East-West J. of Mathematics: Vol. 6, No 2 (2004) pp.131-138

SEMIDIRECT PRODUCT OF A MONOID AND A Γ -SEMIGROUP

M.K. Sen & S. Chattopadhyay

Department of Mathematics University of Calcutta 35,Ballygunge Circular Road,

Kolkata-700019, India.

Abstract

In this paper the notion of the semidirect product of a monoid and a Γ -semigroup has been introduced and studied. Necessary and sufficient conditions for this semidirect product to be right (left) orthodox Γ -semigroup and right (left) inverse Γ -semigroup has been obtained.

1. Introduction

The notion of Γ -semigroup has been introduced by Sen and Saha [5] in the yaer 1986. Many classical notions of semigroup has been extended to Γ -semigroup. In [3]and [4] we have introduced the notions of right inverse Γ -semigroup and right orthodox Γ -semigroup. In the present paper we have introduced the notions of semidirect product of a monoid and a Γ -semigroup which may be considered as a generalization of the semidirect product of a monoid and a semigroup introduced by T. Saito [2]. We obtain necessary and sufficient conditions for the semidirect product of the monoid and a Γ -semigroup to be right (left) orthodox Γ -semigroup and right (left) inverse Γ -semigroup.

Key words: Γ-semigroup, regular Γ-semigroup, orthodox Γ-semigroup, right orthodox Γ-semigroup, orthodox semigroup, right inverse semigroup.

[†]This research is supported by CSIR, India.

 $^{2000~{\}rm AMS}$ Mathematics Subject Classification: $20{\rm M}17$

2. Preliminaries

Definition 2.1 [5] Let $M = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. M is called a Γ -semigroup if $a\alpha b \in M$ for $\alpha \in \Gamma$ and $a, b \in M$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in M$ and for all $\alpha, \beta \in \Gamma$.

Definition 2.2 [5] Let M be a Γ -semigroup. An element a of M is said to be *regular* if $a \in a\Gamma M\Gamma a$ where $a\Gamma M\Gamma a = \{a\alpha b\beta a : b \in M, \alpha, \beta \in \Gamma\}$. If all elements of M are regular then M is called a *regular* Γ -semigroup.

Definition 2.3 [5] let M be a Γ -semigroup. An element $e \in M$ is said to be an α -idempotent if $e\alpha e = e$ for some $\alpha \in \Gamma$.

Definition 2.4 [7] Let $a \in M$ and $\alpha, \beta \in \Gamma$. An element $b \in M$ is called (α, β) *inverse* of a if $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$. In this case we write $b \in V_{\alpha}^{\beta}(a)$.

Definition 2.5 [4] A regular Γ -semigroup M is called a *right* (*left*) *orthodox* Γ -*semigroup* if for any α -idempotent e and β -idempotent f, $e\alpha f$ (resp. $f\alpha e$) is a β -idempotent.

Theorem 2.6 [4] A regular Γ -semigroup M is a right orthodox Γ -semigroup if and only if for $a, b \in M, V^{\beta}_{\alpha_1}(a) \cap V^{\beta}_{\alpha}(b) \neq \phi$ for some $\alpha, \alpha_1, \beta \in \Gamma$ implies that $V^{\delta}_{\alpha_1}(a) = V^{\delta}_{\alpha}(b)$ for all $\delta \in \Gamma$.

Definition 2.7 [3] A regular Γ -semigroup is called a *right* (*left*) *inverse* Γ semigroup if for any α -idempotent e and for any β -idempotent f, $e\alpha f\beta e = f\beta e$ ($e\beta f\alpha e = e\beta f$).

Definition 2.8 [9] A regular Γ -semigroup S is said to be an *orthodox semigroup* if E(S), the set of all idempotents of S forms a subsemigroup of S.

Definition 2.9[8] A regular semigroup S is said to be a right (left) inverse semigroup if for any $e, f \in E(S)$, efe = fe(efe = ef).

