
East-West J. of Mathematics: Vol. 6, No 2 (2004) pp.161-172

YOUNG DIAGRAMS OF EQUIVALENT

FUZZY SUBSETS

V. Murali

Department of Mathematics (Pure & Applied)
Rhodes University, Grahamstown 6140, South Africa

Abstract

We consider in this paper a natural equivalence relation on the set of
all fuzzy subsets of a finite set with degree of membership values being
taken from the unit interval. This equivalence is a generalization of
equality of crisp sets. Maximal chains are called flags and finite chains of
real numbers in the unit interval are called keychains. Maximal chains
together with keychains twinned in an appropriate manner are called
pinned-flags. First we prove that there is a one-to-one correspondence
between equivalence classes of fuzzy subsets and the class of pinned-flags.
We then represent equivalent classes of fuzzy subsets, using the one-to-
one correspondence with pinned-flags, as Young diagrams or as other
diagrams arising from Young diagrams.

Introduction.

Equality of two fuzzy subsets of a set X demands the membership values of
every element of X to them are equal as real numbers in the unit interval
[13]. This is rarely used in any reasonable application. It is only of theoretical
value. On the other hand equality of crisp sets as containing the same elements
is useful in set theory. In this paper we consider a concept of equivalence of
fuzzy subsets that generalizes the equality of crisp sets but weaker than the
equality of fuzzy subsets. Through out the paper we assume that X is a finite
set of n elements. First we study two related ideas. One is that of representing a
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fuzzy subset by an increasing maximal chain of subsets (flags) [7], with degrees
of membership in the decreasing order (keychains). We call such an object a
pinned-flag. The other is that of equivalence of fuzzy subsets, [9], [11]. Simply
put: two fuzzy sets are equivalent if they maintain the same relative degrees of
membership between any pair of elements as in 2.1. The novelty of this paper is
in the use of flags and keychains as primary tools to characterize fuzzy subsets.
Secondly we prove that the pinned-flags are in one-to-one correspondence with
equivalence classes of fuzzy subsets. Thirdly treating keychains as finite chains
of real numbers in the unit interval arising from integer partitions of n, we
represent them by Young Diagrams which are associated with integer partitions.
From all of this we deduce that the equivalence classes of fuzzy subsets are in
one-to-one correspondence with certain Young Diagrams.

1 Preliminaries

In this section we gather the basics of fuzzy sets, flags, and keychains. There
are excellent books on fuzzy sets such as [5], [14], [8]and for flags and keychains
we refer to [10]

1◦ Fuzzy subsets
We use I = [0, 1], the real unit interval as a chain with the usual ordering

in which ∧ stands for infimum (or intersection) and ∨ stands for supremum (or
union) [3]. Throughout this paper we take X to be a non-empty finite set
with n elements labeled as {x1, x2, · · · , xn}.
A fuzzy subset μ of a set X is a mapping μ : X → I. The number 0 ≤ μ(x) ≤ 1
is known as the degree of membership of x ∈ X to the fuzzy subset μ. The
union, intersection of two fuzzy sets, and complementation of a fuzzy set are
defined using sup and inf pointwise, and 1−μ operator pointwise, respectively.
We denote the set of all fuzzy subsets of X by IX . Further we denote fuzzy
sets by the Greek letters μ , ν, η, etc. and the membership values by α, β, γ, δ
etc. By an α-cut of μ for a real number α in I , we mean a crisp subset
μα = {x ∈ X : μ(x) ≥ α} of X. We remark that for 0 ≤ α ≤ β ≤ 1 we
have μβ ⊆ μα. For any fuzzy subset μ it can be easily verified that μ =∨{αχμα : α ∈ [0, 1]}. By support of a fuzzy set μ we mean a crisp subset
supp μ = {x ∈ X : μ(x) > 0} of X. Similarly, by core of a fuzzy set μ we mean
a crisp subset core μ = {x ∈ X : μ(x) = 1} of X and by imageset of μ denoted
by Im(μ) = μ(X) we mean the set of membership values of μ including 1.

