East-West J. of Mathematics: Vol. 6, No 2 (2004) pp.131-138

SEMIDIRECT PRODUCT OF A MONOID AND A Γ-SEMIGROUP

M.K. Sen & S. Chattopadhyay

Department of Mathematics University of Calcutta 35,Ballygunge Circular Road,

Kolkata-700019, India.

Abstract

In this paper the notion of the semidirect product of a monoid and a Γ-semigroup has been introduced and studied. Necessary and sufficient conditions for this semidirect product to be right (left) orthodox Γ-semigroup and right (left) inverse Γ-semigroup has been obtained.

1. Introduction

The notion of Γ-semigroup has been introduced by Sen and Saha [5] in the yaer 1986. Many classical notions of semigroup has been extended to Γ-semigroup. In [3]and [4] we have introduced the notions of right inverse Γ-semigroup and right orthodox Γ-semigroup. In the present paper we have introduced the notions of semidirect product of a monoid and a Γ-semigroup which may be considered as a generalization of the semidirect product of a monoid and a semigroup introduced by T. Saito [2]. We obtain necessary and sufficient conditions for the semidirect product of the monoid and a Γ-semigroup to be right (left) orthodox Γ-semigroup and right (left) inverse Γ-semigroup.

Key words: Γ-semigroup, regular Γ-semigroup, orthodox Γ-semigroup, right orthodox Γsemigroup, orthodox semigroup, right inverse semigroup.

*†*This research is supported by CSIR, India.

²⁰⁰⁰ AMS Mathematics Subject Classification: 20M17

2. Preliminaries

Definition 2.1 [5] Let $M = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. M is called a Γ -*semigroup* if $a\alpha b \in M$ for $\alpha \in \Gamma$ and $a, b \in M$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in M$ and for all $\alpha, \beta \in \Gamma$.

Definition 2.2 [5] Let M be a Γ-semigroup. An element a of M is said to be regular if $a \in a\Gamma M\Gamma a$ where $a\Gamma M\Gamma a = \{a\alpha b\beta a : b \in M, \alpha, \beta \in \Gamma\}$. If all elements of M are regular then M is called a *regular* Γ-*semigroup*.

Definition 2.3 [5] let M be a Γ-semigroup. An element $e \in M$ is said to be an α -*idempotent* if $e\alpha e = e$ for some $\alpha \in \Gamma$.

Definition 2.4 [7] Let $a \in M$ and $\alpha, \beta \in \Gamma$. An element $b \in M$ is called (α, β) *inverse* of a if $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$. In this case we write $b \in V_\alpha^\beta(a)$.

Definition 2.5 [4] A regular Γ-semigroup M is called a *right* (*left*) *orthodox* Γ-*semigroup* if for any α-idempotent e and β-idempotent f, eαf (resp. fαe) is a β-idempotent.

Theorem 2.6 [4] *A regular* Γ*-semigroup* M *is a right orthodox* Γ*-semigroup if and only if for* $a, b \in M$, $V_{\alpha}^{\beta}(a) \cap V_{\alpha}^{\beta}(b) \neq \phi$ for some $\alpha, \alpha_1, \beta \in \Gamma$ *implies that* $V_{\alpha_1}^{\delta}(a) = V_{\alpha}^{\delta}(b)$ *for all* $\delta \in \Gamma$.

Definition 2.7 [3] A regular Γ-semigroup is called a *right* (*left*) *inverse* Γ*semigroup* if for any α -idempotent e and for any β -idempotent f, $e\alpha f\beta e = f\beta e$ $(e\beta f\alpha e = e\beta f).$

Definition 2.8 [9] A regular Γ-semigroup S is said to be an *orthodox semigroup* if $E(S)$, the set of all idempotents of S forms a subsemigroup of S.

Definition 2.9 [8] A regular semigroup S is said to be a right (left) inverse semigroup if for any $e, f \in E(S)$, $efe = fe(efe = ef)$.

