A RESULT ON THE INSTABILITY OF SOLUTIONS OF CERTAIN NON-AUTONOMOUS VECTOR DIFFERENTIAL EQUATIONS OF FOURTH ORDER*

Cemil Tunç* and Ercan Tunç ${ }^{\dagger}$
* Department of Mathematics, Faculty of Arts and Sciences
Yüzüncü Yal University,
65080 , Van, TURKE Y.
cemtunc@yahoo.com
\dagger Department of Mathematics, Faculty of Arts and Sciences Gaziosmanpaşa University 60080 , Tokat, TURKEY. ercantunc72@yahoo.com

Abstract

The main purpose of this paper is to obtain sufficient conditions under which the trivial solution of the vector differential equations of the form $$
X^{(4)}+A \dddot{X}+B(t) H(X, \dot{X}, \ddot{X}, \dddot{X}) \ddot{X}+C(t) G(X) \dot{X}+D(t) F(X)=0
$$

is unstable.

1 Introduction

We are interested in obtaining a result on the instability behavior of the trivial solution $X=0$ of the nonlinear vector differential equations of the form:

$$
\begin{equation*}
X^{(4)}+A \dddot{X}+B(t) H(X, \dot{X}, \ddot{X}, \dddot{X}) \ddot{X}+C(t) G(X) \dot{X}+D(t) F(X)=0 \tag{1.1}
\end{equation*}
$$

[^0]in which $t \in R^{+}, R^{+}=[0, \infty)$ and $X \in R^{n} ; A$ is a constant $n \times n$-symmetric matrix; B, H, C, G, and D are continuous $n \times n$-symmetric matrices for the arguments displayed explicitly and the dots indicate differentiation with respect to $t ; F: R^{n} \rightarrow R^{n}$ and $F(0)=0$. It is assumed that the function F is continuous. It should be noted that, through in what follows, we use the following differential system which is equivalent to the differential equation (1.1):
\[

$$
\begin{align*}
& \dot{X}=Y, \quad \dot{Y}=Z, \quad \dot{Z}=W \tag{1.2}\\
& \dot{W}=-A W-B(t) H(X, Y, Z, W) Z-C(t) G(X) Y-D(t) F(X)
\end{align*}
$$
\]

obtained as usual by setting $\dot{X}=Y, \ddot{X}=Z, \dddot{X}=W$ in (1.1).
Let $J_{G}(X)$ and $J_{F}(X)$ denote the Jacobian matrices corresponding to the $G(X)$ and $F(X)$, respectively, that is,

$$
J_{G}(X)=\left(\frac{\partial g_{i}}{\partial x_{j}}\right), \quad J_{F}(X)=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)
$$

and

$$
\frac{d}{d t} C(t)=\dot{C}(t)=\frac{d}{d t}\left(c_{i k}(t)\right) \quad(i, j, k=1,2, \ldots, n)
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(g_{1}, g_{2}, \ldots, g_{n}\right),\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ and $\left(c_{i k}(t)\right)$ are components of X, G, F and C, respectively. Furthermore, it is assumed, as basic throughout in what follows, that the Jacobian matrices $J_{F}(X), J_{G}(X)$ and $\dot{C}(t)$ exist and are symmetric and continuous, and that all matrices given in the pairs D, $J_{F} ; C, G ; C, J_{G} ; \dot{C}, G$ and B, H commute with each others.

As we know, the instability behavior of solutions for various certain second-, third-, fourth-, fifth-, sixth-, seventh- and eighth-order nonlinear differential equations, particulary in the case $n=1$, have been widely discussed in the literature (see, for example [1-6], [8-12], [14-26]) and refernces quoted therein for some publications on the matter.