3. Semidirect product of a monoid and a Γ -

semigroup

Definition 3.1 Let S be a monoid and T be a Γ -semigroup. Let End(T) denote the set of all endomorphisms on T i.e., the set of all mappings $f: T \to T$ satisfying $(a\alpha b)f = af\alpha bf$ for all $a, b \in T, \alpha \in \Gamma$. Again let $\phi: S \to End(T)$ be a given 1-preserving homomorphism. If $s \in S$ and $t \in T$, we write t^s for $(t)\phi(s)$. Let $S \times_{\phi} T = \{(s,t): s \in S, t \in T\}$. We define a multiplication on $S \times_{\phi} T$ by $(s_1, t_1) \alpha(s_2, t_2) = (s_1 s_2, t_1^{s_2} \alpha t_2)$. Then $S \times_{\phi} T$ is a Γ -semigroup. This Γ -semigroup $S \times_{\phi} T$ is called the semidirect product of the monoid S and the Γ -semigroup T.

Lemma 3.2 Let S be a monoid and T be a Γ -semigroup, $\phi : S \to End(T)$ be a given 1-preserving homomorphism. Then if the semideirect product is

(i) right (left) orthodox Γ -semigroup then S is an orthodox semigroup and T is a right (left) orthodox Γ -semigroup.

(ii) right (left) inverse Γ -semigroup then S is a right (left) inverse semigroup and T is a right (left) inverse Γ -semigroup.

Proof (i) Suppose that $S \times_{\phi} T$ is a right orthodox Γ -semigroup. Since it is regular, for $(s,t) \in S \times_{\phi} T$, there exists $(s',t') \in S \times_{\phi} T$ and $\alpha, \beta \in \Gamma$ such that

$$(s,t) = (s,t)\alpha(s',t')\beta(s,t) = (ss's,t^{s's}\alpha(t')^s\beta t)$$

and

$$(s',t') = (s',t')\beta(s,t)\alpha(s',t') = (s'ss',(t')^{ss'}\beta t^{s'}\alpha t')\beta(s,t)\alpha(s',t') = (s'ss',(t')^{ss'}\beta t^{s'}\alpha t')\beta(s',t')$$

This implies $s' \in V(s)$. Again if we take s = 1 then s' = 1 and we get $t' \in V^{\beta}_{\alpha}(t)$. Thus S is a regular semigroup and T is a regular Γ -semigroup.

Let t_1 be an α -idempotent and t_2 be a β -idempotent in T and $e, g \in E(S)$. Then $(1, t_1)\alpha(1, t_1) = (1, t_1\alpha t_1) = (1, t_1)$. Hence $(1, t_1)$ is an α -idempotent in $S \times_{\phi} T$. Similarly $(1, t_2)$ is a β -idempotent in $S \times_{\phi} T$. Now $\left(1, (t_1\alpha t_2)\beta(t_1\alpha t_2)\right) = (1, t_1\alpha t_2)\beta(1, t_1\alpha t_2) = \left((1, t_1)\alpha(1, t_2)\right)\beta\left((1, t_1)\alpha(1, t_2)\right) = (1, t_1)\alpha(1, t_2) = (1, t_1\alpha t_2)$. Thus $t_1\alpha t_2$ is a β -idempotent. So, T is a right orthodox Γ -semigroup.

Again (e, t_1^e) is an α -idempotent since $(t_1^e)^e = t_1^e$ and (g, t_2^g) is a β -idempotent. Now $(eg, t_1^{eg} \alpha t_2^g) = (e, t_1^e) \alpha(g, t_2^g) = \left((e, t_1^e) \alpha(g, t_2^g)\right) \beta\left((e, t_1^e) \alpha(g, t_2^g)\right) = (eg, t_1^{eg} \alpha t_2^g) \beta(eg, t_1^{eg} \alpha t_2^g) = \left((eg)^2, (t_1^{eg} \alpha t_2^g) \beta(t_1^{eg} \alpha t_2^g)\right)$. Hence $(eg)^2 = eg$. So, S is an orthodox semigroup.

(ii) Let $S \times_{\phi} T$ is a right inverse Γ -semigroup. Then by (i) S is a regular semigroup and T is a regular Γ -semigroup. Let t_1 be an α -idempotent and t_2 is a β -idempotent in T. Let $e, g \in E(S)$. Since $S \times_{\phi} T$ is a right inverse Γ -semigroup, $(1, t_1)$ is an α -idempotent and $(1, t_2)$ be a β -idempotent, we have $(1, t_1 \alpha t_2 \beta t_1) = (1, t_1) \alpha (1, t_2) \beta (1, t_1) = (1, t_2) \beta (1, t_1) = (1, t_2 \beta t_1)$ which shows that $t_1 \alpha t_2 \beta t_1 = t_2 \beta t_1$. So T is a right inverse Γ -semigroup. Again, $(ge, t_2^{ge} \beta t_1^e) = (g, t_2^g) \beta (e, t_1^e) = (e, t_1^e) \alpha (g, t_2^g) \beta (e, t_1^e) = (ege, t_1^{ege} \alpha t_2^{ge} \beta t_1^e)$ shows ge = ege for $e, g \in E(S)$. Thus S is a right inverse semigroup.