3. Semidirect product of a monoid and a Γ-

semigroup

Definition 3.1 Let S be a monoid and T be a Γ-semigroup. Let $End(T)$ denote the set of all endomorphisms on T i.e., the set of all mappings $f : T \to T$ satisfying $(a\alpha b)f = af\alpha bf$ for all $a, b \in T$, $\alpha \in \Gamma$. Again let $\phi : S \to End(T)$ be a given 1-preserving homomorphism. If $s \in S$ and $t \in T$, we write t^s for (t) $\phi(s)$. Let $S \times_{\phi} T = \{(s, t) : s \in S, t \in T\}$. We define a multiplication on

 $S \times_{\phi} T$ by $(s_1, t_1) \alpha(s_2, t_2) = (s_1 s_2, t_1^{s_2} \alpha t_2)$. Then $S \times_{\phi} T$ is a *Γ*-semigroup.
This *F* semigroup $S \times T$ is salled the semidirect are duct of the manaid S and This Γ-semigroup $S \times_{\phi} T$ is called the semidirect product of the monoid S and the Γ -semigroup T .

Lemma 3.2 *Let* S *be a monoid and* T *be a* Γ-semigroup, $\phi : S \to End(T)$ *be a given 1-preserving homomorphism. Then if the semideirect product is*

(i) *right (left) orthodox* Γ*-semigroup then* S *is an orthodox semigroup and* T *is a right (left) orthodox* Γ*-semigroup.*

(ii) *right (left) inverse* Γ*-semigroup then* S *is a right (left) inverse semigroup and* T *is a right (left) inverse* Γ*-semigroup.*

Proof (i) Suppose that $S \times_{\phi} T$ is a right orthodox Γ-semigroup. Since it is regular, for $(s, t) \in S \times_{\phi} T$, there exists $(s', t') \in S \times_{\phi} T$ and $\alpha, \beta \in \Gamma$ such that

$$
(s,t) = (s,t)\alpha(s',t')\beta(s,t) = (ss's,t^{s's}\alpha(t')^s\beta t)
$$

and

$$
(s',t') = (s',t')\beta(s,t)\alpha(s',t') = (s'ss', (t')^{ss'}\beta t^{s'}\alpha t').
$$

This implies $s' \in V(s)$. Again if we take $s = 1$ then $s' = 1$ and we get $t' \in V^{\beta}_{\alpha}(t)$. Thus S is a regular semigroup and T is a regular Γ-semigroup.
Let the sp c idempotent and the sp c idempotent in T and sp c E

Let t_1 be an α -idempotent and t_2 be a β -idempotent in T and $e, g \in E(S)$. Then $(1, t_1)\alpha(1, t_1) = (1, t_1 \alpha t_1) = (1, t_1)$. Hence $(1, t_1)$ is an α -idempotent in $S \times_{\phi} T$. Similarly $(1, t_2)$ is a β -idempotent in $S \times_{\phi} T$. Now $\Big(1, (t_1 \alpha t_2) \beta (t_1 \alpha t_2) \Big) =$ $(1, t_1 \alpha t_2) \beta(1, t_1 \alpha t_2) = ((1, t_1) \alpha(1, t_2)) \beta((1, t_1) \alpha(1, t_2)) = (1, t_1) \alpha(1, t_2) =$ $(1, t_1 \alpha t_2)$. Thus $t_1 \alpha t_2$ is a β -idempotent. So, T is a right orthodox Γ-semigroup.

Again (e, t_1^e) is an α -idempotent since $(t_1^e)^e = t_1^e$ and (g, t_2^g) is a β -idempotent. $\begin{aligned} \text{Now}\left(eg, t_1^{eg} \alpha t_2^{g} \right) = (e, t_1^{e}) \alpha (g, t_2^{g}) = \left((e, t_1^{e}) \alpha (g, t_2^{g}) \right) \beta \Big((e, t_1^{e}) \alpha (g, t_2^{g}) \Big) = (eg, t_1^{eg} \alpha t_2^{g}) \end{aligned}$ $\beta(eg, t_1^{eg} \alpha t_2^g) = ((eg)^2, (t_1^{eg} \alpha t_2^g) \beta(t_1^{eg} \alpha t_2^g)).$ Hence $(eg)^2 = eg$. So, S is an orthodox semigroup.