Skrapek [17] and Tiryaki [20] investigated the instability of the trivial solution of the fourth order scalar differential equations of the form:

$$
x^{(4)}+f(x, \dot{x}, \ddot{x}, \dddot{x})=0
$$

and

$$
x^{(4)}+\psi(\ddot{x}) \dddot{x}+\varphi(\dot{x}) \ddot{x}+\theta(\dot{x})+f(x)=0
$$

respectively. Recently, Sadek [16] and Tunç ([23], [24]) also studied the same subject for the nonlinear vector differential equations:

$$
\begin{gathered}
X^{(4)}+A \dddot{X}+H(X, \dot{X}, \ddot{X}, \dddot{X}) \ddot{X}+G(X) \dot{X}+F(X)=0 \\
X^{(4)}+\Psi(\ddot{X}) \dddot{X}+\Phi(\dot{X}) \ddot{X}+H(\dot{X})+F(X)=0
\end{gathered}
$$

and

$$
X^{(4)}+\Psi(\dot{X}, \ddot{X}) \dddot{X}+\Phi(X, \dot{X}) \ddot{X}+H(\dot{X})+F(X)=0
$$

respectively. According to our observations in the relevant literature, there isn't any research found on the instability of solutions of certain non-autonomous vector differential equations of the fourth order. Especially, the motivation for the present investigation has come from the papers of skrapek [17], Sadek [16], Tiryaki [20] and Tunç ([23], [24]).

The symbol $\langle X, Y\rangle$ is used to denote the usual scalar product in R^{n} for given any X, Y in R^{n}, that is, $\langle X, Y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$, thus $\|X\|^{2}=\langle X, X\rangle$. The matrix A is said to be negative-definite, when $\langle A X, X\rangle<0$ for all non-zero X in R^{n}, and $\lambda_{i}(A)(i=1,2, \ldots, n)$ are eigenvalues of the $n \times n-$ matrix A.

2 The main result

We can now state our foremost result:
Theorem Further to the basic assumptions on A, B, C, D, H, G and F in (1.2), suppose there exist positive constants a_{1}, a_{2} and a_{4} such that $a_{4}-\frac{1}{4} a_{2}^{2}>0$ and the following conditions are satisfied:
(i) $\lambda_{i}\left(B(t) \geq 1, \lambda_{i}\left(\dot{C}(t) \leq 0\right.\right.$ and $\lambda_{i}\left(D(t) \geq 1\right.$ for all $t \in R^{+}$.
(ii) $\lambda_{i}(A) \geq a_{1}, \lambda_{i}(H(X, Y, Z, W)) \leq a_{2}, F(X) \neq 0$ for all $X \neq 0, X \in R^{n}$, and $\lambda_{i}\left(J_{F}(X)\right) \geq a_{4}$ for all $X, Y, Z, W \in R^{n}$.

Then the zero solution $X=0$ of the system (1.2) is unstable.
Now, we state the following algebraic results required in the proof of the theorem.

Lemma 1 Let A be a real symmetric $n \times n$ matrix and

$$
a^{\prime} \geq \lambda_{i}(A) \geq a>0 \quad(i=1,2, \ldots, n)
$$

where a^{\prime}, a are constants. Then

$$
a^{\prime}\langle X, X\rangle \geq\langle A X, X\rangle \geq a\langle X, X\rangle
$$

and

$$
a^{\prime^{2}}\langle X, X\rangle \geq\langle A X, A X\rangle \geq a^{2}\langle X, X\rangle
$$

Proof See (Horn and Johnson [7]).

Lemma 2 Let Q, D be any two real $n \times n$ commuting symmetric matrices. Then
(i) The eigenvalues $\lambda_{i}(Q D)(i=1,2, \ldots, n)$ of the product matrices $Q D$ are real and satisfy

$$
\max _{1 \leq j, k \leq n} \lambda_{j}(Q) \lambda_{k}(D) \geq \lambda_{i}(Q D) \geq \min _{1 \leq j, k \leq n} \lambda_{j}(Q) \lambda_{k}(D)
$$

(ii) The eigenvalues $\lambda_{i}(Q+D)(i=1,2, \ldots, n)$ of the sum of matrices Q and D are real and satisfy

$$
\left\{\max _{1 \leq j \leq n} \lambda_{j}(Q)+\max _{1 \leq k \leq n} \lambda_{k}(D)\right\} \geq \lambda_{i}(Q+D) \geq\left\{\min _{1 \leq j \leq n} \lambda_{j}(Q)+\min _{1 \leq k \leq n} \lambda_{k}(D)\right\}
$$

where $\lambda_{j}(Q)$ and $\lambda_{k}(D)$ are, respectively, the eigenvalues of Q and D.
Proof See (Horn and Johnson [7]).

