DIRECT SUMS OF RELATIVE (QUASI-) CONTINUOUS MODULES

Chaehoon Chang, Kiyoichi Oshiro,

Department of Mathematics, Yamaguchi University Yoshida Yamaguchi, Japan

Abstract

In [4], relative (quasi-)continuous modules are introduced, and several fundamental results are given. In the present paper, we shall give necessary and sufficient conditions for direct sums of relative (quasi-) continuous modules to be relative (quasi-) continuous modules.

Preliminaries

Throughout this paper, R denotes a ring with identity and all R-modules are unitary right R-modules. For two R-modules X and Y with $X \subseteq Y$, $X \subseteq_e Y$ means that X is an essential submodule of Y.

Let N and M be R-modules. By $\mathcal{A}(N, M)$, we denote the family of all submodule A of M such that $f(X) \subseteq_e A$ for some $X \subseteq N$ and some f in $Hom_R(X, M)$. It is easy to see that this family $\mathcal{A}(N, M)$ is closed under submodules, essential extensions and isomorphic images.

Definition 1 For $\mathcal{A}(N, M)$, we consider the following conditions :

(C₁) For any $A \in \mathcal{A}(N, M)$, there exists a direct summand $A^* <_{\oplus} M$ such that $A \subseteq_e A^*$

(C₂) For any $A \in \mathcal{A}(N, M)$ and $X <_{\oplus} M$, $A \simeq X$ implies $A <_{\oplus} M$

 (C_3) For any $A\in \mathcal{A}(N,M)$ and $X<_\oplus M,$ if $A<_\oplus M$ and $A\cap X=0$ then $A\oplus X<_\oplus M$

M is said to be N-continuous if (C_1) and (C_2) hold, and is said to be N-quasi-continuous if (C_1) and (C_3) hold. Furthermore, M is said to be N-CS if

Key words: relative (quasi-)continuous modules, essential, direct summand, CS-module. 2000 Mathematics Subject Classification: 16D50, 16D70, 16D80

 (C_1) holds. We note that these modules are closed under direct summands (cf.[3]).

For *R*-modules $M = \bigoplus_{i} M_i$ and *X*, we use the following conditions :

(A) For every choice of distinct $k_i \in I$ and $m_i \in M_{k_i}$, if the sequence $(0 : m_i)$ is ascending then it becomes stationary.

(B) For any choice of $m_i \in M_{k_i}$ $(i \in \mathbb{N})$ for distinct $k_i \in I$ such that $(0 : x) \subseteq \bigcap_{i=1}^{\infty} (0 : m_i)$ for some $x \in X$, the ascending sequence $\bigcap_{i \ge n} (0 : m_i)$ $(n \in \mathbb{N})$ becomes stationary.

(C) For any $x \in X$ and for every choice of distinct $k_i \in I$ and $m_i \in M_{k_i}$, with $(0:x) \subseteq (0:m_i)$, if the sequence $(0:m_i)$ is ascending, then it becomes stationary.

For these conditions, the reader is referred to [2, page4]. We note that (B) implies (C).

Lemma 1 (cf.[1]) For *R*-modules X and $\{M_i\}_I$, the following are equivalent: (1) $\bigoplus M_i$ is X-injective;

- (2) (a) each M_i is X-injective
 - (b) the condition (B) holds for X and $\{M_i\}_I$.
- So, in this case (C) holds.

Lemma 2 (cf.[4]) For an N-(quasi-)continuous module M, the following hold: (1) Any direct summand of M is N-(quasi-)continuous.

(2) For any $X \leq_{\oplus} M$ and $A \in \mathcal{A}(N, M)$ with $X \cap A = 0$, X is A-injective. (3) For any $A, B \in \mathcal{A}(N, M)$ with $A \cap B = 0$ if $A \leq_{\oplus} M$ and $A \simeq B$ then $B \leq_{\oplus} M$.

Lemma 3 Consider two modules $P = \sum \bigoplus_{I} T_i \oplus N$ and $Q = \sum \bigoplus_{I} W_i \oplus N$ such that $Q \subseteq_e P$. If $\sum \bigoplus_{I} T_i$ satisfies (A) and, for any finite subset $F \subseteq I$, if $P = \sum \bigoplus_{F} W_i \oplus \bigoplus_{I=F} T_j \oplus N$ then P = Q.