(ii) Let $S \times_{\phi} T$ is a right inverse Γ-semigroup. Then by (i) S is a regular semigroup and T is a regular Γ-semigroup. Let t_1 be an α -idempotent and t_2 is a β -idempotent in T. Let $e, g \in E(S)$. Since $S \times_{\phi} T$ is a right inverse Γ-semigroup, $(1, t_1)$ is an α -idempotent and $(1, t_2)$ be a β -idempotent, we have $(1, t_1 \alpha t_2 \beta t_1) = (1, t_1) \alpha(1, t_2) \beta(1, t_1) = (1, t_2) \beta(1, t_1) = (1, t_2 \beta t_1)$ which shows that $t_1 \alpha t_2 \beta t_1 = t_2 \beta t_1$. So T is a right inverse Γ-semigroup. Again, $(ge, t_2^{ge}\beta t_1^e) = (g, t_2^g)\beta(e, t_1^e) = (e, t_1^e) \alpha(g, t_2^g)\beta(e, t_1^e) = (ege, t_1^{ege}\alpha t_2^{ge}\beta t_1^e)$ shows $ge = ege$ for $e, g \in E(S)$. Thus S is a right inverse semigroup.

Lemma 3.3 *Let* $S \times_{\phi} T$ *be the semidirect product of a monoid* S *and* a Γ *semigroup* T *corresponding* to a given 1-preserving homomorphism $\phi : S \rightarrow$ $End(T)$ *and let* $(s,t) \in S \times_{\phi} T$ *, then*

(i) if $(s', t') \in V^{\beta}_{\alpha}((s, t))$ then $(s', t') \in V^{\beta}_{\alpha}$ $s \in E(S)$, then $(s, (t')^s \beta t^{s's} \alpha t') \in V_\alpha^\beta((s, t^{s's})).$ $((s, t^{s's})$. In particular if

(ii) *if* t^s *is an* α *-idempotent and* $s' \in V(s)$ *, then* $(s', t^{ss'}) \in V^{\alpha}_{\alpha}$ $\Bigl(\bigl(s,t^s\bigr)\Bigr).$

Proof (i) Since $(s', t') \in V_\alpha^\beta$ $((s,t))$ we have,

$$
(s',t') = (s',t')\beta(s,t)\alpha(s',t') = (s's's', (t')^{ss'}\beta t^{s'}\alpha t')
$$

and

$$
(s,t) = (s,t)\alpha(s',t')\beta(s,t) = \left(ss's,t^{s's}\alpha(t')^s\beta t\right).
$$

This shows that $s' \in V(s)$ and

$$
t^{s's}\alpha(t')^s\beta t = t \qquad \dots (1)
$$

$$
(t')^{ss'}\beta t^{s'}\alpha t' = t' \qquad \dots (2)
$$

From (1) we have,
$$
(t^{s's}\alpha(t')^s\beta t)^{s's} = (t)^{s's}
$$
 i.e., $t^{s's}\alpha(t')^s\beta t^{s's} = t^{s's}$ and
\nfrom (2), $((t')^{ss'}\beta t^{s'}\alpha t')^s = (t')^s$ i.e., $(t')^s\beta t^{s's}\alpha(t')^s = (t')^s$. Now we have
\n $(s', t')\beta(s, t^{s's})\alpha(s', t') = (s's', (t')^{ss'}\beta t^{s's'}\alpha t') = (s', t')$ [by (2)] and hence
\n $(s, t^{s's})\alpha(s', t')\beta(s, t^{s's}) = (ss's, t^{s's's}\alpha(t')^s\beta t^{s's}) = (s, t^{s's}\alpha(t')^s\beta t^{s's}) = (s, t^{s's}).$
\nThus we have $(s', t') \in V^{\beta}_{\alpha}((s, t^{s's}))$. Again if $s \in E(S)$, $((t')^s\beta t^{s's}\alpha t')^s =$
\n $(t')^s\beta t^{s's}\alpha(t')^s = (t')^s$ and $(s, t^{s's})\alpha(s, (t')^s\beta t^{s's}\alpha t')\beta(s, t^{s's}) =$
\n $(ss, t^{s's}\alpha((t')^s\beta t^{s's}\alpha t')^s\beta t^{s's}) = (s, t^{s's}\alpha(t')^s\beta t^{s's}\alpha t') = (s, t^{s's})$ and
\n $(s, (t')^s\beta t^{s's}\alpha t'\beta(s, t^{s's})\alpha(s, (t')^s\beta t^{s's}\alpha t') = (s, (t')^s\beta t^{s's}\alpha t')^s\beta t^{s's}\alpha t' =$
\n $= (s, (t')^s\beta t^{s's}\alpha(t')^s\beta t^{s's}\alpha t') = (s, (t')^s\beta t^{s's}\alpha t')$. Hence $(s, (t')^s\beta t^{s's}\alpha t') \in$
\n $V^{\beta}_{\alpha}(s, t^{s's})$.