Lemma 3.3 Let $S \times_{\phi} T$ be the semidirect product of a monoid S and a Γ -semigroup T corresponding to a given 1-preserving homomorphism $\phi : S \to End(T)$ and let $(s,t) \in S \times_{\phi} T$, then

(i) if $(s',t') \in V^{\beta}_{\alpha}((s,t))$ then $(s',t') \in V^{\beta}_{\alpha}((s,t^{s's}))$. In particular if $s \in E(S)$, then $\left(s,(t')^{s}\beta t^{s's}\alpha t'\right) \in V^{\beta}_{\alpha}((s,t^{s's}))$.

(ii) if t^s is an α -idempotent and $s' \in V(s)$, then $(s', t^{ss'}) \in V^{\alpha}_{\alpha}((s, t^s))$.

Proof (i) Since $(s',t') \in V_{\alpha}^{\beta}((s,t))$ we have,

$$(s',t') = (s',t')\beta(s,t)\alpha(s',t') = \left(s'ss',(t')^{ss'}\beta t^{s'}\alpha t'\right)$$

and

$$(s,t) = (s,t)\alpha(s',t')\beta(s,t) = \left(ss's, t^{s's}\alpha(t')^s\beta t\right).$$

This shows that $s' \in V(s)$ and

$$t^{s's}\alpha(t')^{s}\beta t = t \qquad \dots(1)$$
$$(t')^{ss'}\beta t^{s'}\alpha t' = t' \qquad \dots(2)$$

From (1) we have,
$$\left(t^{s's}\alpha(t')^s\beta t\right)^{s's} = (t)^{s's}$$
 i.e., $t^{s's}\alpha(t')^s\beta t^{s's} = t^{s's}$ and
from (2), $\left((t')^{ss'}\beta t^{s'}\alpha t'\right)^s = (t')^s$ i.e., $(t')^s\beta t^{s's}\alpha(t')^s = (t')^s$. Now we have
 $(s',t')\beta(s,t^{s's})\alpha(s',t') = \left(s'ss',(t')^{ss'}\beta t^{s'ss'}\alpha t'\right) = (s',t')$ [by (2)] and hence
 $(s,t^{s's})\alpha(s',t')\beta(s,t^{s's}) = \left(ss's,t^{s'ss's}\alpha(t')^s\beta t^{s's}\right) = \left(s,t^{s's}\alpha(t')^s\beta t^{s's}\right) = (s,t^{s's})$
Thus we have $(s',t') \in V^{\beta}_{\alpha}\left((s,t^{s's})\right)$. Again if $s \in E(S)$, $\left((t')^s\beta t^{s's}\alpha t'\right)^s =$
 $(t')^s\beta t^{s's}\alpha(t')^s = (t')^s$ and $(s,t^{s's})\alpha\left(s,(t')^s\beta t^{s's}\alpha t'\right)\beta(s,t^{s's}) =$
 $\left(sss,t^{s's}\alpha\left((t')^s\beta t^{s's}\alpha t'\right)^s\beta t^{s's}\right) = \left(s,t^{s's}\alpha(t')^s\beta t^{s's}\alpha t'\right)\beta(s,t^{s's}\alpha t')$
and
 $\left(s,(t')^s\beta t^{s's}\alpha t'\right)\beta(s,t^{s's})\alpha\left(s,(t')^s\beta t^{s's}\alpha t'\right) = \left(s,(t')^s\beta t^{s's}\alpha t'\right)^s\beta t^{s's}\alpha t'\right)$
 $= \left(s,(t')^s\beta t^{s's}\alpha(t')^s\beta t^{s's}\alpha t'\right) = \left(s,(t')^s\beta t^{s's}\alpha t'\right)$. Hence $\left(s,(t')^s\beta t^{s's}\alpha t'\right) \in V^{\beta}_{\alpha}(s,t^{s's})$.