Proof of the theorem

Our main tool in the proof is the scalar Lyapunov function $V=V(t, X, Y, Z, W)$ defined by:

$$
\begin{equation*}
V=\langle Y, Z\rangle+\frac{1}{2}\langle A Y, Y\rangle-\langle W, X\rangle-\langle A Z, X\rangle-\int_{0}^{1} \sigma\langle C(t) G(\sigma X) X, X\rangle d \sigma \tag{2.1}
\end{equation*}
$$

It is clear that $V(0,0,0,0,0)=0$. Indeed, we also have that

$$
\begin{aligned}
V(0,0, \varepsilon, \varepsilon, 0) & =\langle\varepsilon, \varepsilon\rangle+\frac{1}{2}\langle A \varepsilon, \varepsilon\rangle \geq\langle\varepsilon, \varepsilon\rangle+\frac{1}{2} a_{1}\langle\varepsilon, \varepsilon\rangle \\
& =\|\varepsilon\|^{2}+\frac{1}{2} a_{1}\|\varepsilon\|^{2}>0
\end{aligned}
$$

for all arbitrary $\varepsilon \neq 0, \varepsilon \in R^{n}$. Next, let $(X, Y, Z, W)=(X(t), Y(t), Z(t), W(t))$ be an arbitrary solution of the system (1.2). We have from (2.1) and (1.2) that

$$
\begin{aligned}
\dot{V}=\frac{d}{d t} V(t, X, Y, Z, W) & =\langle Z, Z\rangle+\langle B(t) H(X, Y, Z, W) Z, X\rangle+\langle D(t) F(X), X\rangle \\
& +\langle C(t) G(X) Y, X\rangle-\frac{d}{d t} \int_{0}^{1} \sigma\langle C(t) G(\sigma X) X, X\rangle d \sigma
\end{aligned}
$$

But

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{1} \sigma \quad & \langle C(t) G(\sigma X) X, X\rangle d \sigma= \\
& =\int_{0}^{1} \sigma\langle\dot{C}(t) G(\sigma X) X, X\rangle d \sigma+\int_{0}^{1}\langle\sigma C(t) G(\sigma X) Y, X\rangle d \sigma \\
& +\int_{0}^{1} \sigma^{2}\left\langle C(t) J_{G}(\sigma X) X Y, X\right\rangle d \sigma+\int_{0}^{1} \sigma\langle C(t) G(\sigma X) X, Y\rangle d \sigma \\
\quad & =\int_{0}^{1} \sigma\langle\dot{C}(t) G(\sigma X) X, X\rangle d \sigma+\int_{0}^{1}\langle\sigma C(t) G(\sigma X) Y, X\rangle d \sigma \\
& +\int_{0}^{1} \sigma \frac{\partial}{\partial \sigma}\langle\sigma C(t) G(\sigma X) Y, X\rangle d \sigma \\
& =\int_{0}^{1} \sigma\langle\dot{C}(t) G(\sigma X) X, X\rangle d \sigma+\left.\sigma^{2}\langle C(t) G(\sigma X) Y, X\rangle\right|_{0} ^{1} \\
& =\int_{0}^{1} \sigma\langle\dot{C}(t) G(\sigma X) X, X\rangle d \sigma+\langle C(t) G(X) Y, X\rangle
\end{aligned}
$$

