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Abstract

In this paper the notion of the semidirect product of a monoid and
a Γ-semigroup has been introduced and studied. Necessary and suffi-
cient conditions for this semidirect product to be right (left) orthodox
Γ-semigroup and right (left) inverse Γ-semigroup has been obtained.

1. Introduction

The notion of Γ-semigroup has been introduced by Sen and Saha [5] in the yaer
1986. Many classical notions of semigroup has been extended to Γ-semigroup.
In [3]and [4] we have introduced the notions of right inverse Γ-semigroup and
right orthodox Γ-semigroup. In the present paper we have introduced the
notions of semidirect product of a monoid and a Γ-semigroup which may be
considered as a generalization of the semidirect product of a monoid and a
semigroup introduced by T. Saito [2]. We obtain necessary and sufficient con-
ditions for the semidirect product of the monoid and a Γ-semigroup to be right
(left) orthodox Γ-semigroup and right (left) inverse Γ-semigroup.

Key words: Γ-semigroup, regular Γ-semigroup, orthodox Γ-semigroup, right orthodox Γ-
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2. Preliminaries

Definition 2.1 [5] Let M = {a, b, c, . . .} and Γ = {α, β, γ, . . .} be two non-
empty sets. M is called a Γ-semigroup if aαb ∈ M for α ∈ Γ and a, b ∈ M and
(aαb)βc = aα(bβc) for all a, b, c ∈ M and for all α, β ∈ Γ.

Definition 2.2 [5] Let M be a Γ-semigroup. An element a of M is said to
be regular if a ∈ aΓMΓa where aΓMΓa = {aαbβa : b ∈ M, α, β ∈ Γ}. If all
elements of M are regular then M is called a regular Γ-semigroup.

Definition 2.3 [5] let M be a Γ-semigroup. An element e ∈ M is said to be
an α-idempotent if eαe = e for some α ∈ Γ.

Definition 2.4 [7] Let a ∈ M and α, β ∈ Γ. An element b ∈ M is called (α, β)-
inverse of a if a = aαbβa and b = bβaαb. In this case we write b ∈ V β

α (a).

Definition 2.5 [4] A regular Γ-semigroup M is called a right ( left) orthodox
Γ-semigroup if for any α-idempotent e and β-idempotent f , eαf (resp. fαe) is
a β-idempotent.

Theorem 2.6 [4] A regular Γ-semigroup M is a right orthodox Γ-semigroup if
and only if for a, b ∈ M, V β

α1
(a)∩ V β

α (b) �= φ for some α, α1, β ∈ Γ implies that
V δ

α1
(a) = V δ

α (b) for all δ ∈ Γ.

Definition 2.7 [3] A regular Γ-semigroup is called a right ( left) inverse Γ-
semigroup if for any α-idempotent e and for any β-idempotent f , eαfβe = fβe
( eβfαe = eβf).

Definition 2.8 [9] A regular Γ-semigroup S is said to be an orthodox semigroup
if E(S), the set of all idempotents of S forms a subsemigroup of S.

Definition 2.9 [8] A regular semigroup S is said to be a right (left) inverse
semigroup if for any e, f ∈ E(S), efe = fe(efe = ef).

3. Semidirect product of a monoid and a Γ-

semigroup

Definition 3.1 Let S be a monoid and T be a Γ-semigroup. Let End(T ) denote
the set of all endomorphisms on T i.e., the set of all mappings f : T → T
satisfying (aαb)f = afαbf for all a, b ∈ T , α ∈ Γ. Again let φ : S → End(T )
be a given 1-preserving homomorphism. If s ∈ S and t ∈ T , we write ts for
(t)φ(s). Let S ×φ T = {(s, t) : s ∈ S, t ∈ T}. We define a multiplication on
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S ×φ T by (s1 , t1)α(s2 , t2) = (s1s2 , t
s2

1
αt2). Then S ×φ T is a Γ-semigroup.

This Γ-semigroup S ×φ T is called the semidirect product of the monoid S and
the Γ-semigroup T .

Lemma 3.2 Let S be a monoid and T be a Γ-semigroup, φ : S → End(T ) be
a given 1-preserving homomorphism. Then if the semideirect product is

(i) right (left) orthodox Γ-semigroup then S is an orthodox semigroup and
T is a right (left) orthodox Γ-semigroup.

(ii) right (left) inverse Γ-semigroup then S is a right (left) inverse semi-
group and T is a right (left) inverse Γ-semigroup.