 $\begin{array}{ll} (\mathrm{ii}) & (s,t^s)\alpha(s',t^{ss'})\alpha(s,t^s) = (ss's,t^{ss's}\alpha t^{ss's}\alpha t^s) = (s,t^s) \text{ since } t^s \text{ is an } \alpha \text{-} \\ \mathrm{idempotent} & \mathrm{and} & (s',t^{ss'})\alpha(s,t^s)\alpha(s',t^{ss'}) = & (s'ss',t^{ss'ss'}\alpha t^{ss'}\alpha t^{ss'}) = \\ (s',t^{ss'}\alpha t^{ss'}\alpha t^{ss'}) = & \left(s',(t^s\alpha t^s\alpha t^s)^{s'}\right) = (s',t^{ss'}) \text{ i.e., } (s',t^{ss'}) \in V^{\alpha}_{\alpha}(s,t^s). \end{array}$

Lemma 3.4 Let S be a monoid and T be a Γ -semigroup and $S \times_{\phi} T$ be the semidirect product corresponding to a given 1-preserving homomorphism ϕ : $S \to End(T)$. Moreover, let $t \in t^e \Gamma T$ for every $e \in E(S)$ and every $t \in T$. Then

134

(i) (e,t) is an α -idempotent if and only if $e \in E(S)$ and t^e is an α -idempotent.

(ii) if (e, t) is an α -idempotent, then $(e, t^e) \in V^{\alpha}_{\alpha}((e, t))$.

Proof (i) If (e, t) is an α -idempotent, then

$$(e,t) = (e,t)\alpha(e,t) = (e^2, t^e \alpha t)$$
 i.e., $e = e^2$ and $t^e \alpha t = t$ (3)

So, $t^e = (t^e \alpha t)^e = t^e \alpha t^e$ which implies that t^e is an α -idempotent. Conversely, let $e \in E(S)$ and t^e be an α -idempotent. Since $t \in t^e \Gamma T$, $t = t^e \beta t_1$ for some $\beta \in \Gamma$, $t_1 \in T$ and hence $t^e \alpha t = t^e \alpha t^e \beta t_1 = t$. Thus $(e, t)\alpha(e, t) = (e, t^e \alpha t) = (e, t)$ i.e., (e, t) is an α -idempotent.

(ii) If (e, t) is an α -idempotent, from (i) $e \in E(S)$ and t^e is an α -idempotent. Now $(e, t)\alpha(e, t^e)\alpha(e, t) = (e, t^e\alpha t^e\alpha t) = (e, t^e\alpha t) = (e, t)$ [from (3)] and $(e, t^e)\alpha(e, t)\alpha(e, t^e) = (e, t^e\alpha t^e\alpha t^e) = (e, t^e)$. Thus $(e, t^e) \in V^{\alpha}_{\alpha}((e, t))$.

Theorem 3.5 Let S be a monoid and T be a Γ -semigroup. Let $\phi : S \to End(T)$ be a given 1-preserving homomorphism. Then the semidirect product $S \times_{\phi} T$ is a right (left) orthodox Γ -semigroup if and only if

- (i) S is an orthodox semigroup and T is a right (left) orthodox Γ -semigroup
- (ii) for every $e \in E(S)$ and every $t \in T$, $t \in t^e \Gamma T$

(iii) if t^e is an α -idempotent, then t^{ge} is an α -idempotent for every $g \in E(S)$, where $e \in E(S), t \in T$.

Proof Suppose $S \times_{\phi} T$ is a right orthodox Γ -semigroup. Then by Lemma 3.2 S is an orthodox semigroup and T is a right orthodox Γ -semigroup. For (ii), let $(e,t) \in S \times_{\phi} T$ with $e \in E(S)$ and let $(e',t') \in V_{\alpha}^{\beta}((e,t))$ for some $\alpha, \beta \in \Gamma$. Then by Lemma 3.3 $(e',t'), (e',(t')^{e}\beta t^{e'e}\alpha t') \in V_{\alpha}^{\beta}((e,t^{e'e}))$. Thus $V_{\alpha}^{\beta}((e,t)) \cap V_{\alpha}^{\beta}((e,t^{e'e})) \neq \phi$ and hence we have $V_{\alpha}^{\beta}((e,t)) = V_{\alpha}^{\beta}((e,t^{e'e}))$ by Theorem 2.6. So $(e,(t')^{e}\beta t^{e'e}\alpha t') \in V_{\alpha}^{\beta}((e,t))$. Thus

