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Abstract

The main purpose of this paper is to obtain sufficient conditions under
which the trivial solution of the vector differential equations of the form

XW4+AX+BOH(X,X,X,X) X +C#)G(X) X +D(t)F(X) =0

is unstable.

1 Introduction

We are interested in obtaining a result on the instability behavior of the trivial
solution X = 0 of the nonlinear vector differential equations of the form:

XW 4+ AX +BOH(X, X, X, X) X +C)G(X) X +D(t)F(X) =0, (1.1)
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in which t € RT, Rt =[0,00) and X € R"; A is a constant n x n -symmetric
matrix; B, H, C, G, and D are continuous n X n-symmetric matrices for
the arguments displayed explicitly and the dots indicate differentiation with
respect to t; F : R® — R™ and F(0) = 0. It is assumed that the function
F is continuous. It should be noted that, through in what follows, we use
the following differential system which is equivalent to the differential equation

(1.1):

(1.2)
W= —AW — B()H(X,Y,Z,W)Z — C()G(X)Y — D({)F(X)

obtained as usual by setting X=Y, X=Z, X=W in (1.1).
Let Jg(X) and Jp(X) denote the Jacobian matrices corresponding to the
G(X) and F(X), respectively, that is,

Ja(X) = (gﬁ;) , Jr(X) = (gﬂ{;) ;

%C(t) =C (t) = % (car(t) (i,5,k=1,2,...,n),

where (21,22, ..., ), (91,92, .-, Gn), (f1, f2, .o, fn) and (c;x(t)) are components
of X, G, F and C, respectively. Furthermore, it is assumed, as basic through-
out in what follows, that the Jacobian matrices Jr(X), Jg(X) and O (t) exist
and are symmetric and continuous, and that all matrices given in the pairs D,
Jp: C, G; C, Jo; C, G and B, H commute with each others.

As we know, the instability behavior of solutions for various certain second-,
third-, fourth-, fifth-, sixth-, seventh- and eighth-order nonlinear differential
equations, particulary in the case n = 1, have been widely discussed in the
literature (see, for example [1-6], [8-12], [14-26]) and refernces quoted therein
for some publications on the matter.

Skrapek [17] and Tiryaki [20] investigated the instability of the trivial solu-
tion of the fourth order scalar differential equations of the form:

and

e 4 fla, @i, %) =0
and
e 4 (3) T +p(@) & +0(2) + f(z) =0,
respectively. Recently, Sadek [16] and Tung ([23], [24]) also studied the same
subject for the nonlinear vector differential equations:
XW 4L AX+H(X, X, X, X) X +G(X) X +F(X) =0,

XD 4 (X)X +9(X) X +H(X) + F(X) =0
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and
XW 4 w(x, X)X +0(X, X) X +H(X) + F(X) =0,

respectively. According to our observations in the relevant literature, there isn’t
any research found on the instability of solutions of certain non-autonomous
vector differential equations of the fourth order. Especially, the motivation for
the present investigation has come from the papers of skrapek [17], Sadek [16],
Tiryaki [20] and Tung ([23], [24]).
The symbol (X,Y) is used to denote the usual scalar product in R™ for
n
given any X,Y in R", that is, (X,Y) = > x;u;, thus [X* = (X, X). The
i=1
matrix A is said to be negative-definite, when (AX, X) < 0 for all non-zero X

in R™, and \;(A) (i =1,2,...,n) are eigenvalues of the n x n— matrix A.

2 The main result

We can now state our foremost result:

Theorem Further to the basic assumptions on A, B,C, D, H,G and F in (1.2),
suppose there exist positive constants a1 a2 and ay4 such that as — ia% >0 and
the following conditions are satisfied:

(i) Mi(B(t) > 1, \(C (1) <0 and \(D(t) > 1 forall t € RT.

(i1) M(A) > a1, M(H(X,Y, Z,W)) < a2, F(X) #0 forall X #0,X € R",
and \i(Jp(X)) > a4 for all X,Y,Z, W € R".

Then the zero solution X = 0 of the system (1.2) is unstable.

Now, we state the following algebraic results required in the proof of the
theorem.