By noting the assumptions of the theorem, it follows that

$$
\begin{aligned}
& \dot{V}=\langle Z, Z\rangle+\langle X, B(t) H(X, Y, Z, W) Z\rangle+\langle D(t) F(X), X\rangle \\
&+\int_{0}^{1}\langle\sigma \dot{C}(t) G(\sigma X) X, X\rangle d \sigma \\
& \geq\langle Z, Z\rangle+\langle X, B(t) H(X, Y, Z, W) Z\rangle+\langle D(t) F(X), X\rangle
\end{aligned}
$$

Since $\frac{\partial}{\partial \sigma} F(\sigma X)=J_{F}(\sigma X) X$ and $F(0)=0$, then

$$
F(X)=\int_{0}^{1} J_{F}(\sigma X) X d \sigma
$$

Therefore, the assumptions of the theorem show that

$$
\langle D(t) F(X), X\rangle=\int_{0}^{1}\left\langle D(t) J_{F}(\sigma X) X, X\right\rangle d \sigma \geq a_{4} \int_{0}^{1}\langle X, X\rangle d \sigma=a_{4}\langle X, X\rangle
$$

Hence

$$
\begin{aligned}
\dot{V} \geq & \left\|Z+\frac{1}{2} B(t) H(X, Y, Z, W) X\right\|^{2} \\
& -\frac{1}{4}\langle B(t) H(X, Y, Z, W) X, B(t) H(X, Y, Z, W) X\rangle+a_{4}\langle X, X\rangle \\
\geq & a_{4}\langle X, X\rangle-\frac{1}{4}\langle B(t) H(X, Y, Z, W) X, B(t) H(X, Y, Z, W) X\rangle \\
\geq & a_{4}\|X\|^{2}-\frac{1}{4} a_{2}^{2}\|X\|^{2}=\left(a_{4}-\frac{1}{4} a_{2}^{2}\right)\|X\|^{2}>0
\end{aligned}
$$

Thus, the assumptions of the theorem show that $\dot{V} \geq 0$ for all $t \geq 0$, that is, \dot{V} is positive semi-definite. Furthermore, $\dot{V}=0(t \geq 0)$ necessarily implies that $Y=0$ for all $t \geq 0$, and therefore also that $X=\xi$ (a constant vector),

$$
Z=\dot{Y}=0, W=\ddot{Y}=0, \quad \dot{W}=\dddot{Y}=0 \text { for all } t \geq 0
$$

The substitution of the estimates

$$
X=\xi, Y=Z=W=0
$$

in the system (1.2) leads to the result $F(\xi)=0$ which by assumption (ii) of the theorem implies (only) that $\xi=0$. For this reason $\dot{V}=0(t \geq 0)$ implies that

$$
X=Y=Z=W=0 \text { for all } t \geq 0
$$

Therefore, the function V has the entire requisite Krasovskii criterion [9] if the conditions of the theorem hold. Thus, the basic properties of the function V, which are proved just above verify that the zero solution of the system (1.2) is unstable. (See Theorem 1.15 in Reissig and et al [14] and Krasovskii [9]). The system of equations (1.2) is equivalent to the differential equation (1.1). This complates the proof of the theorem.

