study the ideal co-transforms CI
i (M) in case

M is a linearly compact R−module.
The organization of the paper is as follows. In section 2 we recall briefly

some properties of linearly compact modules and local homology modules that
we shall use.

In section 3 we introduce the notion of ideal co-transforms. IfM is a linearly
compact module, then CI

i (M) (i ≥ 0) is also linearly compact and the sequence
of functors {CI

i } is a positive strongly connected sequence on the category of
linearly compact modules and continuous homomorphisms (Proposition 3.2).
For all i ≥ 1, we have an isomorphism HI

i+1(M) ∼= CI
i (M) and there is a short

exact sequence

0 −→ HI
1 (M) −→ CI(M) ηM−→M

θM−→ ΛI(M) −→ 0,

in which the homomorphisms ηM , θM are continuous (Theorem 3.3).
Section 4 is devoted to study the relationship between ideal co-transform

and co-localization of linearly compact modules. Let S be a multiplicative
set of R and SM = HomR(RS ;M) the co-localization of an R−module M
with respect to S. We have S(CI

i (M)) ∼= CIRS

i (SM) for all i ≥ 0 (Proposition
4.1). Let a ∈ R, denote by aM the co-localization of M with respect to the
multiplicative set {1, a, a2 . . .}. We will show that CaR(M) ∼= aM (Theorem
4.4).

2 Preliminaries

To establish the notion and context, we recall briefly definitions and basic
properties of linearly compact modules and local homology modules that we
shall use.

Let M be a topologicalR−module. M is said to be linearly topologized if M
has a base of neighborhoods of the zero element M consisting of submodules.
M is called Hausdorff if the intersection of all the neighborhoods of the
zero element is 0. A Hausdorff linearly topologized R−module M is said to
be linearly compact if F is a family of closed cosets (i.e., cosets of closed
submodules) in M which has the finite intersection property, then the cosets
in F have a non-empty intersection (see [10, 10]).

It is clear that Artinian R−modules are linearly compact and discrete. We
have some following properties of linearly compact modules.

Lemma 2.1. (see [10, §3]) (i) If M is a Hausdorff linearly topologized
R−module and N a closed submodule of M, then M is linearly compact if
and only if N and M/N are linearly compact.
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(ii) Let f : M −→ N be a continuous homomorphism of Hausdorff linearly
topologized R−modules. If M is linearly compact, then f(M) is linearly
compact and f is a closed map.
(iii) The inverse limit of a system of linearly compact R−modules with contin-
uous homomorphisms is linearly compact.

If {Mt} is an inverse system of linearly compact modules with continuous
homomorphisms, then lim←−1

t

Mt = 0 by [8, 7.1]. Therefore we have the following

lemma.

Lemma 2.2. Let

0 −→ {Mt} −→ {Nt} −→ {Pt} −→ 0

be a short exact sequence of inverse systems of R−modules. If {Mt} is an
inverse system of linearly compact modules with continuous homomorphisms,
then the sequence of inverse limits

0 −→ lim←−
t

Mt −→ lim←−
t

Nt −→ lim←−
t

Pt −→ 0

is exact

Lemma 2.3. (see [3, §2]) Let N be a finitely generated R−module and M
a linearly compact R−module. Then for all i ≥ 0, TorRi (N ;M) is a linearly
compact R−module. Moreover,
(i) If f : N −→ N ′ is a homomorphism of finitely generated R−modules,
then the induced homomorphism fi,M : TorRi (N ;M) −→ TorRi (N ′;M) is
continuous.
(ii) If g : M −→ M ′ is a continuous homomorphism of linearly com-
pact R−modules, then the induced homomorphism gN,i : TorR

i (N ;M) −→
TorR

i (N ;M ′) is also continuous.

Let I be an ideal of R, the i-th local homology module HI
i (M) of an

R−module M with respect to I is defined in [2] by

HI
i (M) ∼= lim←−

t

TorR
i (R/It;M).