Lemma 1 Let A be a real symmetric n x n matriz and
a>N(A)>a>0 (i=1,2,..,n),
where a',a are constants. Then
a (X, X)>{(AX, X) > a(X, X)

and
/2

a” (X, X) > (AX, AX) > a* (X, X) .

Proof See ( Horn and Johnson [7]). O

Lemma 2 Let QQ, D be any two real n X n commuting symmetric matrices.
Then
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(i) The eigenvalues \;(QD) (i = 1,2, ...,n) of the product matrices QD are
real and satisfy

max A (Q)A(D) > A\(QD) > min A(Q)A(D).

1<j,k<n T 1<j,k<n

(ii) The eigenvalues N\i(Q+ D) (i = 1,2, ...,n) of the sum of matrices Q and
D are real and satisfy

<k 1<j<n 1<k<n

{ im0, (@)+ s (D)} 2 0@+ D) 2 { min 0@+ min (D)}

where \;(Q) and A\ (D) are, respectively, the eigenvalues of @ and D.
Proof See ( Horn and Johnson [7]). O

Proof of the theorem

Our main tool in the proof is the scalar Lyapunov function V =V (¢, X, Y, Z, W)
defined by:

V= (v, 2) +% (AY,Y)— (W, X)— (AZ, X) / o (C(HG (X)X, X) do. (2.1)
0

It is clear that V(0,0,0,0,0) = 0. Indeed, we also have that

V(0,0,e,6,0) = (g, &)+ % (Ae,e) > (g,e) + %al (e, €)

2 2
= llel” + a1 el > 0

for all arbitrary € # 0,e € R™. Next, let (X,Y,Z, W) = (X(t),Y (t), Z(t), W(t))
be an arbitrary solution of the system (1.2). We have from (2.1) and (1.2) that
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But

+

Jo*(C(t)Ja(c X)XY, X) dcr—|—f tG(eX)X,Y)do
0

= fl o <c (G0 X)X, X> do + fl (0C(t)G(oX)Y, X) do
0 0

+}a% (cC(t)G(eX)Y, X) do
0

e < G(oX)X, X> do + 0? (C(H)G(eX)Y, X) |
0 0
jl‘a< G(oX)X, X> do + (C(H)G(X)Y, X) .
0

By noting the assumptions of the theorem, it follows that

V= (Z,Z)+ (X,B()H(X,Y, Z,W)Z) + (D(t)F(X), X)
+ [ <a ¢ (DG (o X)X, X> do
0

>(Z,Zy+(X,B)H(X,Y,Z,W)Z)+ (D(t)F(X), X) .

Since 2 F(0X) = Jp(0X)X and F(0) = 0, then
1
F(X) :/JF(UX)Xda.
0
Therefore, the assumptions of the theorem show that

1 1
/ t)Jrp(c X)X, X) da>a4/<X,X>da:a4<X,X>.
0 0
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Hence

V> |Z+iBWHX,Y, ZW)X|]

—2(BO)HX,Y, Z W)X, B{t)H(X,Y, Z, W)X) + a4 (X, X)

> ay (X, X) — H(B)H(X,Y, Z,W)X, B(t)H(X,Y, Z,W)X)

2 2 2
> aq|[|X||” = 103 | X|I” = (as — 7a3) | X[I" > 0.

1
4
Thus, the assumptions of the theorem show that V>0 forall t>0, that is,
V is positive semi-definite. Furthermore, V=0 (¢ > 0) necessarily implies that
Y =0 forall t >0, and therefore also that X = £ (a constant vector),

Z=y=0, W=y=0, W=yY=0 forallt>0.
The substitution of the estimates
X=Y=Z=W=0

in the system (1.2) leads to the result F'(£) = 0 which by assumption (ii) of the
theorem implies (only) that & = 0. For this reason V=0 (¢ > 0) implies that

X=Y=Z=W=0 forallt>0.

Therefore, the function V has the entire requisite Krasovskii criterion [9] if the
conditions of the theorem hold. Thus, the basic properties of the function V/,
which are proved just above verify that the zero solution of the system (1.2) is
unstable. (See Theorem 1.15 in Reissig and et al [14] and Krasovskii [9]). The
system of equations (1.2) is equivalent to the differential equation (1.1). This
complates the proof of the theorem. ([
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