(ii) $(s, t^s) \alpha(s', t^{ss'}) \alpha(s, t^s) = (ss's, t^{ss's} \alpha t^{ss's} \alpha t^s) = (s, t^s)$ since t^s is an α - $\text{idempotent} \quad \text{and} \quad (s', t^{ss'}) \alpha(s, t^s) \alpha(s', t^{ss'}) \quad = \quad (s'ss', t^{ss'ss'} \alpha t^{ss'} \alpha t^{ss'}) \quad =$ $(s',t^{ss'}\alpha t^{ss'}\alpha t^{ss'}) = \left(s', (t^s\alpha t^s\alpha t^s)^{s'}\right) = (s',t^{ss'}) \text{ i.e., } (s',t^{ss'}) \in V_\alpha^\alpha(s,t^s).$

Lemma 3.4 *Let* S *be a monoid and* T *be a* Γ*-semigroup and* $S \times_{\phi} T$ *be the semidirect product corresponding to a given 1-preserving homomorphism* φ : $S \to End(T)$. Moreover, let $t \in t^e \Gamma T$ for every $e \in E(S)$ and every $t \in T$. *Then*

(i) (e, t) is an α -idempotent if and only if $e \in E(S)$ and t^e is an α idempotent.

(ii) if (e, t) is an α -idempotent, then $(e, t^e) \in V_\alpha^\alpha$ $((e,t)).$

Proof (i) If (e, t) is an α -idempotent, then

$$
(e,t) = (e,t)\alpha(e,t) = (e^2, t^e \alpha t)
$$
 i.e., $e = e^2$ and $t^e \alpha t = t$ (3)

So, $t^e = (t^e \alpha t)^e = t^e \alpha t^e$ which implies that t^e is an α -idempotent. Conversely, let $e \in E(S)$ and t^e be an α -idempotent. Since $t \in t^e \Gamma T$, $t = t^e \beta t_1$ for some $\beta \in \Gamma$, $t_1 \in T$ and hence $t^e \alpha t = t^e \alpha t^e \beta t_1 = t$. Thus $(e, t) \alpha(e, t) = (e, t^e \alpha t) =$ (e, t) i.e., (e, t) is an α -idempotent.

(ii) If (e, t) is an α -idempotent, from (i) $e \in E(S)$ and t^e is an α -idempotent. Now $(e, t)\alpha(e, t^e)\alpha(e, t) = (e, t^e\alpha t^e\alpha t) = (e, t^e\alpha t) = (e, t)$ [from (3)] and $(e, t^e)\alpha(e, t)\alpha(e, t^e) = (e, t^e \alpha t^e \alpha t^e) = (e, t^e)$. Thus $(e, t^e) \in V_\alpha^\alpha$ $((e,t)).$

Theorem 3.5 *Let* S *be a monoid and* T *be a* Γ*-semigroup. Let* $\phi : S \to End(T)$ *be a given 1-preserving homomorphism. Then the semidirect product* $S \times_{\phi} T$ *is a right (left) orthodox* Γ*-semigroup if and only if*

- (i) S *is an orthodox semigroup and* T *is a right (left) orthodox* Γ*-semigroup*
- (ii) *for every* $e \in E(S)$ *and every* $t \in T$, $t \in t^e \Gamma T$

(iii) *if* t^e *is an* α *-idempotent, then* t^{ge} *is an* α *-idempotent for every* $g \in$ $E(S)$ *, where* $e \in E(S)$ *,* $t \in T$ *.*