Proof Assume that $P \neq Q$. Since $\sum \bigoplus_I T_i$ satisfies (A), we can take a finite subset F of I and an element $t \in \sum \bigoplus_F T_i$ such that $t \notin Q$ and, for any $j \in I - F$ and $s \in T_j$, if $(0:t) \subsetneq (0:s)$ then $s \in Q$.

Since $Q \subseteq_e P$, we can take $r \in R$ such that $0 \neq tr \in Q$. So there exists a finite subset $S \subseteq I$ such that $tr \in \bigoplus_G W_i \oplus N$.

We take G as $G \supseteq F$. We express t in $P = \bigoplus_{G} W_i \oplus \sum_{I=G} T_j \oplus N$ as t = w + s + n, where $w \in \sum_{i=G} \oplus_{G} W_i$, $s \in \bigoplus_{I=G} T_j$ and $n \in N$. Since $\bigoplus_{I=G} T_j \ni sr = tr - wr - nr \in \bigoplus_{G} W_i \oplus N$, we see sr = 0; so $(0:t) \subsetneq (0:s)$. This implies $s \in Q$ and hence $t = w + s + n \in Q$, which

is a contradiction. Hence P = Q.

126

By a slight modification, we quote [5, Lemma 2.1] as follows :

Lemma 4 Let $\{M_{\alpha}\}_{I}$ be a family of N-CS-modules and let $A \in \mathcal{A}(N, P = \bigoplus_{I} M_{\alpha})$. Then there exists submodules $T(i) \subseteq_{e} T(i)^{*} \subseteq \bigoplus M_{\alpha}$, decompositions $M_{\alpha} = T(i)^{*} \oplus N_{i}$ and a submodule $\bigoplus_{I} A(i) \subseteq_{e} A$ for which the following properties hold :

$$(1) A(i) \subseteq T(i) \oplus \bigoplus$$

(2) $\sigma(A(i)) = T(i)$ and $A(i) \stackrel{\sigma|A(i)}{\simeq} T(i)$ (by $\sigma|A(i)$) for each $i \in I$, where σ is the projection : $P = \bigoplus_{I} T(i)^* \oplus \bigoplus_{I} N_i \to \bigoplus_{I} T(i)^*$.

So,
$$T(i), T(i)^* \in \mathcal{A}(N, M_{\alpha})$$
 and $A \stackrel{\sigma|A}{\simeq} \sigma(A) \subseteq_e \bigoplus_I T(i)^*$.

Theorems

We first show the following theorem which is a generalization of [2, Theorem 2.13].

Theorem 1 Let $\{M_i\}_I$ be a family of *R*-modules. Then the following are equivalent:

(1) $P = \sum \bigoplus_{I} M_i$ is N-quasi-continuous; (2) (a) Each M_i is N-quasi-continuous; (b) $\bigoplus_{I-i} M_j$ is A_i -injective, for any $i \in I$ and any $A_i \in \mathcal{A}(N, M_i)$

(3) (a) Each M_i is N-continuous;

(b) for any distinct $i, j \in I$

(4) (a) Each M_i is N-quasi-continuous;

(b) for any distinct $i, j \in I$ and $A_i \in \mathcal{A}(N, M)$, M_j is A_i -injective

(c) for any $i \in I$ and $A_i \in \mathcal{A}(N, M_i)$, the condition(B) holds for $(A_i, \bigoplus_{I=i}^{i} M_j)$.

Proof $(1) \Rightarrow (2)$ follows from Lemma 2.

 $(2) \Leftrightarrow (3)$ follows from Lemma 1.

(2) \Rightarrow (1). First we show that $P = \sum \bigoplus_i M_i$ is N-CS. Let $X \in \mathcal{A}(N, M)$. By Lemma 4, we have submodules $T(i) \subseteq_e T(i)^* <_{\oplus} M_i$, decompositions $M_i = T(i)^* \oplus N_i$ and a submodule $\bigoplus_i X_i \subseteq_e X$ such that, for each $i \in I$,