Denote by ΛI(M) = lim←−
t

M/ItM the I−adic completion of M, then HI
0 (M) ∼=

ΛI(M). In case M is a finitely generated R−module, HI
i (M) = 0 for all i > 0

(see [2, 3.2]). It should be noted that the local homology modules HI
i (M)

of a linearly compact R−module M are also linearly compact R−modules.
Moreover, every short exact sequence of linearly compact R−modules induces
a long exact sequence of local homology modules (see [3, §3]).
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Assume that I is generated by elements x1, x2, . . . , xr. Let Hi(x(t);M) be
the i−th Koszul homology module of M with respect to x(t) = (xt

1, . . . , x
t
r).

Some following properties of local homology modules will be used in next
sections.

Theorem 2.4. (see [2, §3] ) Let M be an R−module. Then for all i ≥ 0,
(i) HI

i (M) ∼= lim←−
t

Hi(x(t);M).

(ii)
⋂

t>0

ItHI
i (M) = 0.

Lemma 2.5. (see [3]) Let M be a linearly compact R−module. Then
(i) For all j ≥ 0,

HI
i (HI

j (M)) ∼=
{
HI

j (M), i = 0,
0, i > 0.

(ii) We have

HI
i (

⋂
t>0

ItM) ∼=
{

0, i = 0,
HI

i (M), i > 0.

3 Ideal co-transforms

Let I be an ideal of R and M an R−module. It is well-known that the ideal
transform of M with respect to I is defined by DI (M) = lim−→

t

HomR(It;M).

This suggests the following definition.

Definition 3.1. Let I be an ideal of R and M an R−module. The i-th ideal
co-transform CI

i (M) of M with respect to I (or i−th I−co-transform of M) is
defined by

CI
i (M) = lim←−

t

TorR
i (It;M).

Especially, CI
0(M) is called the I−co-transform of M and denoted by

CI(M) for simplicity.
If M is a linearly compact R−module, then {TorR

i (It;M)} (i ≥ 0) forms an
inverse system of linearly compact modules which continuous homomorphisms
by 2.3, (i). Therefore by 2.1, (iii), CI

i (M) is also linearly compact.

Proposition 3.2. Let 0 −→ M”
f−→ M

g−→ M ′ −→ 0 be a short exact
sequence of linearly compact R−modules, in which the homomorphisms f and
g are continuous. Then we have a long exact sequence of linearly compact
R−modules

· · · −→ CI
i (M”)

fi−→ CI
i (M)

gi−→ CI
i (M ′) −→
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· · · −→ CI
0 (M”)

f0−→ CI(M)
g0−→ CI(M ′) −→ 0,

in which the homomorphisms fi, gi are continuous for all i ≥ 0.

Proof. The short exact sequence 0 −→ M” f−→ M
g−→ M ′ −→ 0 gives rise to

a long exact sequence for all t > 0

· · · −→ TorR
i (It;M”) fit−→ TorRi (It;M) git−→ TorRi (It;M ′) −→

· · · −→ It ⊗R M”
f0t−→ It ⊗R M

g0t−→ It ⊗R M ′ −→ 0,

in which homomorphisms fit, git are continuous by 2.3, (ii). Then Im fit, ker fit,
Im git, ker git are linearly compact. Thus by 2.2, lim←−

t

is exact on all of the

short exact sequences that arise from the long exact sequence. Therefore
we have the long exact sequence in the theorem. We proceed to show that
the homomorphisms fi, gi are continuous. Indeed, since the homomorphisms
fit, git are continuous, the homomorphisms induced on corresponding direct
products are also continuous. Therefore the homomorphisms fi, gi induced on
inverse limits are also continuous. The proof is complete.

For all t > 0, the natural homomorphisms ηt : It
⊗

RM −→ M and the
canonical epi-morphisms θt : M −→ M/ItM induce corresponding homomor-
phisms ηM : CI(M) −→ M and θM : M −→ ΛI(M). The following theorem
gives us the first relation between the local homology modules HI

i (M) and the
I−co-transforms CI

i (M).

Theorem 3.3. (i) For all R−modules M and all i ≥ 1, HI
i+1(M) ∼= CI

i (M).
(ii) If M is a linearly compact R−module, then there is an exact sequence of
linearly compact modules

0 −→ HI
1 (M) −→ CI(M) ηM−→M

θM−→ ΛI(M) −→ 0,

in which homomorphisms ηM , θM are continuous.

