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Abstract

The main purpose of this paper is to obtain sufficient conditions under
which the trivial solution of the vector differential equations of the form

X(4) + A
...

X +B(t)H(X,
.

X,
..

X,
...

X)
..

X +C(t)G(X)
.

X +D(t)F (X) = 0

is unstable.

1 Introduction

We are interested in obtaining a result on the instability behavior of the trivial
solution X = 0 of the nonlinear vector differential equations of the form:

X(4) + A
...

X +B(t)H(X,
.

X,
..

X,
...

X)
..

X +C(t)G(X)
.

X +D(t)F (X) = 0, (1.1)
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in which t ∈ R+, R+ = [0,∞) and X ∈ Rn; A is a constant n × n -symmetric
matrix; B, H , C, G, and D are continuous n × n-symmetric matrices for
the arguments displayed explicitly and the dots indicate differentiation with
respect to t; F : Rn → Rn and F (0) = 0. It is assumed that the function
F is continuous. It should be noted that, through in what follows, we use
the following differential system which is equivalent to the differential equation
(1.1):

.
X= Y,

.
Y = Z,

.
Z= W,

.

W= −AW −B(t)H(X, Y, Z,W )Z − C(t)G(X)Y −D(t)F (X)
(1.2)

obtained as usual by setting
.
X= Y,

..
X= Z,

...
X= W in (1.1).

Let JG(X) and JF (X) denote the Jacobian matrices corresponding to the
G(X) and F (X), respectively, that is,

JG(X) =
(
∂gi

∂xj

)
, JF (X) =

(
∂fi

∂xj

)
,

and
d

dt
C(t) =

.

C (t) =
d

dt
(cik(t)) (i, j, k = 1, 2, ..., n),

where (x1, x2, ..., xn), (g1, g2, ..., gn), (f1, f2, ..., fn) and (cik(t)) are components
of X, G, F and C, respectively. Furthermore, it is assumed, as basic through-
out in what follows, that the Jacobian matrices JF (X), JG(X) and

.

C (t) exist
and are symmetric and continuous, and that all matrices given in the pairs D,
JF ; C, G; C, JG;

.

C, G and B, H commute with each others.
As we know, the instability behavior of solutions for various certain second-,

third-, fourth-, fifth-, sixth-, seventh- and eighth-order nonlinear differential
equations, particulary in the case n = 1, have been widely discussed in the
literature (see, for example [1-6], [8-12], [14-26]) and refernces quoted therein
for some publications on the matter.

Skrapek [17] and Tiryaki [20] investigated the instability of the trivial solu-
tion of the fourth order scalar differential equations of the form:

x(4) + f(x,
.
x,

..
x,

...
x) = 0

and
x(4) + ψ(

..
x)

...
x +ϕ(

.
x)

..
x +θ(

.
x) + f(x) = 0,

respectively. Recently, Sadek [16] and Tunç ([23], [24]) also studied the same
subject for the nonlinear vector differential equations:

X(4) +A
...

X +H(X,
.

X,
..

X,
...

X)
..

X +G(X)
.

X +F (X) = 0,

X(4) + Ψ(
..

X)
...

X +Φ(
.

X)
..

X +H(
.

X) + F (X) = 0
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and
X(4) + Ψ(

.
X,

..
X)

...
X +Φ(X,

.
X)

..
X +H(

.
X) + F (X) = 0,

respectively. According to our observations in the relevant literature, there isn’t
any research found on the instability of solutions of certain non-autonomous
vector differential equations of the fourth order. Especially, the motivation for
the present investigation has come from the papers of skrapek [17], Sadek [16],
Tiryaki [20] and Tunç ([23], [24]).

The symbol 〈X, Y 〉 is used to denote the usual scalar product in Rn for

given any X, Y in Rn, that is, 〈X, Y 〉 =
n∑

i=1

xiyi, thus ‖X‖2 = 〈X,X〉 . The

matrix A is said to be negative-definite, when 〈AX,X〉 < 0 for all non-zero X
in Rn, and λi(A) (i = 1, 2, ..., n) are eigenvalues of the n× n− matrix A.

2 The main result

We can now state our foremost result:

Theorem Further to the basic assumptions on A,B, C,D,H,G and F in (1.2),
suppose there exist positive constants a1,a2 and a4 such that a4 − 1

4
a2
2 > 0 and

the following conditions are satisfied:
(i) λi(B(t) ≥ 1, λi(

.

C (t) ≤ 0 and λi(D(t) ≥ 1 for all t ∈ R+.
(ii) λi(A) ≥ a1, λi(H(X, Y, Z,W )) ≤ a2, F (X) 
= 0 for all X 
= 0, X ∈ Rn,

and λi(JF (X)) ≥ a4 for all X, Y, Z,W ∈ Rn.
Then the zero solution X = 0 of the system (1.2) is unstable.

Now, we state the following algebraic results required in the proof of the
theorem.

Lemma 1 Let A be a real symmetric n × n matrix and

a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, ..., n),

where a′, a are constants. Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and
a′

2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

Proof See ( Horn and Johnson [7]). �

Lemma 2 Let Q, D be any two real n × n commuting symmetric matrices.
Then
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(i) The eigenvalues λi(QD) (i = 1, 2, ..., n) of the product matrices QD are
real and satisfy

max
1≤j,k≤n

λj(Q)λk(D) ≥ λi(QD) ≥ min
1≤j,k≤n

λj(Q)λk(D).