(i) $\sigma(X_i) = T(i)$ (ii) $X_i \simeq T(i)$ (by $\sigma | X_i$), where σ is the projection: $P = \bigoplus_I T(i)^* \oplus \bigoplus_I N_i \to \bigoplus_I T(i)^*$. So, we see (iii) $X \simeq^{\sigma | X} \sigma(X) \subseteq_e \bigoplus_I T(i)^*$ Since $X \in \mathcal{A}(N, P)$, we see that $X_i \in \mathcal{A}(N, M_i)$, whence $T(i)^* \in \mathcal{A}(N, M_i)$ for each $i \in I$. So, by(b) $\bigoplus_{I-i} N_j$ is $T(i)^*$ -injective for each $i \in I$. On the other hand, by(a), N_i is $T(i)^*$ -injective. Hence $\bigoplus_I N_i$ is $T(i)^*$ -injective for each $i \in I$. Now, by(iii), the mapping $\varphi : \sigma(X) \to \bigoplus_I N_i$ given by $\varphi(\sigma(x)) = \tau(x)$ is a

homomorphisms, where τ is the projection: $P = \bigoplus_{I} T(i)^* \oplus \bigoplus_{I} N_i \to \bigoplus_{I} N_i$.

Since $\bigoplus_{I} N_i$ is $\bigoplus_{I} T(i)^*$ -injective, φ can be extended to a homomorphism $\varphi^* : \bigoplus_{I} T(i)^* \to \bigoplus_{I} N_i$. We put $X^* = \{x + \varphi^*(x) | x \in \bigoplus_{I} T(i)^*\}.$

Then $P = X^* \oplus \bigoplus_I N_i$ and moreover we see from $X \simeq^{\sigma|X} \simeq \sigma(X) \subseteq_e \bigoplus_I T(i)^*$ that $X \subseteq_e X^*$. Accordingly, P is N-CS. Here we note that if $X <_{\oplus} P$, and moreover $\bigoplus_i N_i$ is X-injective.

Next we will show that $P = \bigoplus_{I} M_i$ satisfies (C_3) for N.

Let $A \in \mathcal{A}(N, P)$ and $X \subseteq P$, and assume that both A and X are direct summands with $A \cap X = 0$; Put $P = X \oplus Q = Y \oplus A$ and let π_Q and π_X be the projections: $P = X \oplus Q \to X$, respectively. Since $X \cap A = 0$, $A \simeq \pi_Q(A)$ by $\pi_Q|A$. Since Q is N - CS and $\pi_Q(A) \in \mathcal{A}(N, P)$, there exists a direct summand $\pi_Q(A)^* <_{\oplus} Q$ such that $\pi_Q(A) \subseteq_e \pi_Q(A)^*$. Since $\pi_Q(A)^* <_{\oplus} P$, as we noted above, $P = \pi_Q(A)^* \oplus \bigoplus_I N_i$ for some $N_i <_{\oplus} M_i$ and $\bigoplus_I N_i$ is $\pi_Q(A)^*$ -injective.

Since $X \cap \pi_Q(A)^* = 0$, X is isomorphic to a submodule of $\bigoplus_I N_i$. Hence

X is $\pi_Q(A)^*$ -injective. Here consider the mapping $\varphi : \pi_Q(A) \to X$ given by $\varphi(\pi_Q(a)) = \pi_X(a)$. Then φ is a homomorphism. So φ can be extended to a homomorphism $\varphi^* : \pi_Q(A)^* \to X$.

Putting $A^* = \{q + \varphi^*(q) | q \in \pi_Q(A)^*\}$, we see that $X \oplus A^* <_{\oplus} P$ and $A \subseteq_e A^*$. Since $A <_{\oplus} P$, it follows $A = A^*$ and hence $X \oplus A <_{\oplus} P$ as required.

We generalize [2, Theorem 3.16] as follows:

Theorem 2 Let $\{M_i\}_I$ be a family of *R*-modules. Then the following are equivalent:

(1) $P = \bigoplus M_i$ is N-continuous;

(2) (a) Each M_i is N-continuous;

(b) $\bigoplus_{I-\{i\}} M_j$ is A_i -injective, for any $i \in I$ and any $A_i \in \mathcal{A}(N, M_i)$

- (3) (a) Each M_i is N-continuous;
 - (b) for any distinct $i, j \in I$ and $A_i \in \mathcal{A}(N, M_i)$, M_j is A_i -injective
 - (c) for any $i \in I$ and $A_i \in \mathcal{A}(N, M_i)$, the condition(B) holds for

C. Chang and K. Oshiro

$$(A_i, P = \bigoplus_{I - \{i\}} M_j).$$

Proof As in the proof of Theorem 1, we may only show that $P = \bigoplus_{I} M_i$ satisfies

 (C_2) for $\mathcal{A} = \mathcal{A}(N, P)$. So, let $A, B \in \mathcal{A}$ such that $A \leq_{\oplus} P$ and $A \cong B$.