Generally the core of any fuzzy subset μ of any given set may or may not be
empty. To facilitate a clear exposition of ideas, we make a tacit assumption as
stated below about the core. Just as in other branches of Mathematics (such
as Topology) where certain mathematical properties are taken to be satisfied
vacuously in empty set situation , we propose an Axiom based on vacuous
“satisfaction” in the sense that every element of the empty set belongs to the
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empty set to an absolute degree 1 as a statement of vacuous satisfaction. An
accepted definition of empty fuzzy subset of X in the fuzzy literature is a χ∅
which takes the value 0 for all x ∈ X provided X is a non-empty set. This
is different from considering fuzzy subsets of the empty set ∅. In this paper
we make a clear distinction between the concepts of empty fuzzy subset of a
non-empty set and fuzzy subset of the empty set. We state it as

Axiom 1.1. NULSAX : There is only one fuzzy subset μ of the empty set
∅ which takes the membership value 1 on the empty set, μ : ∅ → I so that
(∀x ∈ ∅)(μ(x) = 1). That is the core of the empty set is the empty set and that
the core of every non-empty set always includes the empty set as a subset.

2◦ Flags and keychains
We define and briefly discuss flags and keychains in this subsection. We

refer to [10] and [11] for further details.

Definition 1.2. By a keychain � of length n, we mean a set of (n+1) real
numbers λi ∈ I, i = 0, 1, · · · , n of the form

1 = λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 (1.1)

where the λi’s are not all necessarily distinct. The λi’s are called pins . The
set of all keychains is denoted by K.

A matter of notation: When pins repeat we denote them by the same
symbol. For instance the keychain 1 > λ1 = λ2 > λ3 > λ4 = λ5 = λ6 > λ7 =
λ8 = 0 of length 8 is denoted by 1ααβγγγ00. Similarly by 111αβγγδδ we mean
the keychain ( length 8, of course ) 1 = λ1 = λ2 > λ3 > λ4 > λ5 = λ6 > λ7 =
λ8 > 0 with obvious meaning to α, β etc., namely, they are real numbers in the
unit interval satisfying 1 > α > β > γ > δ > 0.

Definition 1.3. (i) By a flag C on X, we mean a maximal chain C of subsets
of X of the form

X0 ⊂ X1 ⊂ X2 · · · ⊂ Xn = X (1.2)

In terms of labeled elements, Xi can be taken to be a subset {xj1 , xj2, · · · , xji}
of i elements from X without repetition. We call various Xi’s the components
of the flag C. The above inclusions in the flag are always taken to be strict.

The set of all flags on X is denoted by M and the set of all permutations
on n symbols n = {1, 2. · · · , n} is familiarly denoted by Sn. Clearly there
is a one-to-one correspondence between the elements of the sets M and Sn.
Therefore we can index M by elements of Sn. Thus we talk of a flag Cσ for
any permutation σ ∈ Sn. Hence M = {Cσ : σ ∈ Sn}.
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2 Equivalence and pinned-flags

In this section we introduce the equivalence of fuzzy subsets and the associated
concept of pinned-flags.

1◦. Equivalence relation on fuzzy sets
An equivalence relation ∼ on IX is defined as follows, see [1],[4]:

μ ∼ ν if and only if

(i) for all x, y ∈ X μ(x) > μ(y) if and only if ν(x) > ν(y)
(ii) μ(x) = 1 if and only if ν(x) = 1
(iii) μ(x) = 0 if and only if ν(x) = 0.

(2.1)

It is easily checked that this relation is indeed an equivalence relation on IX

and, when restricted to 2X , where 2 = {0, 1} , coincides with equality of sets [9].
Under this equivalence relation, the equivalence class containing μ is denoted
by [μ]. We denote the set of all equivalence classes of fuzzy subsets by E . The
following facts have been established about this equivalence, ( see [9], [10]). As
before μ and ν are two fuzzy subsets of X.

