DIRECT SUMS OF RELATIVE (QUASI-) CONTINUOUS MODULES

Chaehoon Chang, Kiyoichi Oshiro,

Department of Mathematics, Yamaguchi University Yoshida Yamaguchi, Japan

Abstract

In [4], relative (quasi-)continuous modules are introduced, and several fundamental results are given. In the present paper, we shall give necessary and sufficient conditions for direct sums of relative (quasi-) continuous modules to be relative (quasi-) continuous modules.

Preliminaries

Throughout this paper, R denotes a ring with identity and all R-modules are unitary right R-modules. For two R-modules X and Y with $X \subseteq Y$, $X \subseteq_e Y$ means that X is an essential submodule of Y .

Let N and M be R-modules. By $A(N, M)$, we denote the family of all submodule A of M such that $f(X) \subseteq_e A$ for some $X \subseteq N$ and some f in $Hom_R(X, M)$. It is easy to see that this family $\mathcal{A}(N, M)$ is closed under submodules, essential extensions and isomorphic images.

Definition 1 *For* A(N,M)*, we consider the following conditions :*

 (C_1) *For any* $A \in \mathcal{A}(N, M)$ *, there exists a direct summand* $A^* <_{\oplus} M$ *such that* $A \subseteq_e A^*$

 (C_2) *For any* $A \in \mathcal{A}(N, M)$ *and* $X \leq_{\oplus} M$ *,* $A \simeq X$ *implies* $A \leq_{\oplus} M$

(C₃) For any $A \in \mathcal{A}(N,M)$ and $X \leq_{\oplus} M$, if $A \leq_{\oplus} M$ and $A \cap X = 0$ then $A \oplus X \leq_{\oplus} M$

M is said to be N-continuous if (C_1) and (C_2) hold, and is said to be N*quasi-continuous if* (C_1) *and* (C_3) *hold. Furthermore,* M *is said to be* N-CS *if*

Key words: relative (quasi-)continuous modules, essential, direct summand, CS-module. 2000 Mathematics Subject Classification: 16D50, 16D70, 16D80

 (C_1) *holds.* We note that these modules are closed under direct summands $(cf. [3])$.

For R-modules $M = \bigoplus$ $\bigoplus I$ *M_i* and *X*, we use the following conditions :

(A) For every choice of distinct $k_i \in I$ and $m_i \in M_{k_i}$, if the sequence (0 : m_i) is ascending then it becomes stationary.

(B) For any choice of $m_i \in M_{k_i}$ ($i \in \mathbb{N}$) for distinct $k_i \in I$ such that (0 : $(x) \subseteq \bigcap_{i=1}^{\infty} (0 : m_i)$ for some $x \in X$, the ascending sequence $\bigcap_{i \geq n} (0 : m_i)$ (n $\in \mathbb{N}$) becomes stationary.

(C) For any $x \in X$ and for every choice of distinct $k_i \in I$ and $m_i \in M_{k_i}$, with $(0 : x) \subseteq (0 : m_i)$, if the sequence $(0 : m_i)$ is ascending, then it becomes stationary.

For these conditions, the reader is referred to [2, page4]. We note that (B) implies (C).

Lemma 1 (cf.[1]) *For* R-modules X and $\{M_i\}_I$, the following are equivalent: $(1) \bigoplus M_i$ *is X*-*injective*;

- I *(2) (a) each* Mⁱ *is* X*-injective*
	- *(b)* the condition *(B)* holds for X and $\{M_i\}_I$.
- *So, in this case (C) holds.*

Lemma 2 (cf.[4]) *For an* N*-(quasi-)continuous module* M*, the following hold: (1) Any direct summand of* M *is* N*-(quasi-)continuous.*

(2) For any $X \leq_{\oplus} M$ *and* $A \in \mathcal{A}(N,M)$ *with* $X \cap A = 0$, X *is* A-*injective*. *(3) For any* $A, B \in \mathcal{A}(N, M)$ *with* $A \cap B = 0$ *if* $A \leq_{\oplus} M$ *and* $A \simeq B$ *then* $B \leq_{\oplus} M$.

Lemma 3 Consider two modules $P = \sum \oplus_i T_i \oplus N$ and $Q = \sum \oplus_i W_i \oplus N$ *such that* $Q \subseteq_e P$. If $\sum \bigoplus T_i$ *satisfies* (A) *and, for any finite subset* $F \subseteq I$ *, if* $P = \sum \oplus_F W_i \oplus \bigoplus$ $\bigoplus_{I-F} T_j \oplus N$ *then* $P = Q$ *.*

Proof Assume that $P \neq Q$. Since $\sum \oplus_i T_i$ satisfies (A), we can take a finite subset F of I and an element $t \in \sum \oplus_F T_i$ such that $t \notin Q$ and, for any $j \in I-F$ and $s \in T_j$, if $(0 : t) \subsetneq (0 : s)$ then $s \in Q$.