Proof. For any positive integer t the short exact sequence

0 −→ It −→ R −→ R/It −→ 0

gives isomorphisms TorRi+1(R/It;M) ∼= TorR
i (It;M) for all i ≥ 1. Thus we

have (i). On the other hand, the short exact sequence above induces an exact
sequence of linearly compact modules

0 −→ TorR1 (R/It;M) −→ It ⊗R M
ηt−→M

θt−→M/ItM −→ 0,

in which homomorphisms ηt, θt are continuous by 2.3, (i). It follows from
2.1, (i) and 2.3, (i) that {ker θt} and {TorR1 (R/It;M)} form inverse systems of
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linearly compact modules with continuous homomorphisms. Therefore by 2.2,
we have an exact sequence

0 −→ HI
1 (M) −→ CI(M) ηM−→M

θM−→ ΛI(M) −→ 0.

By an argument analogous to the proof of 3.2, we get homomorphisms ηM , θM

are continuous.

Corollary 3.4. Let M be a linearly compact R−module. Then the homomor-
phism ηM : CI(M) −→ M is an isomorphism if and only if HI

1 (M) = ΛI(M) =
0.

Proof. It is immediately induced from 3.3, (ii).

Corollary 3.5. Let M be a linearly compact R−module. There are two short
exact sequences

0 −→ HI
1 (M) −→ CI(M) −→

⋂
t>0

ItM −→ 0,

0 −→
⋂
t>0

ItM −→M
θM−→ ΛI(M) −→ 0.

Proof. It follows from 3.3, (ii), since ker θM =
⋂

t>0
ItM.

Proposition 3.6. Let M be a linearly compact R−module. Then
(i) CI(HI

i (M)) = 0, i ≥ 0.
(ii) CI(

⋂
t>0

ItM) ∼= CI(M).

(iii) CI(M) ∼= CI(CI(M)).
(iv) HI

i (CI(M)) ∼= HI
i (M), i ≥ 2.

(v) ΛI(CI(M)) = HI
1 (CI(M)) = 0.

Proof. (i). We first note that HI
i (M) is a linearly compact R−module.

Therefore from the exact sequence of 3.3, (ii), replace M by HI
i (M), we have

an exact sequence

0 −→ HI
1 (HI

i (M)) −→ CI(HI
i (M)) −→ HI

i (M) −→ ΛI(HI
i (M)) −→ 0.

Since HI
1 (HI

i (M)) = 0 and ΛI(HI
i (M)) ∼= HI

i (M) by 2.5, (i), we get
CI(HI

i (M)) = 0 for all i ≥ 0.
(ii). The second exact sequence of 3.5, in which the homomorphisms are
continuous, induces by 3.2 an exact sequence

CI
1(ΛI(M)) −→ CI(

⋂
t>0

ItM) −→ CI(M) −→ CI(ΛI(M)) −→ 0.
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In virtue of 3.3, (i) and 2.5, (i), we have CI
1(ΛI(M)) ∼= HI

2 (ΛI(M)) = 0.
Moreover, CI(ΛI(M)) = 0 by (i), we get CI(

⋂
t>0

ItM) ∼= CI(M).

(iii). We consider the first short exact sequence of 3.5. The epi-morphism is
continuous, because ηM is continuous. Moreover, replacing HI

1 (M) by ker ηM ,
we may assume that the mono-morphism of the short exact sequence is also
continuous. Therefore we have an exact sequence by 3.2

CI(HI
1 (M)) −→ CI(CI(M)) −→ CI(

⋂
t>0

ItM) −→ 0.

In view of 2.5, (i), and (i), we have CI(HI
1 (M)) ∼= CI(ΛI(HI

1 (M)) = 0. Hence
CI(CI(M)) ∼= CI(

⋂
t>0

ItM), which together with (ii) implies (iii).

(iv). The first exact sequence of 3.5 induces a long exact sequence of local
homology modules

· · · −→ HI
i (HI

1 (M)) −→ HI
i (CI(M)) −→ HI

i (
⋂
t>0

ItM) −→ · · · .

Since HI
i (HI

1 (M)) = 0, i ≥ 2, by 2.5, (i), we have an isomorphism

HI
i (CI(M)) ∼= HI

i (
⋂
t>0

ItM).