(ii) The eigenvalues λi(Q+D) (i = 1, 2, ..., n) of the sum of matrices Q and
D are real and satisfy

{
max

1≤j≤n
λj(Q) + max

1≤k≤n
λk(D)

}
≥ λi(Q+D) ≥

{
min

1≤j≤n
λj(Q) + min

1≤k≤n
λk(D)

}
,

where λj(Q) and λk(D) are, respectively, the eigenvalues of Q and D.

Proof See ( Horn and Johnson [7]). �

Proof of the theorem

Our main tool in the proof is the scalar Lyapunov function V = V (t, X, Y, Z,W )
defined by:

V = 〈Y, Z〉+ 1
2
〈AY, Y 〉−〈W,X〉−〈AZ,X〉−

1∫
0

σ 〈C(t)G(σX)X,X〉 dσ. (2.1)

It is clear that V (0, 0, 0, 0, 0) = 0. Indeed, we also have that

V (0, 0, ε, ε, 0) = 〈ε, ε〉 + 1
2
〈Aε, ε〉 ≥ 〈ε, ε〉 + 1

2
a1 〈ε, ε〉

= ‖ε‖2 + 1
2a1 ‖ε‖2

> 0

for all arbitrary ε 
= 0, ε ∈ Rn. Next, let (X, Y, Z,W ) = (X(t), Y (t), Z(t),W (t))
be an arbitrary solution of the system (1.2). We have from (2.1) and (1.2) that

.
V = d

dt
V (t, X, Y, Z,W ) = 〈Z, Z〉 + 〈B(t)H(X, Y, Z,W )Z,X〉 + 〈D(t)F (X), X〉

+ 〈C(t)G(X)Y,X〉 − d
dt

1∫
0

σ 〈C(t)G(σX)X,X〉 dσ.
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But

d
dt

1∫
0

σ 〈C(t)G(σX)X,X〉 dσ =

=
1∫
0

σ
〈 .

C (t)G(σX)X,X
〉
dσ +

1∫
0

〈σC(t)G(σX)Y,X〉 dσ

+
1∫
0

σ2 〈C(t)JG(σX)XY,X〉 dσ +
1∫
0

σ 〈C(t)G(σX)X, Y 〉 dσ

=
1∫
0

σ
〈 .

C (t)G(σX)X,X
〉
dσ +

1∫
0

〈σC(t)G(σX)Y,X〉 dσ

+
1∫
0

σ ∂
∂σ 〈σC(t)G(σX)Y,X〉 dσ

=
1∫
0

σ
〈 .

C (t)G(σX)X,X
〉
dσ + σ2 〈C(t)G(σX)Y,X〉

1

|
0

=
1∫
0

σ
〈 .

C (t)G(σX)X,X
〉
dσ + 〈C(t)G(X)Y,X〉 .

By noting the assumptions of the theorem, it follows that

.

V= 〈Z, Z〉 + 〈X,B(t)H(X, Y, Z,W )Z〉 + 〈D(t)F (X), X〉
+

1∫
0

〈
σ

.

C (t)G(σX)X,X
〉
dσ

≥ 〈Z, Z〉 + 〈X,B(t)H(X, Y, Z,W )Z〉 + 〈D(t)F (X), X〉 .

Since ∂
∂σF (σX) = JF (σX)X and F (0) = 0, then

F (X) =

1∫
0

JF (σX)Xdσ.

Therefore, the assumptions of the theorem show that

〈D(t)F (X), X〉 =

1∫
0

〈D(t)JF (σX)X,X〉 dσ ≥ a4

1∫
0

〈X,X〉 dσ = a4 〈X,X〉 .
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Hence
.

V ≥ ∥∥Z + 1
2
B(t)H(X, Y, Z,W )X

∥∥2

−1
4 〈B(t)H(X, Y, Z,W )X,B(t)H(X, Y, Z,W )X〉 + a4 〈X,X〉

≥ a4 〈X,X〉 − 1
4 〈B(t)H(X, Y, Z,W )X,B(t)H(X, Y, Z,W )X〉

≥ a4 ‖X‖2 − 1
4
a2
2 ‖X‖2 =

(
a4 − 1

4
a2
2

) ‖X‖2
> 0.

Thus, the assumptions of the theorem show that
.

V ≥ 0 for all t ≥ 0, that is,
.

V is positive semi-definite. Furthermore,
.

V = 0 (t ≥ 0) necessarily implies that
Y = 0 for all t ≥ 0, and therefore also that X = ξ (a constant vector),

Z =
.

Y= 0, W =
..

Y= 0,
.

W=
...

Y= 0 for all t ≥ 0.

The substitution of the estimates

X = ξ, Y = Z = W = 0

in the system (1.2) leads to the result F (ξ) = 0 which by assumption (ii) of the
theorem implies (only) that ξ = 0. For this reason

.
V= 0 (t ≥ 0) implies that

X = Y = Z = W = 0 for all t ≥ 0.

Therefore, the function V has the entire requisite Krasovskii criterion [9] if the
conditions of the theorem hold. Thus, the basic properties of the function V ,
which are proved just above verify that the zero solution of the system (1.2) is
unstable. (See Theorem 1.15 in Reissig and et al [14] and Krasovskii [9]). The
system of equations (1.2) is equivalent to the differential equation (1.1). This
complates the proof of the theorem. �
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