$$(e,t) = (e,t)\alpha(e,(t')^e\beta t^{e'e}\alpha t')\beta(e,t) = \left(e,t^e\alpha(t')^e\beta t^{e'e}\alpha(t')^e\beta t\right)$$

and hence $t = t^e \alpha(t')^e \beta t^{e'e} \alpha(t')^e \beta t \in t^e \Gamma T$.

For (iii) we shall first show that for an α -idempotent t^e of T if $e \in E(S)$, $t^{e'}$ is an α -idempotent for any $e' \in V(e)$. If $e \in E(S)$ and t^e is an α -idempotent, then by Lemma 3.4, (e, t) is an α -idempotent in $S \times_{\phi} T$ and $(e, t^e) \in V^{\alpha}_{\alpha}((e, t))$. Again since t^e is an α -idempotent (e, t^e) is also an α -idempotent and thus $(e, t^e) \in V^{\alpha}_{\alpha}((e, t^e))$ i.e., $V^{\alpha}_{\alpha}((e, t^e)) \cap V^{\alpha}_{\alpha}((e, t)) \neq \phi$ and so $V^{\alpha}_{\alpha}((e, t^e)) =$

 $\begin{array}{l} V^{\alpha}_{\alpha}\left((e,t)\right) \text{ and by Lemma 3.3 } (e',t^{ee'}) \in V^{\alpha}_{\alpha}\left((e,t^e)\right) \text{ i.e., } (e',t^{ee'}) \in V^{\alpha}_{\alpha}\left((e,t)\right). \\ \text{Thus } (e,t) = (e,t)\alpha(e',t^{ee'})\alpha(e,t) = (ee'e,t^{e'e}\alpha t^{ee'e}\alpha t) = (e,t^{e'e}\alpha t^e\alpha t) = (e,t^{e'e}\alpha t) \\ (e,t^{e'e}\alpha t) \text{ [since } t = t^e\beta u \text{ for some } \beta \in \Gamma, \ u \in T, t^e\alpha t = t]. \text{ So } t = t^{e'e}\alpha t \text{ and} \\ \text{hence } t^{e'} = \left(t^{e'e}\alpha t\right)^{e'} = t^{e'}\alpha t^{e'}. \text{ Thus } t^{e'} \text{ is an } \alpha \text{-idempotent. Let } e,g \in E(S) \\ \text{and suppose that } t^e \text{ ia an } \alpha \text{-idempotent for } t \in T, \text{ then } t^{eg}\alpha t^{eg} = (t^e\alpha t^e)^g = t^{eg} \\ \text{ i.e. } t^{eg} \text{ is an } \alpha \text{-idempotent and we have } eg \in E(S) \text{ and } ge \in V(eg) \text{ since } S \text{ is right orthodox. Then by the above fact } t^{ge} \text{ is an } \alpha \text{-idempotent.} \end{array}$

Conversely, suppose that S and T satisfy (i), (ii), (iii). Let $(s,t) \in S \times_{\phi} T$ be given. Since S is regular, there exists $s' \in S$ such that s = ss's and s' = s'ss'. Then Ss' = Ss. We take e = s's, then $e \in E(S)$. By (ii) $t \in t^e\Gamma T$ which implies $t = t^e\beta u$ for some $\beta \in \Gamma$, $u \in T$. Let $t' = v^{s'}$ where $v \in V^{\delta}_{\gamma}(t)$ where $\gamma, \delta \in \Gamma$. Now $t^{s's}\gamma(t')^s\delta t = t^{s's}\gamma v^{s's}\delta t^e\beta u = (t\gamma v\delta t)^e\beta u = t$ i.e., $(s,t) = (ss's, t^{s's}\gamma(t')^s\delta t) = (s,t)\gamma(s',t')\delta(s,t)$. Again $(t')^{ss'}\delta t^{s'}\gamma t' = (v^{s'})^{ss'}\delta t^{s'}\gamma v^{s'} = v^{s'}\delta t^{s'}\gamma v^{s'} = v^{s'} = t'$ i.e., $(s',t') = (s'ss', (t')^{ss'}\delta t^{s'}\gamma t') = (s',t')\delta(s,t)\gamma(s',t')$. Thus we have $(s',t') \in V^{\delta}_{\gamma}(s,t)$ which yields $S \times_{\phi} T$ is a regular Γ -semigroup.