Remark 2.1. 1. In condition (i) of the above equivalence relation, we can
replace the strict inequality by ≥ inequality without affecting the equiv-
alence.

2. Condition (iii) of equation 2.1 above says that the supports of equivalent
fuzzy subsets are the same.

3. From condition (ii) of equation 2.1 we can easily deduce that μ(x) = 1
if and only if ν(x) = 1, that is, the top cuts, that is the core of two
equivalent fuzzy subsets are the same.

4. If μ ∼ ν , then |Im(μ)| = |Im(ν)|.
5. The converse is not true, viz. if |Im(μ)| = |Im(ν)| or even if Im(μ) =

Im(ν),core μ = core ν and supp μ = supp ν , it is not necessary to have
μ ∼ ν .

6. μ ∼ ν if and only if for each α > 0 there exists an β > 0 such that
μα = νβ .

2◦. Pinned-flags
We describe below how pinned-flags and fuzzy subsets determine each other.

Definition 2.2. By a pinned-flag on X, we mean a pair ( C, �), of a flag C on
X and a keychain � from I, written suggestively as follows:

X1
0 ⊂ X1

λ1 ⊂ X2
λ2 · · · ⊂ Xn

λn (2.2)
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By eliminating the repetitive pins we get a sequence

X1
0 ⊂ X1

λ1 ⊂ X2
λ2 · · · ⊂ Xk

λk , 1 ≤ k ≤ n (2.3)

which we call a reduced pinned-flag. Note that the pins in a reduced pinned-flag
are all distinct from each other. Now, we can associate a fuzzy subset μ of X
with such a pinned-flag ( C, �) as follows:

μ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, x ∈ X0

λ1, x ∈ X1 \ X0

λ2, x ∈ X2 \ X1

...
λn x ∈ Xn \ Xn−1

(2.4)

where the component Xn is the full set X. We denote this simply by Xn
λn =

Xλn . Note that λn may or may not be 0. If λn = 0, then supp μ is strictly
contained in X, and if λn = 0 then supp μ = X . Similarly if λ1 = λ0 = 1 and
λ2 = 0, then the top cut μ1 = X1. If not, i. e. if λ1 = 1, the top cut μ1 is the
empty set X0 and so on. Further we note that the α-cuts of μ corresponding
to λi−1 > α ≥ λi are Xi for i = 1, 2, · · · , n. The μ as defined above is a fuzzy
subset of X.
Conversely,

Proposition 2.3. Suppose μ is a fuzzy subset of X, then we can decompose μ
into a pinned-flag

(C, �) : X1
0 ⊂ X1

λ1 ⊂ X2
λ2 · · · ⊂ Xn

λn

that represents μ as in equation 2.4.

Sketch of proof
Since X is finite, μ(X) ⊂ I is finite. Let μ(X) = {λ1, λ2, · · · , λk} where

the sequence is decreasing (strictly). Let Yi = μλi be the α-cut corresponding
to α = λi for i = 1, 2, · · · , k. Then three facts are well-known:
(i) every Yi is a subset of X,
(ii) λi > λj implies that Yi ⊂ Yj for 1 ≤ i, j ≤ k.
(iii) The chain C1 :Y1 ⊆ Y2 ⊆ · · · ⊆ Yk can be refined to yield a flag

C :X0 ⊂ X1 ⊂ X2 · · · ⊂ Xn = X

As we refine C1 to C we may have to repeat some of the pins λi’s corre-
spondingly. Once this process carried out, we arrive at a pinned-flag

X1
0 ⊂ X1

λ1 ⊂ X2
λ2 · · · ⊂ Xλn (2.5)

which obviously represents μ as in equation 2.4.
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Note 2.4. If k = n, then all the λi’s are distinct. In this case the number of
pins is n. If k < n, some pins are repeating. First we collect the distinct pins.
Secondly we count the number of times each distinct pin is repeated. If some
pins do not repeat then they are single pins. With single pins we associate
1. Thus we arrive at i = (l1, l2, · · · , lk) where some of the li’s may be 1, that
is, those corresponding to non-repeating single pins. In any case

∑k
i=1 li = n.