Since $Q \subseteq_e P$, we can take $r \in R$ such that $0 \neq tr \in Q$. So there exists a finite subset $S \subseteq I$ such that $tr \in \bigoplus$ $\bigoplus_G W_i \oplus N.$

We take G as $G \supseteq F$. We express t in $P = \bigoplus$ $\bigoplus_{G} W_i \oplus \sum \oplus_{I-G} T_j \oplus N$ as $t = w + s + n$, where $w \in \sum \oplus_G W_i$, $s \in \bigoplus_{I \subset G} T_j$ and $n \in N$. Since \bigoplus $\bigoplus_{I-G} T_j \ni sr = tr - wr - nr \in \bigoplus_G$ $\bigoplus_{G} W_i \oplus N$, we see $sr = 0$; so $(0 : t) \subsetneq (0 : s)$. This implies $s \in Q$ and hence $t = w + s + n \in Q$, which

is a contradiction. Hence $P = Q$.

By a slight modification, we quote [5, Lemma 2.1] as follows :

Lemma 4 Let $\{M_{\alpha}\}\$ I be a family of N-CS-modules and let $A \in \mathcal{A}(N, P =$ $\bigoplus M_{\alpha}$). Then there exists submodules $T(i) \subseteq_{e} T(i)^{*} \subseteq \bigoplus M_{\alpha}$, decompositions $M_{\alpha} = T(i)^{*} \oplus N_{i}$ and a submodule \bigoplus $\bigoplus_{I} A(i) \subseteq_{e} A$ *for which the following properties hold :*

$$
(1) A(i) \subseteq T(i) \oplus \bigoplus_{I} N_i
$$

(2) $\sigma(A(i)) = T(i)$ and $A(i) \stackrel{\sigma|A(i)}{\simeq} T(i)$ (by $\sigma|A(i)$) for each $i \in I$, where σ *is the projection :* $P = \bigoplus$ I $T(i)^* \oplus \bigoplus$ $\bigoplus_{I} N_i \to \bigoplus_{I}$ I $T(i)^*$ *.*

So,
$$
T(i)
$$
, $T(i)^* \in \mathcal{A}(N, M_\alpha)$ and $A \stackrel{\sigma|A}{\simeq} \sigma(A) \subseteq_e \bigoplus_{I} T(i)^*$.

Theorems

We first show the following theorem which is a generalization of [2, Theorem 2.13].

Theorem 1 Let $\{M_i\}$ *be a family of R-modules. Then the following are equivalent:*

- *(1)* $P = \sum \bigoplus I M_i$ *is N*-quasi-continuous; *(2) (a) Each* Mⁱ *is* N*-quasi-continuous;* (*b*) $\bigoplus M_j$ *is* A_i -*injective, for any* $i \in I$ *and any* $A_i \in \mathcal{A}(N, M_i)$ $I-i$
- (3) (a) Each M_i *is* N-continuous;
	- *(b)* for any distinct $i, j \in I$
- (4) (a) Each M_i *is* N-quasi-continuous;
	- *(b) for any distinct* $i, j \in I$ *and* $A_i \in \mathcal{A}(N, M)$ *,* M_j *is* A_i *-injective*

(c) for any i ∈ I *and* Aⁱ ∈ A(N,Mi)*, the condition(B) holds for* $(A_i, \bigoplus$ $\bigoplus_{I-i} M_j$).

Proof $(1) \Rightarrow (2)$ follows from Lemma 2.

 (2) ⇔ (3) follows from Lemma 1.

 $(2) \Rightarrow (1)$. First we show that $P = \sum \oplus_I M_i$ is N-CS. Let $X \in \mathcal{A}(N, M)$. By Lemma 4, we have submodules $T(i) \subseteq_e T(i)^* \leq_{\oplus} M_i$, decompositions $M_i = T(i)^* \oplus N_i$ and a submodule $\bigoplus_I X_i \subseteq_e X$ such that, for each $i \in I$,

(i) $\sigma(X_i) = T(i)$ (ii) $X_i \simeq T(i) \text{@}$ (by $\sigma | X_i$), where σ is the projection: $P = \bigoplus$ I $T(i)^* \oplus \bigoplus$ $\bigoplus_{I} N_i \to \bigoplus_{I}$ I $T(i)^*$. So, we see (iii) $X \stackrel{\sigma|X}{\simeq} \sigma(X) \subseteq_e \bigoplus$ I $T(i)^*$