Now let (e, t) be an α -idempotent and (g, u) be a β -idempotent. Then by Lemma 3.4 $e, g \in E(S)$, t^e is an α -idempotent and u^g is a β -idempotent. By (iii) t^{ge} is an α -idempotent, u^{eg} is a β -idempotent and $t^{geg}\alpha t^{geg} = (t^{ge}\alpha t^{ge})^g = t^{geg}$ i.e., t^{geg} is an α -idempotent. By our assumption $e, g \in E(S)$ and $(t^g\alpha u)^{eg} = t^{geg}\alpha u^{eg}$ is a β -idempotent. Thus by Lemma 3.4 $(e, t)\alpha(g, u) = (eg, t^g\alpha u)$ is a β -idempotent which shows that $S \times_{\phi} T$ is a right orthodox Γ -semigroup.

Theorem 3.6 Let S be a monoid, T be a Γ -semigroup and $\phi : S \to End(T)$ be a given 1-preserving homomorphism. Then the semidirect product $S \times_{\phi} T$ is a right inverse Γ -semigroup if and only if

- (i) S is a right inverse semigroup and T is a right inverse Γ -semigroup
- (ii) for every $e \in E(S)$ and every $t \in T$, $t \in t^e \Gamma T$.

Proof Let $S \times_{\phi} T$ be a right inverse Γ -semigroup. Then by Lemma 3.2 S is a right inverse semigroup and T is a right inverse Γ -semigroup. Again since every right inverse Γ -semigroup is a right orthodox Γ -semigroup from the above theorem, condition (ii) holds.

Conversely, suppose that S and T satisfy (i) and (ii). Then $S \times_{\phi} T$ is a regular Γ -semigroup by Lemma 3.2. Let (e, t) be an α -idempotent and (g, u) be a β -idempotent in $S \times_{\phi} T$. Then by Lemma 3.4 $e, g \in E(S)$, t^e is an α -idempotent, u^g is a β -idempotent. From (ii) $t = t^e \gamma v$ for some $\gamma \in \Gamma$, $v \in T$ and thus $t^e \alpha t = t$ and similarly $u^g \beta u = u$. So $u^{ge} = (u^g \beta u)^{ge} = u^{ge} \beta u^{ge}$ and $t^{ge} = (t^e \alpha t)^{ge} = t^{ege} \alpha t^{ge} = t^{ge} \alpha t^{ge}$ since S is a right inverse semigroup. Now by (ii) we have $u^e \beta t = (u^e \beta t)^{ge} \delta v_1$ for some $\delta \in \Gamma$, $v_1 \in T$ and hence $u^e \beta t = u^{ege} \beta t^{ge} \delta v_1 = u^{ge} \beta t^{ge} \delta v_1$. Thus we have $(e, t)\alpha(g, u)\beta(e, t) = (ege, t^{ge} \alpha u^e \beta t) = (ge, t^{ge} \alpha u^{ge} \beta t^{ge} \delta v_1) = (ge, u^{ge} \beta t^{ge} \delta v_1) = (ge, u^{ge} \beta t^{ge} \delta v_1) = (ge, u^g \beta t) = (g, u)\beta(e, t)$ which implies $S \times_{\phi} T$ is a right inverse Γ -semigroup.

Theorem 3.7 Let S be a monoid, T be a Γ -semigroup and $\phi : S \to End(T)$ be a given 1-preserving homomorphism. Then the semidirect product $S \times_{\phi} T$ is a left inverse Γ -semigroup if and only if

- (i) S is a left inverse semigroup and T is a left inverse Γ -semigroup
- (ii) for every $e \in E(S)$ and every $t \in T$, $t = t^e$.