Thus (iv) follows by 2.5, (ii).
(v) follows from (iii) and 3.4.

Proposition 3.7. Let f : M ′ −→ M be a continuous homomorphism
of linearly compact R−modules such that ΛI(ker f) ∼= ker f, ΛI(coker f) ∼=
coker f. Let ϕ : K −→ M be a further homomorphism of linearly compact
R−modules. Then
(i) The homomorphism CI(f) : CI(M ′) −→ CI(M) is an isomorphism.
(ii) There is a unique homomorphism ψ : CI(K) −→M ′ such that the diagram

M ′ f−→ M
↑ ψ ↑ ϕ

CI(K) ηK−→ K,

is commutative, i. e., f ◦ ψ = ϕ ◦ ηK.
(iii) If ϕ : K −→ M and ηM ′ : CI(M ′) −→ M ′ are both isomorphisms, then
the homomorphism ψ of part (ii) is also an isomorphism.

Proof. (i) We have short exact sequences of linearly compact modules

0 −→ ker f −→M ′ α−→ Im f −→ 0
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and
0 −→ Im f

β−→M −→ coker f −→ 0

in which f = βα and homomorphisms are continuous. It is therefore enough
to show that CI(α) and CI(β) are both isomorphisms.

The first short exact sequence above induces by 3.2 an exact sequence

CI(ker f) −→ CI(M ′)
CI (α)−→ CI(Im f) −→ 0.

From 3.6, (i) and the hypothesis ker f ∼= ΛI(ker f) we have CI(ker f) = 0.
Hence CI(α) is an isomorphism. Next, from the second short exact sequence
we get an induced exact sequence

CI
1(coker f) −→ CI(Im f)

CI(β)−→ CI(M) −→ CI(coker f) −→ 0.

We have CI(coker f) ∼= CI(ΛI(coker f)) = 0. Moreover, combining 3.3, (i), 2.5,
(i) and the hypothesis ΛI(coker f) ∼= coker f, we abtain

CI
1(coker f) ∼= HI

2 (ΛI(coker f)) = 0.

Therefore CI(β) is an isomorphism.
(ii) We have a commutative diagram

M ′ f−→ M
ϕ←− K

↑ ηM ′ ↑ ηM ↑ ηK

CI(M ′)
CI (f)−→ CI(M)

CI (ϕ)←− CI(K).

By (i), CI(f) is an isomorphism. Set ψ = ηM ′ ◦ CI(f)−1 ◦ CI(ϕ), we have

fψ = fηM ′CI(f)−1CI(ϕ) = ηMCI(ϕ) = ϕηK .

Assume that there is a homomorphism ψ′ : CI(K) −→ M ′ such that f ◦ ψ′ =
ϕ ◦ ηK. We have another commutative diagram

M ′ ηM′←− CI(M ′)
CI(f)−→ CI(M)

↑ ψ′ ↑ CI(ψ′) ↑ CI(ϕ)

CI(K)
ηCI (K)←− CI(CI(K))

CI (ηK)−→ CI(K).

is an isomorphism by 3.6, (iii), we get

ψ′ = ψ′ ◦ ηCI(K) ◦ η−1
CI(K)

= ηM ′ ◦ CI(ψ′) ◦ CI(ηK)
−1

= ηM ′ ◦ CI(f)
−1 ◦ CI(ϕ) = ψ.

as required.
(iii) Since ϕ is an isomorphism, CI(ϕ) is also an isomorphism. Therefore (iii)
follows immediately from the fact that ψ = ηM ′ ◦ CI(f)−1 ◦ CI(ϕ).
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4 Co-localization

Let S be multiplicative set ofR. For an R−mduleM the module HomR(RS;M)
is called co-localization ofM with respect to S (see [11]). We denote it briefly by
SM. If M is a linearly compact R−module, then SM is also a linearly compact
R−module by [5, 2.4]. The following proposition says that the co-localization
can ”commute” to the ideal co-transform of a linearly compact R−module

Proposition 4.1. Let M be a linearly compact R−module. Then

SC
I
i (M) ∼= CIRS

i (SM)

for all i ≥ 0.