Since $X \in \mathcal{A}(N, P)$, we see that $X_i \in \mathcal{A}(N, M_i)$, whence $T(i)^* \in \mathcal{A}(N, M_i)$ for each $i \in I$. So, by(b) \bigoplus $\bigoplus_{I-i} N_j$ is $T(i)^*$ -injective for each $i \in I$. On the other hand, by(a), N_i is $T(i)^*$ -injective. Hence \bigoplus $\bigoplus_{I} N_i$ is $T(i)^*$ -injective for each $i \in I$. Now, by(iii), the mapping $\varphi : \sigma(X) \to \bigoplus$ $\bigoplus_{I} N_{i}$ given by $\varphi(\sigma(x)) = \tau(x)$ is a

homomorphisms, where τ is the projection: $P = \bigoplus$ I $T(i)^* \oplus \bigoplus$ $\bigoplus_{I} N_i \to \bigoplus_{I}$ $\bigoplus_{I} N_i.$

Since \bigoplus $\bigoplus_{I} N_i$ is \bigoplus_{I} I $T(i)$ ^{*}-injective, φ can be extended to a homomorphism $\varphi^*:\bigoplus$ I $T(i)^* \to \bigoplus$ $\bigoplus_{I} N_i$. We put

$$
X^* = \{x + \varphi^*(x) | x \in \bigoplus_I T(i)^*\}.
$$

Then $P = X^* \oplus \bigoplus N_i$ and moreover we see from $X \stackrel{\sigma|X}{\simeq} \sigma(X) \subseteq_e \bigoplus T(i)^*$ that $X \subseteq_e X^*$. Accordingly, P is N-CS. Here we note that if $X \leq_{\oplus}^{\qquad} P$, and moreover $\bigoplus N_i$ is X-injective.

I Next we will show that $P = \bigoplus$ $\bigoplus_{I} M_i$ satisfies (C_3) for N.

Let $A \in \mathcal{A}(N, P)$ and $X \subseteq P$, and assume that both A and X are direct summands with $A \cap X = 0$; Put $P = X \oplus Q = Y \oplus A$ and let π_Q and π_X be the projections: $P = X \oplus Q \to X$, respectively. Since $X \cap A = 0$, $A \simeq \pi_Q(A)$ by π_Q |A. Since Q is $N - CS$ and $\pi_Q(A) \in \mathcal{A}(N, P)$, there exists a direct summand $\pi_Q(A)^* <_{\oplus} Q$ such that $\pi_Q(A) \subseteq_{e} \pi_Q(A)^*$. Since $\pi_Q(A)^* <_{\oplus} P$, as we noted above, $P = \pi_Q(A)^* \oplus \bigoplus$ $\bigoplus_{I} N_i$ for some $N_i \leq_{\bigoplus} M_i$ and \bigoplus_{I} $\bigoplus_{I} N_i$ is $\pi_Q(A)^*$ -injective.

Since $X \cap \pi_Q(A)^* = 0$, X is isomorphic to a submodule of \bigoplus $\bigoplus_{I} N_i$. Hence

X is $\pi_Q(A)^*$ -injective. Here consider the mapping $\varphi : \pi_Q(A) \to X$ given by $\varphi(\pi_Q(a)) = \pi_X(a)$. Then φ is a homomorphism. So φ can be extended to a homomorphism $\varphi^* : \pi_Q(A)^* \to X$.

Putting $A^* = \{q + \varphi^*(q) | q \in \pi_Q(A)^*\}$, we see that $X \oplus A^* \leq_{\oplus} P$ and $A \subseteq_{e} A^*$. Since $A \leq_{\oplus} P$, it follows $A = A^*$ and hence $X \oplus A \leq_{\oplus} P$ as required.

We generalize [2, Theorem 3.16] as follows:

Theorem 2 *Let* $\{M_i\}$ *I be a family of R-modules. Then the following are equivalent:*

 (1) $P = \bigoplus M_i$ *is N*-continuous;

I

(2) (a) Each Mⁱ *is* N*-continuous;*

 (b) \oplus $\bigoplus_{I-\{i\}} M_j$ *is* A_i -injective, for any $i \in I$ and any $A_i \in \mathcal{A}(N, M_i)$

- (3) (a) Each M_i *is* N-continuous;
	- *(b)* for any distinct $i, j \in I$ and $A_i \in \mathcal{A}(N, M_i)$, M_j is A_i -injective
	- *(c) for any* $i \in I$ *and* $A_i \in \mathcal{A}(N, M_i)$ *, the condition(B) holds for*

C. CHANG AND K. OSHIRO 129

$$
(A_i, P = \bigoplus_{I - \{i\}} M_j).
$$

Proof As in the proof of Theorem 1, we may only show that $P = \bigoplus$ $\bigoplus_{I} M_i$ satisfies

 (C_2) for $\mathcal{A} = \mathcal{A}(N, P)$. So, let $A, B \in \mathcal{A}$ such that $A \leq_{\oplus} P$ and $A \stackrel{\tau}{\simeq} B$.