Proof Suppose $S \times_{\phi} T$ is a right orthodox Γ-semigroup. Then by Lemma 3.2 S is an orthodox semigroup and T is a right orthodox Γ-semigroup. For (ii), let $(e, t) \in S \times_{\phi} T$ with $e \in E(S)$ and let $(e', t') \in V^{\beta}_{\alpha} \Big((e, t) \Big)$ for some $\alpha, \beta \in \Gamma$. Then by Lemma 3.3 $(e', t'), \left(e', (t')^e \beta t^{e'e}\alpha t'\right) \in V_\alpha^\beta((e, t^{e'e}))$. Thus α $V_{\alpha}^{\beta} \Big((e, t) \Big) \cap V_{\alpha}^{\beta} \Big((e, t^{e'e}) \Big) \neq \phi$ and hence we have $V_{\alpha}^{\beta} \Big((e, t) \Big) = V_{\alpha}^{\beta}$ by Theorem 2.6. So $(e, (t')^e \beta t^{e'e} \alpha t') \in V_\alpha^\beta((e,t))$. T $((e, t^{e'e})$ $((e,t))$. Thus

$$
(e,t) = (e,t)\alpha(e,(t')^e\beta t^{e'e}\alpha t')\beta(e,t) = (e,t^e\alpha(t')^e\beta t^{e'e}\alpha(t')^e\beta t)
$$

and hence $t = t^e \alpha(t')^e \beta t^{e'e} \alpha(t')^e \beta t \in t^e \Gamma T$.

For (iii) we shall first show that for an α -idempotent t^e of T if $e \in E(S)$, $t^{e'}$ is an α -idempotent for any $e' \in V(e)$. If $e \in E(S)$ and t^e is an α -idempoetnt, then by Lemma 3.4, (e, t) is an α -idempotent in $S \times_{\phi} T$ and $(e, t^e) \in V^{\alpha}_{\alpha} ((e, t)).$ Again since t^e is an α -idempotent (e, t^e) is also an α -idempotent and thus $(e, t^e) \in V_\alpha^\alpha$ $((e, t^e))$ i.e., V_α^α $((e, t^e)) \cap V_\alpha^\alpha$ $((e,t)) \neq \phi$ and so V_α^{α} $((e, t^e)) =$

 $V_\alpha^{\alpha} \Big((e,t) \Big)$ and by Lemma 3.3 $(e',t^{ee'}) \in V_\alpha^{\alpha} \Big((e,t^e) \Big)$ i.e., $(e',t^{ee'}) \in V_\alpha^{\alpha} \Big((e,t) \Big)$. Thus $(e, t) = (e, t)\alpha(e', t^{ee'})\alpha(e, t) = (ee'e, t^{e'e}\alpha t^{ee'e}\alpha t) = (e, t^{e'e}\alpha t^{e'}\alpha t)$ $(e, t^{e'} \alpha t)$ [since $t = t^e \beta u$ for some $\beta \in \Gamma$, $u \in T$, $t^e \alpha t = t$]. So $t = t^{e'} \alpha t$ and hence $t^{e'} = (t^{e'e}\alpha t)^{e'} = t^{e'}\alpha t^{e'}$. Thus $t^{e'}$ is an α -idempotent. Let $e, g \in E(S)$ and suppose that t^e ia an α -idempotent for $t \in T$, then $t^{eg} \alpha t^{eg} = (t^e \alpha t^e)^g = t^{eg}$ i.e, t^{eg} is an α -idempotent and we have $eg \in E(S)$ and $ge \in V(eg)$ since S is right orthodox. Then by the above fact t^{ge} is an α -idempotent.

Conversely, suppose that S and T satisfy (i), (ii), (iii). Let $(s, t) \in S \times_{\phi} T$ be given. Since S is regular, there exists $s' \in S$ such that $s = ss's$ and $s' = s'ss'$. Then $Ss' = Ss$. We take $e = s's$, then $e \in E(S)$. By (ii) $t \in$ $t^e \Gamma T$ which implies $t = t^e \beta u$ for some $\beta \in \Gamma$, $u \in T$. Let $t' = v^{s'}$ where $v \in V^{\delta}_{\gamma}(t)$ where $\gamma, \delta \in \Gamma$. Now $t^{s's}\gamma(t')^{s}\delta t = t^{s's}\gamma v^{s's}\delta t^{e}\beta u = (t\gamma v\delta t)^{e}\beta u =$ t i.e, $(s,t) = (ss's, t^{s's}\gamma(t')^{s}\delta t) = (s,t)\gamma(s',t')\delta(s,t)$. Again $(t')^{ss'}\delta t^{s'}\gamma t' =$ $(v^{s'})^{ss'}\delta t^{s'}\gamma v^{s'} = v^{s'}\delta t^{s'}\gamma v^{s'} = v^{s'} = t' \text{ i.e., } (s',t') = (s'ss', (t')^{ss'}\delta t^{s'}\gamma t') =$ $(s', t')\delta(s, t)\gamma(s', t')$. Thus we have $(s', t') \in V^{\delta}_{\gamma}(s, t)$ which yields $S \times_{\phi} T$ is a regular Γ comigroup. regular Γ-semigroup.