Proof Let $S \times_{\phi} T$ be a left inverse Γ -semigroup. Then by Lemma 3.1 S is a left inverse semigroup and T is a left inverse Γ -semigroup. For (ii) let (e, u) be an α -idempotent in $S \times_{\phi} T$. Then $(e, u) = (e, u)\alpha(e, u) = (e, u^e\alpha u)$ i.e., $u^e \alpha u = u$. Again $(e, u^e)\alpha(e, u^e) = (e, u^{ee}\alpha u^e) = (e, u^e)$ which yields (e, u^e) is an α -idempotent and we have $(e, u^e)\alpha(e, u) = (e, u^e\alpha u) = (e, u)$. Since $S \times_{\phi} T$ is a left inverse Γ -semigroup, $(e, u) = (e, u^e)\alpha(e, u) = (e, u^e)\alpha(e, u) = (e, u^e)\alpha(e, u)\alpha(e, u^e) = (e, u^{ee\alpha}\alpha u^{ee}\alpha u^e) = (e, u^e\alpha u)^{ee}\alpha u^e) = (e, u^{ee\alpha}\alpha u^e) = (e, u^e)\alpha(e, u)\alpha(e, u^e) = (e, u^{ee\alpha}\alpha u^{ee\alpha}u^e) = (e, u^e\alpha u)^{ee\alpha}\alpha u^e) = (e, u^{ee\alpha}\alpha u^e) = (e, u^e)\alpha(e, u)\alpha(e, u^e) = (e, u^e)\alpha(e, u)\alpha(e, u^e)$. Thus if (e, u) is an α -idempotent then $u = u^e$. Now $(e, t) \in S \times_{\phi} T$ with $e \in E(S)$ and let $(e', t') \in V^{\delta}_{\gamma}((e, t))$ for some $\gamma, \delta \in \Gamma$. Then we get $e' \in V(e)$, $t^{e'e}\gamma(t')^e\delta t = t$ i.e., $t^{e'e}\gamma(t')^{ee'e}\delta t^{e'e} = t^{e'e}$ which implies $t^{e'e}\gamma(t')^e\delta t^{e'e} = t^{e'e}$. Since $(e'e, (t')^e\delta t) = (e', t')\delta(e, t)$ and $S \times_{\phi} T$ is left orthodox (since it is left inverse), $(e'e, (t')^e\delta t)$ is a γ -idempotent and hence $(t')^e\delta t = ((t')^e\delta t)^{e'e} = (t')^e \delta t^{e'e} = t^{e'e}\gamma(t')^e\delta t^{e'e} = t^{e'e}\gamma(t')^e\delta t = t$ and hence $t^e = (t^{e'e})^e = t^{e'e} = t$.

Conversely suppose that S and T satisfy (i) and (ii). Then $S \times_{\phi} T$ is regular. Now let (e, t) be an α -idempotent and (g, u) be a β -idempotent. Then $e^2 = e$ and $t = t^e \alpha t = t \alpha t$ [by (ii)] and similarly $g^2 = g$ and $u\beta u = u$ i.e., $e, g \in E(S)$ and t is an α -idempotent, u is a β -idempotent. Thus we have $(e, t)\beta(g, u)\alpha(e, t) = (ege, t^{ge}\beta u^e \alpha t) = (ege, t\beta u\alpha t)$ [by (ii)] $= (eg, t\beta u) =$ $(eg, t^g \beta u) = (e, t)\beta(g, u)$. Thus $S \times_{\phi} T$ is a left inverse Γ -semigroup.

References

- W. R. Nico, On the regularity of semidirect products, J. Algebra, 80 (1983), 29-36.
- [2] Tatsuhiko Saito, Orthodox semidirect products and Wreath products of monoids, Semigroup Forum, 38 (1989), 347-354.
- [3] S. Chattopadhyay, Right inverse Γ-semigroup, Bull. Cal. Math. Soc., 93 (2001), 435-442.
- [4] S. Chattopadhyay, *Right orthodox* Γ-semigroup, Accepted for publication in - Southeast Asian Bull. Mathematics.
- [5] M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soc., 78 (1986), 180-186.
- [6] N. K. Saha, On Γ-semigroup II, Bull. Cal. Math. Soc., **79** (1987), 331-335.

- [7] N. K. Saha and A. Seth, Inverse Γ -semigroup, J. Pure Math., 6 (1987-88), 1-8.
- [8] P. S. Venkatesan, Right (left) inverse semigroup, J. of Algebra, 31 (1974), 209-217.
- [9] J. M. Howie, "An introduction to semigroup theory", Academic Press (1976).