Proof (i) Suppose that S ×φ T is a right orthodox Γ-semigroup. Since it is
regular, for (s, t) ∈ S×φ T , there exists (s′, t′) ∈ S×φ T and α, β ∈ Γ such that

(s, t) = (s, t)α(s′, t′)β(s, t) = (ss′s, ts
′sα(t′)sβt)

and
(s′, t′) = (s′, t′)β(s, t)α(s′, t′) = (s′ss′, (t′)ss′

βts
′
αt′).

This implies s′ ∈ V (s). Again if we take s = 1 then s′ = 1 and we get
t′ ∈ V β

α (t). Thus S is a regular semigroup and T is a regular Γ-semigroup.
Let t1 be an α-idempotent and t2 be a β-idempotent in T and e, g ∈ E(S).

Then (1, t1)α(1, t1) = (1, t1αt1) = (1, t1). Hence (1, t1) is an α-idempotent in
S×φT . Similarly (1, t2) is a β-idempotent in S×φT . Now

(
1, (t1αt2)β(t1αt2)

)
=

(1, t1αt2)β(1, t1αt2) =
(
(1, t1)α(1, t2)

)
β
(
(1, t1)α(1, t2)

)
= (1, t1)α(1, t2) =

(1, t1αt2). Thus t1αt2 is a β-idempotent. So, T is a right orthodox Γ-semigroup.

Again (e, te
1
) is an α-idempotent since (te

1
)e = te

1
and (g, tg

2
) is a β-idempotent.

Now (eg, teg
1

αtg
2
) = (e, te

1
)α(g, tg

2
) =

(
(e, te

1
)α(g, tg

2
)
)

β
(
(e, te

1
)α(g, tg

2
)
)

= (eg, teg
1

αtg
2
)

β(eg, teg
1

αtg
2
) =

(
(eg)2 , (teg

1
αtg

2
)β(teg

1
αtg

2
)
)
. Hence (eg)2 = eg. So, S is an or-

thodox semigroup.

(ii) Let S ×φ T is a right inverse Γ-semigroup. Then by (i) S is a regular
semigroup and T is a regular Γ-semigroup. Let t1 be an α-idempotent and
t2 is a β-idempotent in T . Let e, g ∈ E(S). Since S ×φ T is a right in-
verse Γ-semigroup, (1, t1) is an α-idempotent and (1, t2) be a β-idempotent, we
have (1, t1αt2βt1 ) = (1, t1)α(1, t2)β(1, t1) = (1, t2)β(1, t1) = (1, t2βt1 ) which
shows that t1αt2βt1 = t2βt1 . So T is a right inverse Γ-semigroup. Again,
(ge, tge

2
βte

1
) = (g, tg

2
)β(e, te

1
) = (e, te

1
) α(g, tg

2
)β(e, te

1
) = (ege, tege

1
αtge

2
βte

1
) shows

ge = ege for e, g ∈ E(S). Thus S is a right inverse semigroup.

Lemma 3.3 Let S ×φ T be the semidirect product of a monoid S and a Γ-
semigroup T corresponding to a given 1-preserving homomorphism φ : S →
End(T ) and let (s, t) ∈ S ×φ T , then
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(i) if (s′, t′) ∈ V β
α

(
(s, t)

)
then (s′, t′) ∈ V β

α

(
(s, ts

′s)
)
. In particular if

s ∈ E(S), then
(
s, (t′)sβts

′sαt′
)
∈ V β

α

(
(s, ts

′s)
)
.

(ii) if ts is an α-idempotent and s′ ∈ V (s), then (s′, tss′
) ∈ V α

α

(
(s, ts)

)
.

Proof (i) Since (s′, t′) ∈ V β
α

(
(s, t)

)
we have,

(s′, t′) = (s′, t′)β(s, t)α(s′, t′) =
(
s′ss′, (t′)ss′

βts
′
αt′
)

and
(s, t) = (s, t)α(s′, t′)β(s, t) =

(
ss′s, ts

′sα(t′)sβt
)
.