The k-tuple of positive integers i is known as the index of μ or of the keychain
of μ. See corollary 2.7

3◦ Equivalent fuzzy sets and pinned-flags
The following proposition expresses the equivalence of fuzzy subsets in terms

of pinned-flags.

Proposition 2.5. Suppose the reduced pinned-flags corresponding to two fuzzy
subsets μ and ν of the same set X are given by

(Cμ, �μ) : X1
0 ⊂ Xλ1

1 ⊂ · · · ⊂ Xλr
r

and
(Cν , �ν) : Y 1

0 ⊂ Y β1
1 ⊂ · · · ⊂ Y βs

s

(2.6)

Then μ ∼ ν on X if and only if :
(i) r = s;
(ii) Xi = Yi for i = 0, 1, · · · , r;
(iii) λi > λj if and only if βi > βj for 1 ≤ i, j ≤ r and λt = 0 if and only if
βt = 0 for all t between r and n.

Proof (⇒) (i) For x ∈ X, define a function f : IX → IX by f(μ(x)) = ν(x).
Then it is easy to check that f is firstly well defined and secondly bijective.
Thus |Im(μ)| = |Im(ν)|. Therefore r = s.

(ii) We prove by induction on r. For r = 0, X0 = Y0 since each set is
the empty set. Suppose Xk = Yk for k ≥ 0, and g ∈ Xk+1. If g ∈ Xk,
then g ∈ Yk which is contained in Yk+1. There is nothing to prove in this
case. If not, μ(g) = λk+1. Suppose g ∈ Yk+1, then ν(g) < βk+1. Choose
x ∈ Yk+1 but x ∈ Yk. Then ν(g) < ν(x) which implies μ(g) < μ(x) by equiv-
alence. Hence λk+1 = μ(g) < μ(x) = α where λk ≤ α < λk+1. This implies
x ∈ μα ⊆ Xk = Yk, a contradiction. Therefore Xk+1 ⊂ Yk+1. Similarly we can
show that Yk+1 ⊂ Xk+1. This completes the induction.
(iii) Follows from (i) and (ii) and from the definition of equivalence pertaining
to support.

(⇐) Suppose μ and ν are two fuzzy subsets such that (i), (ii) and (iii) are
valid. Then from (iii) λt = 0 if and only if βt = 0 for all t between r and n
is true. By (i) r = s. Therefore supp μ = supp ν . For x, y ∈ supp μ, suppose
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μ(x) > μ(y). Then μ(x) = λi and μ(y) = λj for some i, j. But from (iii)
λi > λj if and only if βi > βj for 1 ≤ i, j ≤ r. Now, (ii) and (iii) together
imply ν(x) > ν(y). Thus μ ∼ ν as required.

We may take the above proposition as the definition of equivalence of
pinned-flags. That is (Cμ, �μ) ∼ (Cν , �ν) if and only if conditions (i), (ii) and
(iii) are satisfied. Also two keychains are equivalent if conditions (i) and (iii)
are satisfied. Therefore we call two keychains distinct if they are not equivalent.
With these definitions of equivalence of pinned-flags and fuzzy sets, we have
the following

Note 2.6. With each fuzzy subset μ of X we can associate one and only one
pinned-flag (C, �) which we denote by (Cμ, �μ), or simply by Cμ if the keychain
�μ can be determined from the context, or simply by �μ if Cμ is known, and
conversely, with each pinned-flag (Cμ, �μ) we can associate a fuzzy subset μ as
above. Thus we can speak of fuzzy subsets and their associated pinned-flags
( or keychains only if the underlying flags are understood from the context )
interchangeably as referring to the same construct.