Proof. We have

SC
I
i (M) = HomR(RS; lim←−

t

TorRi (It;M))

∼= lim←−
t

HomR(RS ; TorRi (It;M)) = S(TorRi (It;M))

by [8, 2.5]. On the other hand by [4, 3.9],

S(TorR
i (It;M)) ∼= TorRS

i (ItRS; SM).

Therefore
SC

I
i (M) ∼= CIRS

i (SM)

as required.

Let a be an element in R, the notation aM means that the co-localization
of M with respect to the multiplicative set {1, a, a2, . . .}. We consider the
canonical homomorphism δ : aM = HomR(Ra;M) −→M, f 
−→ f(1).

Lemma 4.2. Let M be a linearly compact R−module and a an element of R.
Then the canonical homomorphism δ is continuous.

Proof. We consider the direct product MRa , where Ra the index set. Let
j : aM ↪→ MRa , f 
−→ (fx)x∈Ra , where fx = f(x) ∈ M be the inclusion and
π : MRa −→ M, (mx)x∈Ra 
−→ m1 the natural projection. Then δ = π ◦ j.
Therefore δ is continuous, since j and π are continuous.

Lemma 4.3. Let M be a linearly compact R−module. Then

ΛaR(ker δ) ∼= ker δ and ΛaR(coker δ) ∼= coker δ.
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Proof. Note by 3.3, (ii) that for a linearly compact R−module L, ΛaR(L) ∼= L
if and only if

⋂
t>0

atL = 0. Set K = ker δ and N = coker δ, then K and N are

linearly compact by 4.2 and 2.1, (i). Therefore it is sufficient to show that⋂
t>0

atK =
⋂

t>0

atN = 0. For an element f ∈ ⋂
t>0

atK, we have for all t > 0, f =

atft for some ft ∈ K. Hence f(1/at) = atft(1/at) = ft(at/at) = ft(1) = 0 for
all t > 0. Therefore f = 0, thus

⋂
t>0

atK = 0.

On the other hand, since Im δ =
⋂

t>0
atM by [5, 4.1], we get

⋂
t>0

atN =
⋂
t>0

at(M/ Im δ)

=
⋂
t>0

(atM/ Im δ)

= (
⋂
t>0

atM)/ Im δ = 0.

This finishes the proof.

Theorem 4.4. Let M be a linearly compact R−module and a an element in
R. There is an isomorphism

CaR(M) ∼= aM.

Proof. From 3.7, (iii) and 4.3, replace the homomorphism f in 3.7 by the
canonical homomorphism δ, we only need to show that CaR(aM) ∼= aM, this
is the case if and only if ΛaR(aM) = HaR

1 (aM) = 0 by 3.4.
We first show that a(aM) = aM. Indeed, for each f ∈ aM we can write

f = a.g, in which g is defined by g(r/at) = f(r/at+1) for all r ∈ R and all
t ≥ 0 (a0 = 1). Then a(aM) = aM and we get ΛaR(aM) = 0. We now have
by 2.4, (i), HaR

1 (aM) ∼= lim←−
t

H1(at; aM) ∼= lim←−
t

0 :aM at. Since a(aM) = aM, we

have
0 :aM at ⊆ a(0 :aM at+1) ⊆ 0 :aM at+1.

From the left exactness of inverse limit we get

lim←−
t

0 :aM at ⊆ alim←−
t

0 :aM at+1 ⊆ lim←−
t

0 :aM at+1.

Thus
HaR

1 (aM) ⊆ aHaR
1 (aM) ⊆ HaR

1 (aM).

It follows thatHaR
1 (aM) = aHaR

1 (aM).Therefore HaR
1 (aM) =

⋂
t>0

atHaR
1 (aM) =

0 by 2.4, (ii). This finishes the proof.



T. T. Nam 183

From 3.3, (ii) and 4.4, there is an exact sequence

0 −→ HaR
1 (M) −→ aM

δ−→M
θM−→ ΛaR(M) −→ 0.

Therefore, we have the following immediate consequence.

Corollary 4.5. Let M be a linearly compact R−module and δ : aM −→ M
the canonical homomorphism. Then

ker δ ∼= HaR
1 (M), coker δ ∼= ΛaR(M).
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