Now let (e, t) be an α -idempotent and (g, u) be a β -idempotent. Then by Lemma 3.4 $e, g \in E(S), t^e$ is an α -idempotent and u^g is a β -idempotent. By (iii) t^{ge} is an α -idempotent, u^{eg} is a β -idempotent and $t^{geg} \alpha t^{geg} = (t^{ge} \alpha t^{ge})^g = t^{geg}$ i.e., t^{geg} is an α -idempotent. By our assumption $e, g \in E(S)$ and $(t^g \alpha u)^{eg} =$ $t^{geg} \alpha u^{eg}$ is a β -idempotent. Thus by Lemma 3.4 $(e, t) \alpha(g, u) = (eg, t^g \alpha u)$ is a β-idempotent which shows that $S \times_{\phi} T$ is a right orthodox Γ-semigroup.

Theorem 3.6 *Let* S *be a monoid,* T *be a* Γ-semigroup and $\phi : S \to End(T)$ *be a given 1-preserving homomorphism. Then the semidirect product* $S \times_{\phi} T$ *is a right inverse* Γ*-semigroup if and only if*

- (i) S *is a right inverse semigroup and* T *is a right inverse* Γ*-semigroup*
- (ii) *for every* $e \in E(S)$ *and every* $t \in T$, $t \in t^e \Gamma T$.

Proof Let $S \times_{\phi} T$ be a right inverse Γ-semigroup. Then by Lemma 3.2 S is a right inverse semigroup and T is a right inverse Γ -semigroup. Again since every right inverse Γ-semigroup is a right orthodox Γ-semigroup from the above theorem, condition (ii) holds.

Conversely, suppose that S and T satisfy (i) and (ii). Then $S \times_{\phi} T$ is a regular Γ-semigroup by Lemma 3.2. Let (e, t) be an α -idempotent and (g, u) be a β-idempotent in $S \times_{\phi} T$. Then by Lemma 3.4 $e, g \in E(S)$, t^e is an α -
idempotent e^g is a β idempotent. From (ii) t is the for some $\alpha \in \Gamma$, $\alpha \in T$ idempotent, u^g is a β -idempotent. From (ii) $t = t^e \gamma v$ for some $\gamma \in \Gamma$, $v \in T$ and thus $t^e \alpha t = t$ and similarly $u^g \beta u = u$. So $u^{ge} = (u^g \beta u)^{ge} = u^{ge} \beta u^{ge}$ and $t^{ge} = (t^e \alpha t)^{ge} = t^{ege} \alpha t^{ge} = t^{ge} \alpha t^{ge}$ since S is a right inverse semigroup. Now by (ii) we have $u^e \beta t = (u^e \beta t)^{ge} \delta v$, for some $\delta \in \Gamma$, $v_i \in T$ and hence $u^e \beta t =$ $u^{ege}\beta t^{ge}\delta v_1 = u^{ge}\beta t^{ge}\delta v_1$. Thus we have $(e, t)\alpha(g, u)\beta(e, t)=(ege, t^{ge}\alpha u^e\beta t)$ $=(ge, t^{ge}\alpha u^{ge}\beta t^{ge}\delta v_+)=(ge, u^{ge}\beta t^{ge}\delta v_+)=(ge, u^{e}\beta t)=(g, u)\beta(e, t)$ which implies $S \times_{\phi} T$ is a right inverse Γ-semigroup.

Theorem 3.7 *Let* S *be a monoid,* T *be a* Γ-semigroup and $\phi : S \to End(T)$ *be a given 1-preserving homomorphism. Then the semidirect product* $S \times_{\phi} T$ *is a left inverse* Γ*-semigroup if and only if*

- (i) S *is a left inverse semigroup and* T *is a left inverse* Γ*-semigroup*
- (ii) *for every* $e \in E(S)$ *and every* $t \in T$, $t = t^e$.