Thus not only we can associate the pinned-flag (Cμ, �μ) with a given μ but
we can also associate the same pinned-flag with an equivalence class [μ] of μ
provided we take into account the properties (i), (ii) and (iii) of the above
proposition pertaining to Cμ and �μ, i.e. equivalence of pinned-flags. With this
in mind , we state the following corollary :

Corollary 2.7. There is a one-to-one correspondence between pinned-flags
on X and equivalence classes of fuzzy subsets subject to (i),(ii), and (iii) of
proposition 2.5.

By abuse of notation, we refer to the pinned-flag associated with an equiv-
alence class [μ] containing fuzzy subset μ simply by �μ when the underlying
flag is understood from the context. Thus, in terms of the notion of index as
introduced in note 2.4 we can refer to the index of a fuzzy subset to be the
same as the index of the underlying keychain of the fuzzy subset. The index is
an invariant for all fuzzy subsets in the same equivalence class.

3 Young Diagrams of Fuzzy subsets

In this section we briefly discuss partitions and their Young diagrams [2], [6],
[12] permuted diagrams and the way in which diagrams are augmented with
further four squares. We describe the steps to arrive at diagrams from key-
chains, and finally picture the diagrams of pinned-flags.
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1◦ Partitions and Young Diagrams
A partition of a positive integer n is a finite nonincreasing sequence of

positive integers l1, l2, · · · , lr such that
∑r

i=1 li = n. The li’s are called parts
of the partition. As is customary we shall write � � n for the partition � =
(l1 , l2, · · · , lr) whose parts are the li’s. Sometimes it is usual to use a notation
that makes explicit the number of times that a particular integer occurs as a
part. Thus if � is a partition of n we write

� = (1f12f2 · · · )

where exactly fk number of times k appears in the partition � of n, so that∑m
i=1 fii = n. We remark that there are several equivalent useful ways of

forming the graphical representation of a partition. We follow the most pop-
ular representation known as the Standard Young diagram, using appropriate
number of square boxes for the various parts of the partition. We illustrate the
partition of 31 = 7 + 6 + 6 + 5 + 2 + 2 + 2 + 1 as a Young diagram �31.

The Young diagram corresponding to the partition of � = (n) of n is represented
by n boxes in a row. The other extreme case of the partition n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n−times

is represented by a column of n boxes. These are illustrated by the following
diagrams:

( � = (5))
( � = (1,1,1,1)= (14) )

Together with Standard Young diagram, one can construct new diagrams,
called permuted diagrams , with rows permuted such as the following diagrams,
( only a sample shown below, there are a number of other possiblities ) arising
from �31
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Also one can attach two new boxes to a given diagram, one at the beginning
and one at the end, in four different positions at the top left and bottom right
as shown below to the standard �31, with only one exception. We call these
the augmented diagrams. These augmentations correspond to having a fuzzy
subset μ with core μ empty or not and supp μ is X or strictly contained in X.
Section 3 below will clarify further.

Diagram 1 Diagram 2 Diagram 3 Diagram 4

Now we come to deal with the only exceptional case that was mentioned
above. Suppose � = (n). Then there are only three augmented diagrams. We
illustrate for the case �5 = (5).

Diagram 5 Diagram 6 Diagram 7

2◦ Diagrams of keychains
It is clear that there is a one-to-one correspondence between keychains of

n-chains and their indices. But indices are nothing but ordered partitions of n.
Consequently augmented permuted diagrams of Young diagrams are associated
with keychains. We now describe the method how to realize this correspondence
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between keychains. First recall that a keychain of length n + 1 is represented
by equation 1.1 where we could take one (”=”) or the other ” > ” choice in
n + 1 places. Secondly consider λ1 ≥ λ2 ≥ · · · ≥ λn omitting the first and last
entries. We draw a blank square for each λi for i = 1, 2, · · · , n. We place them
in a row adjecent to each other with each choice of ”=” . As soon as a choice of
” > ” occurs a new row is created with squares aligned with the previous row
and so on arriving at a permuted diagram. We now augment this diagram with
the appropriate square attachment for the first and last choice of equality or
inequality as the case may be, as shown in section 4.1 above. We have drawn
below the augmented permuted diagrams as well as standard Young Diagram
of two keychains as illustration.