References

[1] H. Bereketoğlu, On the instability of trivial solutions of a class of eighthorder differential equations, Indian J. Pure. Appl. Math. 22(3)(1991), 199202.
[2] J. O. C. Ezeilo, An instability theorem for a certain fourth order differential equation, Bull. London Math. Soc. , 10 (2)(1978), 184-185.
[3] J. O. C. Ezeilo, Instability theorems for certain fifth-order differential equations, Math. Proc. Cambridge. Philos. Soc., 84 (2)(1978), 343-350.
[4] J. O. C. Ezeilo, A further instability theorem for a certain fifth-order differential equation, Math. Proc. Cambridge Philos. Soc., 86 (3)(1979), 491493.
[5] J. O. C. Ezeilo, Extension of certain instability theorems for some fourth and fifth order differential equations, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., (8) 66(4)(1979), 239-242.
[6] J. O. C. Ezeilo, An instability theorem for a certain sixth order differential equation, J. Austral. Math. Soc. Ser. A, 32 (1)(1982), 129-133.
[7] R. A. Horn and C. R. Johnson, "Matrix analysis", Cambridge Univ. Press, Cambridge, 1990.
[8] L. A. Kipnis, On the instability of a particular third-order linear system, J. Appl. Math. Mech., 38(1974), 868-869, translated from Prikl. Mat. Meh., 38 (1974), 921-922 (Russian).
[9] N. N. Krasovskii, On conditions of inversion of A. M. Lyapunov's theorems on instability for stationary systems of differential equations (Russian) Dokl. Akad. Nauk. SSSR (N.S) 101 (1955), 17-20.
[10] W. J. Li and Y. H. Yu, Instability theorems for some fourth-order and fifthorder differential equations (in Chinese) J. Xinjiang Univ. Natur. Sci., 7 (2)(1990), 7-10.
[11] W. J. Li and K. C. Duan, Instability theorems for some nonlinear differential systems of fifth order, J. Xinjiang Univ. Natur. Sci., $17(3)(2000)$, 1-5.
[12] D. Lu, Instability of solution for a class of the third order nonlinear differential equation, Appl. Math. Mech. (English Ed.) 16 (12)(1995), 11851200.
[13] A. M. Lyapunov, "Stability of Motion", Academic Press, London, 1966.
[14] Reissig, R.; Sansone, G.; Conti, R. Non-linear differential equations of higher order. Translated from the German. Noordhoff International Publishing, Leyden, (1974).
[15] Sadek, A. I. An instability theorem for a certain seventh-order differential equation. Ann. Differential Equations 19 (2003), no. 1, 1-5.
[16] A. I. Sadek, Instability results for certain systems of fourth and fifth order differential equations, Appl. Math. Comput., 145(2-3)(2003), 541-549.
[17] W. A. Skrapek,Instability results for fourth-order differential equations, Proc. Roy. Soc. Edinburgh Sect. A 85 (3-4)(1980), 247-250.
[18] W. A. Skrapek,Some instability theorems for third order ordinary differential equations, Math. Nachr., 96 (1980), 113-117.
[19] H. O. Tejumola, Instability and periodic solutions of certain nonlinear differential equations of orders six and seven, in Ordinary diff. equations, Proc. Natl. Math. Cent. Abuja. Niger., 1.1, Natl. Math.Cent., Abuja, 2000, 56-65.
[20] A. Tiryaki,Extension of an instability theorem for a certain fourth order differential equation, Bull. Inst. Math. Acad. Sinica, 16 (2)(1988), 163165.
[21] A. Tiryaki, An instability theorem for a certain sixth order differential equation, Indian J. Pure. Appl. Math., 21 (4)(1990), 330-333.
[22] A. Tiryaki, Extension of an instability theorem for a certain fifth order differential equation, National Mathematics Symposium (Trabzon, 1987), J. Karadeniz Tech. Univ. Fac. Arts Sci. Ser. Math. Phys. 11 (1989), 225227
[23] C. Tunç, An instability theorem for a certain vector differential equation of the fourth order, Journal of Inequalities in Pure and App. Math., $5(1)(2004), 1-5$.
[24] C. Tunç, A further instability result for a certain vector differential equation of the fourth order, International J. of Math., Game Theory and Algebra (2005), (in press).
[25] C. Tunç and E. Tunç, An instability theorem for a certain eighth order differential equation, Differential Equations, (Differ. Uravn.), (2005) (in press).
[26] C. Tunç, An instability result for certain system of sixth order differential equations, Applied Math. and Computation, 157(2) (2004), 477-481.

* The paper has been presented in Bunyakovsky International Conference (Kyiv-Ukrainia, 2004).

[^0]: Key words: Nonlinear differential equations, fourth order, instability, Lyapunov's second method
 2000 AMS Mathematics Subject Classification: 34D05, 34D20.