This shows that s′ ∈ V (s) and

ts
′sα(t′)sβt = t . . . (1)

(t′)ss′
βts

′
αt′ = t′ . . . (2)

From (1) we have,
(
ts

′sα(t′)sβt
)s′s

= (t)s′s i.e., ts
′sα(t′)sβts

′s = ts
′s and

from (2),
(
(t′)ss′

βts
′
αt′
)s

= (t′)s i.e., (t′)sβts
′sα(t′)s = (t′)s. Now we have

(s′, t′)β(s, ts
′s)α(s′, t′) =

(
s′ss′, (t′)ss′

βts
′ss′

αt′
)

= (s′, t′) [by (2)] and hence

(s, ts
′s)α(s′, t′)β(s, ts

′s)=
(
ss′s, ts

′ss′sα(t′)sβts
′s
)
=
(
s, ts

′sα(t′)sβts
′s
)

=(s, ts
′s).

Thus we have (s′, t′) ∈ V β
α

(
(s, ts

′s)
)
. Again if s ∈ E(S),

(
(t′)sβts

′sαt′
)s

=

(t′)sβts
′sα(t′)s = (t′)s and (s, ts

′s)α
(
s, (t′)sβts

′sαt′
)
β(s, ts

′s) =(
sss, ts

′sα
(
(t′)sβts

′sαt′
)s

βts
′s

)
=

(
s, ts

′sα(t′)sβts
′s
)

= (s, ts
′s) and

(
s,(t′)sβts

′sαt′
)
β (s, ts

′s)α
(
s, (t′)sβts

′sαt′
)
=

(
s,
(
(t′)sβts

′sαt′
)s

βts
′ssα(t′)sβts

′sαt′
)

=
(
s, (t′)sβts

′sα(t′)s βts
′sαt′

)
=
(
s, (t′)s βts

′sαt′
)
. Hence

(
s, (t′)sβts

′sαt′
)
∈

V β
α (s, ts

′s).

(ii) (s, ts)α(s′, tss′
)α(s, ts) = (ss′s, tss′sαtss′sαts) = (s, ts) since ts is an α-

idempotent and (s′, tss′
)α(s, ts)α(s′, tss′

) = (s′ss′, tss′ss′
αtss′

αtss′
) =

(s′, tss′
αtss′

αtss′
) =

(
s′, (tsαtsαts)s′)

= (s′, tss′
) i.e., (s′, tss′

) ∈ V α
α (s, ts).

Lemma 3.4 Let S be a monoid and T be a Γ-semigroup and S ×φ T be the
semidirect product corresponding to a given 1-preserving homomorphism φ :
S → End(T ). Moreover, let t ∈ teΓT for every e ∈ E(S) and every t ∈ T .
Then
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(i) (e, t) is an α-idempotent if and only if e ∈ E(S) and te is an α-
idempotent.

(ii) if (e, t) is an α-idempotent, then (e, te) ∈ V α
α

(
(e, t)

)
.

Proof (i) If (e, t) is an α-idempotent, then

(e, t) = (e, t)α(e, t) = (e2, teαt) i.e., e = e2 and teαt = t (3)

So, te = (teαt)e = teαte which implies that te is an α-idempotent. Conversely,
let e ∈ E(S) and te be an α-idempotent. Since t ∈ teΓT, t = teβt1 for some
β ∈ Γ, t1 ∈ T and hence teαt = teαteβt1 = t. Thus (e, t)α(e, t) = (e, teαt) =
(e, t) i.e., (e, t) is an α-idempotent.

(ii) If (e, t) is an α-idempotent, from (i) e ∈ E(S) and te is an α-idempotent.
Now (e, t)α(e, te)α(e, t) = (e, teαteαt) = (e, teαt) = (e, t) [from (3)] and
(e, te)α(e, t)α (e, te) = (e, teαteαte) = (e, te). Thus (e, te) ∈ V α

α

(
(e, t)

)
.

Theorem 3.5 Let S be a monoid and T be a Γ-semigroup. Let φ : S → End(T )
be a given 1-preserving homomorphism. Then the semidirect product S×φ T is
a right (left) orthodox Γ-semigroup if and only if

(i) S is an orthodox semigroup and T is a right (left) orthodox Γ-semigroup
(ii) for every e ∈ E(S) and every t ∈ T, t ∈ teΓT
(iii) if te is an α-idempotent, then tge is an α-idempotent for every g ∈

E(S), where e ∈ E(S), t ∈ T.