Suppose �1 : 1ααβγγγ00 has length 8 with index (2, 1, 3, 2)and �2 : 111ααβγδδδ
has length 9 with index (2, 2, 1, 1, 3) with the tacit assumption 1 > α > β >
γ > δ > 0. The associated partitions of �1 and �2 are 8 = 3 + 2 + 2 + 1 and
9 = 2 + 2 + 1 + 1 + 3, respectively. The following are the augmented per-
muted diagrams (right) and the standard Young diagrams ( left ) of keychains
�1 and �1 respectively :

�1 Standard and Augmented diagram �2 Standard and Augmented diagram

3◦ Diagrams of pinned-flags

To get a pinned-flag from a keychain, we only have to consider any given flag
on X which twins with the given keychain as in definition 2.6. But flags on X
are obtained by permuting the given set of elements with identity permutation
taken as the given natural order. Leaving out the very first and the last square
from the augmented permuted diagram and filling the rest of the squares with
one number from 1 to n inclusive in any order, we get a corresponding pinned-
flag. With that pinned-flag is associated an equivalent class of fuzzy subsets
of X. Consider the example of section 2 with keychain �2. Suppose X =
{1, 2, · · · , 9} is a set with 9 elements in its natural order. Apply a permutation
σ to X to get Xσ = {4, 3, 5, 9, 6, 2, 8, 1, 7}. Consider �μ = �2 and Cμ : X0 ⊂
X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ X9 where X0 = ∅, X1 = {4}, X2 = {4, 3}, X3 =
{4, 3, 5}, · · · , X9 = {4, 3, 5, 9, 6, 2, 8, 1, 7} = X. Then the pinned -flag (Cμ, �μ)
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corresponds to the equivalent fuzzy subset μ of X given by the following:

μ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, x = ∅ = Y0

1, x = {4, 3} = X2 = Y1

α, x = {5, 9} = X4 \ X2 = Y2

β, x = {6} = X5 \ X4 = Y3

γ, x = {2} = X6 \ X5 = Y4

δ, x = {8, 1, 7} = X9 \ X6 = Y5

(3.1)

The actual pinned-flag (Cμ, �μ) is

X1
0 ⊂ X1

1 ⊂ X2
1 ⊂ X3

α ⊂ X4
α ⊂ X5

β ⊂ X6
γ ⊂ X7

δ ⊂ X8
δ ⊂ X9

δ (3.2)

which can be written as

Y 1
0 ⊂ Y1

1 ⊂ Y2
α ⊂ Y3

β ⊂ Y4
γ ⊂ Y5

δ (3.3)

In the following we have drawn the standard Young diagram on the left and
on the right augmented permuted diagram with the assigned elements in the
squares representing the pinned-flag (Cμ, �μ).

∅ 4 3

5 9

6

2

8 1 7

X

1

α

β

γ

δ

0

With the above procedures for associating fuzzy subsets to augmented per-
muted diagrams we can interpret diagrams 1 to 7 of section 4.1. The augmen-
tation of diagrams says something about the core and the support of associated
fuzzy subsets. For instance in diagram 1 of section 1, the associated fuzzy sub-
set has non-empty core and the support strictly contained in X. Similarly in
the second diagram, the core is non-empty , but the support is whole of X. In
diagrams 3 and 4, the core is empty but in the third diagram support is whole
of X whereas in the fourth the support is strictly contained in X. The fuzzy
subset associated with diagram 5 of section 1 is the whole of crisp set X, and
the diagram 7 corresponds to the empty subset of X. Diagram 6 represents
a fuzzy subset μ for which every element of X has membership value α to μ
where α is a fixed non-unit, non-zero number.

We hope to study the operations such as union, intersection, product, group
operations etc of fuzzy subsets in a subsequent papers. We could compute their
supplemented permuted diagrams of standard Young diagrams and interpret
the fuzzy set theoretic properties by means of their diagrams.
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