By Lemma 4, there exist submodules $T(i) \subseteq_e T(i)^* <_{\bigoplus} M_i$, decompositions $M_i = T(i)^* \oplus N_i$ and a submodule $\bigoplus_I B(i) \subseteq_e B$ such that, for each $i \in I$, (i) $\sigma(B(i)) = T(i)$

(ii) $B(i) \simeq T(i)$ (by $\sigma | B(i)$), where σ is the projection: $P = \bigoplus_{I} T(i)^* \oplus \bigoplus_{I} N_i \to \bigoplus_{I} N_i$.

Put $A(i) = \tau^{-1}(B(i))$ for each $i \in I$. Since A is CS, for each $i \in I$, there exists direct summand $A(i)^* <_{\oplus} A$ such that $A(i) \subseteq_e A(i)^*$.

Let fix $i_0 \in I$. By the proof of Theorem 1, there exist direct summands $K_j <_{\oplus} M_j$ such that $A(i_0)^*$ is isomorphic to $\bigoplus_{i} K_j$; say $A(i_0)^* \stackrel{\varphi}{\simeq} \bigoplus_{i} k_j$.

Now put $B(i_0)^* = \tau(A(i_0^*))$. Then $B(i_0) \subseteq_e B(i_0)^*$ and $B(i_0)^* \stackrel{\sigma|B(i_0)^*}{\simeq} \sigma(B(i_0^*)) \subseteq_e T(i_0)^*$. Since $\bigoplus_{I-i_0} M_j \oplus_{>} \bigoplus_{I-i_0} K_j \simeq \tau \varphi(\bigoplus_{I-i_0} K_j)$ (by $\tau \varphi| \bigoplus_{I-i_0} K_j$) and $\tau \varphi(\bigoplus_{I-i_0} K_j) \subseteq T(i_0^*) <_{\oplus} M_{i_0}$, we see from (b) that $\tau \varphi(\bigoplus_{I-i_0} K_j) <_{\oplus} T(i_0)^*$.

On the other hand, $\tau \varphi(K_{i_0}) <_{\oplus} T(I_0)^*$ by (a). As a result we see that $T(i_0) \subseteq_e \tau \varphi(\bigoplus_I K_i) <_{\oplus} T(I_0)^*$; whence $\tau \varphi(\bigoplus_I K_i) = \sigma(B(i_0)^*) = T(i_0)^*$. Thus we have $P = B(i_0)^* \oplus \bigoplus_{I = i_0} T(i)^* \oplus \bigoplus_I N_i$

Inductively, we see that, for any finite subset F of I, $P = \bigoplus_{F} B(i)^* \oplus \bigoplus_{I-F} T(i)^* \oplus \bigoplus_{I} N_i$.

Here using Lemma 3 we get $P = \bigoplus_{I} B(i)^* \oplus \bigoplus_{I} N_i$ and hence $B = \bigoplus_{I} B(i)^* <_{\oplus} P$.

This completes the proof.

Remarks

Remark 1 In Theorem 1, $\bigoplus_{F} M_i$ is N-quasi-continuous for any finite subset F of I if and only if (a), (b) hold.

Remark 2 In Theorem 2, $\bigoplus_F M_i$ is *N*-continuous if and only if (a), (b) hold (See [4]).

References

- G. Azumaya, F. Mbuntum, and K. Varadarajan, On M-projective and M-injective modules, Pacific J. Math. 95 (1975), 9-16.
- [2] S. H. Mohamed and B. J. Müller, Continuous and Discrete modules, London Math. Soc. Lecture Note Series 147, Cambridge University Press (1990).
- K. Oshiro, Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983), 681-694.
- [4] S. R. López-Permouth, K. Oshiro, and S. T. Rizvi, On the relative (quasi-) continuity of modules, Comm. Alg. 26(11) (1998), 3497-3510.
- [5] K. Oshiro and S. T. Rizvi, *The exchange property of quasi-continuous modules with finite exchange property*, Osaka J. Math. 33 (1996), 217-234.