Proof Suppose S ×φ T is a right orthodox Γ-semigroup. Then by Lemma
3.2 S is an orthodox semigroup and T is a right orthodox Γ-semigroup. For
(ii), let (e, t) ∈ S ×φ T with e ∈ E(S) and let (e′, t′) ∈ V β

α

(
(e, t)

)
for some

α, β ∈ Γ. Then by Lemma 3.3 (e′, t′),
(
e′, (t′)eβte

′eαt′
)
∈ V β

α

(
(e, te

′e)
)
. Thus

V β
α

(
(e, t)

)
∩ V β

α

(
(e, te

′e)
)
�= φ and hence we have V β

α

(
(e, t)

)
= V β

α

(
(e, te

′e)
)

by Theorem 2.6. So
(
e, (t′)eβte

′eαt′
)
∈ V β

α

(
(e, t)

)
. Thus

(e, t) = (e, t)α(e, (t′)eβte
′eαt′

)
β(e, t) =

(
e, teα(t′)eβte

′eα(t′)eβt
)

and hence t = teα(t′)eβte
′eα(t′)eβt ∈ teΓT .

For (iii) we shall first show that for an α-idempotent te of T if e ∈ E(S), te
′
is

an α-idempotent for any e′ ∈ V (e). If e ∈ E(S) and te is an α-idempoetnt, then
by Lemma 3.4, (e, t) is an α-idempotent in S ×φ T and (e, te) ∈ V α

α

(
(e, t)

)
.

Again since te is an α-idempotent (e, te) is also an α-idempotent and thus
(e, te) ∈ V α

α

(
(e, te)

)
i.e., V α

α

(
(e, te)

)
∩ V α

α

(
(e, t)

)
�= φ and so V α

α

(
(e, te)

)
=
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V α
α

(
(e, t)

)
and by Lemma 3.3 (e′, tee′

) ∈ V α
α

(
(e, te)

)
i.e., (e′, tee′

) ∈ V α
α

(
(e, t)

)
.

Thus (e, t) = (e, t)α(e′, tee′
)α(e, t) = (ee′e, te

′eαtee′eαt) = (e, te
′eαteαt) =

(e, te
′eαt) [since t = teβu for some β ∈ Γ, u ∈ T, teαt = t]. So t = te

′eαt and

hence te
′
=
(
te

′eαt
)e′

= te
′
αte

′
. Thus te

′
is an α-idempotent. Let e, g ∈ E(S)

and suppose that te ia an α-idempotent for t ∈ T , then tegαteg = (teαte)g = teg

i.e, teg is an α-idempotent and we have eg ∈ E(S) and ge ∈ V (eg) since S is
right orthodox. Then by the above fact tge is an α-idempotent.

Conversely, suppose that S and T satisfy (i), (ii), (iii). Let (s, t) ∈ S ×φ T
be given. Since S is regular, there exists s′ ∈ S such that s = ss′s and
s′ = s′ss′. Then Ss′ = Ss. We take e = s′s, then e ∈ E(S). By (ii) t ∈
teΓT which implies t = teβu for some β ∈ Γ, u ∈ T . Let t′ = vs′

where
v ∈ V δ

γ (t) where γ, δ ∈ Γ. Now ts
′sγ(t′)sδt = ts

′sγvs′sδteβu = (tγvδt)eβu =
t i.e, (s, t) = (ss′s, ts

′sγ(t′)sδt) = (s, t)γ(s′ , t′)δ(s, t). Again (t′)ss′
δts

′
γt′ =

(vs′
)ss′

δts
′
γvs′

= vs′
δts

′
γvs′

= vs′
= t′ i.e., (s′, t′) = (s′ss′, (t′)ss′

δts
′
γt′) =

(s′, t′)δ(s, t)γ(s′, t′). Thus we have (s′, t′) ∈ V δ
γ (s, t) which yields S ×φ T is a

regular Γ-semigroup.
Now let (e, t) be an α-idempotent and (g, u) be a β-idempotent. Then by

Lemma 3.4 e, g ∈ E(S), te is an α-idempotent and ug is a β-idempotent. By (iii)
tge is an α-idempotent, ueg is a β-idempotent and tgegαtgeg = (tgeαtge)g = tgeg

i.e., tgeg is an α-idempotent. By our assumption e, g ∈ E(S) and (tgαu)eg =
tgegαueg is a β-idempotent. Thus by Lemma 3.4 (e, t)α(g, u) = (eg, tgαu) is a
β-idempotent which shows that S ×φ T is a right orthodox Γ-semigroup.