Proof Let $S \times_{\phi} T$ be a left inverse Γ-semigroup. Then by Lemma 3.1 S is a left inverse semigroup and T is a left inverse Γ-semigroup. For (ii) let (e, u) be an α -idempotent in $S \times_{\phi} T$. Then $(e, u) = (e, u) \alpha(e, u) = (e, u^e \alpha u)$ i.e., $u^e \alpha u = u$. Again $(e, u^e) \alpha (e, u^e) = (e, u^{ee} \alpha u^e) = (e, u^e)$ which yields (e, u^e) is an α -idempotent and we have $(e, u^e) \alpha(e, u) = (e, u^e \alpha u) = (e, u)$. Since $S \times_{\phi} T$ is a left inverse Γ-semigroup, $(e, u) = (e, u^e)\alpha(e, u) = (e, u^e)\alpha(e, u)\alpha(e, u^e)$ $=(e, u^{eee}\alpha u^{ee}\alpha u^{e})=(e, u^{e}\alpha u^{e})=(e, u^{ee}\alpha u^{e})=(e, u^{ee}\alpha u^{e})=(e, u^{ee})$ i.e., $u = u^{e}.$ Thus if (e, u) is an α -idempotent then $u = u^e$. Now $(e, t) \in S \times_{\phi} T$ with $e \in E(S)$ and let $(e', t') \in V^{\delta}_{\gamma}$ $((e,t))$ for some $\gamma, \delta \in \Gamma$. Then we get $e' \in V(e)$, $t^{e'e}\gamma(t')^e\delta t = t$ i.e., $t^{e'e}\gamma(t')^{ee'e}\delta t^{e'e} = t^{e'e}$ which implies $t^{e'e}\gamma(t')^e\delta t^{e'e} = t^{e'e}$. Since $(e'e, (t')^e \delta t) = (e', t')\delta(e, t)$ and $S \times_{\phi} T$ is left orthodox (since it is left inverse), $(e'e, (t')^e \delta t)$ is a γ -idempotent and hence $(t')^e \delta t = ((t')^e \delta t)^{e'e}$ $(t')^e \delta t^{e'e}$. Thus $t^{e'e} = t^{e'e}\gamma(t')^e \delta t^{e'e} = t^{e'e}\gamma(t')^e \delta t = t$ and hence $t^e = (t^{e'e})^e =$ $t^{e'e}=t.$

Conversely suppose that S and T satisfy (i) and (ii). Then $S \times_{\phi} T$ is regular. Now let (e, t) be an α -idempotent and (g, u) be a β -idempotent. Then $e^2 = e$ and $t = t^e \alpha t = t \alpha t$ [by (ii)] and similarly $g^2 = g$ and $u \beta u = u$ i.e., $e, g \in E(S)$ and t is an α -idempotent, u is a β -idempotent. Thus we have $(e, t)\beta(g, u)\alpha(e, t)=(ege, t^{ge}\beta u^e\alpha t)=(ege, t\beta u\alpha t)$ [by (ii)] = $(eg, t\beta u)$ = $(eg, t^g \beta u)=(e, t)\beta(g, u)$. Thus $S \times_{\phi} T$ is a left inverse Γ-semigroup.

References

- [1] W. R. Nico, *On the regularity of semidirect products,* J. Algebra, **80** (1983), 29-36.
- [2] Tatsuhiko Saito, *Orthodox semidirect products and Wreath products of monoids,* Semigroup Forum, **38** (1989), 347-354.
- [3] S. Chattopadhyay, *Right inverse* Γ*-semigroup,* Bull. Cal. Math. Soc., **93** (2001), 435-442.
- [4] S. Chattopadhyay, *Right orthodox* Γ*-semigroup,* Accepted for publication in - Southeast Asian Bull. Mathematics.
- [5] M. K. Sen and N. K. Saha, *On* Γ*-semigroup I,* Bull. Cal. Math. Soc., **78** (1986), 180-186.
- [6] N. K. Saha, *On* Γ*-semigroup II,* Bull. Cal. Math. Soc., **79** (1987), 331-335.
- [7] N. K. Saha and A. Seth, *Inverse* Γ*-semigroup,* J. Pure Math., **6** (1987-88), 1-8.
- [8] P. S. Venkatesan, *Right (left) inverse semigroup,* J. of Algebra, **31** (1974), 209-217.
- [9] J. M. Howie, "An introduction to semigroup theory", Academic Press (1976).