Theorem 3.6 Let S be a monoid, T be a Γ-semigroup and φ : S → End(T )
be a given 1-preserving homomorphism. Then the semidirect product S×φ T is
a right inverse Γ-semigroup if and only if

(i) S is a right inverse semigroup and T is a right inverse Γ-semigroup
(ii) for every e ∈ E(S) and every t ∈ T, t ∈ teΓT .

Proof Let S ×φ T be a right inverse Γ-semigroup. Then by Lemma 3.2 S is
a right inverse semigroup and T is a right inverse Γ-semigroup. Again since
every right inverse Γ-semigroup is a right orthodox Γ-semigroup from the above
theorem, condition (ii) holds.

Conversely, suppose that S and T satisfy (i) and (ii). Then S ×φ T is a
regular Γ-semigroup by Lemma 3.2. Let (e, t) be an α-idempotent and (g, u)
be a β-idempotent in S ×φ T . Then by Lemma 3.4 e, g ∈ E(S), te is an α-
idempotent, ug is a β-idempotent. From (ii) t = teγv for some γ ∈ Γ, v ∈ T
and thus teαt = t and similarly ugβu = u. So uge = (ugβu)ge = ugeβuge and
tge = (teαt)ge = tegeαtge = tgeαtge since S is a right inverse semigroup. Now
by (ii) we have ueβt = (ueβt)geδv1 for some δ ∈ Γ, v1 ∈ T and hence ueβt =
uegeβtgeδv1 = ugeβtgeδv1 . Thus we have (e, t)α(g, u)β(e, t) = (ege, tgeαueβt)
= (ge, tgeαugeβtgeδv1 ) = (ge, ugeβtgeδv1 ) = (ge, ueβt) = (g, u)β(e, t) which
implies S ×φ T is a right inverse Γ-semigroup.
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Theorem 3.7 Let S be a monoid, T be a Γ-semigroup and φ : S → End(T )
be a given 1-preserving homomorphism. Then the semidirect product S×φ T is
a left inverse Γ-semigroup if and only if

(i) S is a left inverse semigroup and T is a left inverse Γ-semigroup
(ii) for every e ∈ E(S) and every t ∈ T, t = te .

Proof Let S ×φ T be a left inverse Γ-semigroup. Then by Lemma 3.1 S is
a left inverse semigroup and T is a left inverse Γ-semigroup. For (ii) let (e, u)
be an α-idempotent in S ×φ T . Then (e, u) = (e, u)α(e, u) = (e, ueαu) i.e.,
ueαu = u. Again (e, ue)α(e, ue) = (e, ueeαue) = (e, ue) which yields (e, ue) is
an α-idempotent and we have (e, ue)α(e, u) = (e, ueαu) = (e, u). Since S ×φ T
is a left inverse Γ-semigroup, (e, u) = (e, ue)α(e, u) = (e, ue)α(e, u)α(e, ue)
= (e, ueeeαueeαue) = (e, ueαu)eeαue) = (e, ueeαue) = (e, ue) i.e., u = ue.
Thus if (e, u) is an α-idempotent then u = ue. Now (e, t) ∈ S ×φ T with
e ∈ E(S) and let (e′, t′) ∈ V δ

γ

(
(e, t)

)
for some γ, δ ∈ Γ. Then we get e′ ∈ V (e),

te
′eγ(t′)eδt = t i.e., te

′eγ(t′)ee′eδte
′e = te

′e which implies te
′eγ(t′)eδte

′e = te
′e.

Since
(
e′e, (t′)eδt

)
= (e′, t′)δ(e, t) and S ×φ T is left orthodox (since it is left

inverse),
(
e′e, (t′)eδt

)
is a γ-idempotent and hence (t′)eδt =

(
(t′)eδt

)e′e
=

(t′)eδte
′e. Thus te

′e = te
′eγ(t′)eδte

′e = te
′eγ(t′)eδt = t and hence te = (te

′e)e =
te

′e = t.
Conversely suppose that S and T satisfy (i) and (ii). Then S ×φ T is

regular. Now let (e, t) be an α-idempotent and (g, u) be a β-idempotent. Then
e2 = e and t = teαt = tαt [by (ii)] and similarly g2 = g and uβu = u
i.e., e, g ∈ E(S) and t is an α-idempotent, u is a β-idempotent. Thus we
have (e, t)β(g, u)α(e, t) = (ege, tgeβueαt) = (ege, tβuαt) [by (ii)] =(eg, tβu) =
(eg, tgβu) = (e, t)β(g, u). Thus S ×φ T is a left inverse Γ-semigroup.
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