By Lemma 4, there exist submodules $T(i) \subseteq_e T(i)^* \leq_{\oplus} M_i$, decompositions $M_i = T(i)^* \oplus N_i$ and a submodule \bigoplus $\bigoplus_{I} B(i) \subseteq_{e} B$ such that, for each $i \in I$, (i) $\sigma(B(i)) = T(i)$

(ii) $B(i) \simeq T(i)$ (by $\sigma | B(i)$), where σ is the projection: $P = \bigoplus$ I $T(i)^* \oplus \bigoplus$ $\bigoplus_{I} N_i \to \bigoplus_{I}$ $\bigoplus_{I} N_i$.

Put $A(i) = \tau^{-1}(B(i))$ for each $i \in I$. Since A is CS, for each $i \in I$, there exists direct summand $A(i)^* <_{\oplus} A$ such that $A(i) \subseteq_{e} A(i)^*$.

Let fix $i_0 \in I$. By the proof of Theorem 1, there exist direct summands $K_j <_{\oplus} M_j$ such that $A(i_0)^*$ is isomorphic to \bigoplus $\bigoplus_{I} K_{j}$; say $A(i_{0})^{*} \stackrel{\varphi}{\simeq} \bigoplus_{I}$ $\bigoplus_{I} k_j.$

Now put $B(i_0)^* = \tau(A(i_0^*))$. Then $B(i_0) \subseteq_e B(i_0)^*$ and $B(i_0)^* \overset{\sigma|B(i_0)^*}{\simeq}$ $\sigma(B(i_0^*)) \subseteq_e T(i_0)^*$. Since \bigoplus $\bigoplus\limits_{I = i_0} M_j \oplus_\gt \bigoplus\limits_{I = i_0}$ $\bigoplus_{I-i_0} k_j \simeq \tau \varphi \bigl(\bigoplus_{I-i_0}$ $\bigoplus_{I-i_0} K_j$ (by $\tau \varphi \big| \bigoplus_{I-i_0}$ $\bigoplus_{I-i_0} K_j$ and $\tau\varphi(\bigoplus$ $\bigoplus_{I-i_0} K_j \subseteq T(i_0^*) \leq \oplus M_{i_0}$, we see from (b) that $\tau \varphi \left(\bigoplus_{I-i_0}$ $\bigoplus_{I-i_0} K_j$ $\lt_{\oplus} T(i_0)^*$.

On the other hand, $\tau\varphi(K_{i_0}) <_{\oplus} T(I_0)^*$ by (a). As a result we see that $T(i_0)\ \subseteq_e\ \tau\varphi(\bigoplus$ $\bigoplus_{I} K_i$) $\lt_{\bigoplus} T(I_0)^*$; whence $\tau \varphi(\bigoplus_{I} I_0)$ $\mathcal{B}_I K_i = \sigma(B(i_0)^*) = T(i_0)^*.$ Thus we have $P = B(i_0)^* \oplus \bigoplus$ $I-i_0$ $T(i)^* \oplus \bigoplus$ $\operatorname*{D}_{I}N_{i}$

Inductively, we see that, for any finite subset F of I, $P = \bigoplus$ F $B(i)^* \oplus$ \oplus $I-F$ $T(i)^* \oplus \bigoplus$ $\operatorname*{D}_{I}N_{i}.$

Here using Lemma 3 we get $P = \bigoplus$ I $B(i)^* \oplus \bigoplus$ $\bigoplus_{I} N_i$ and hence $B = \bigoplus_{I}$ $\bigoplus_{I} B(i)^* <_{\oplus}$ P.

This completes the proof.

Remarks

Remark 1 In Theorem 1, $\bigoplus M_i$ is N-quasi-continuous for any finite subset F of I if and only if (a), (b) hold.

Remark 2 In Theorem 2, $\bigoplus M_i$ is N-continuous if and only if (a), (b) hold F (See [4]).

- **References** [1] G. Azumaya, F. Mbuntum, and K. Varadarajan, *On M-projective and M-injective modules*, Pacific J. Math. 95 (1975), 9-16.
- [2] S. H. Mohamed and B. J. Müller, *Continuous and Discrete modules*, London Math. Soc. Lecture Note Series 147, Cambrige University Press (1990).
- [3] K. Oshiro, *Continuous modules and quasi-continuous modules*, Osaka J. Math. 20 (1983), 681-694.
- [4] S. R. L´opez-Permouth, K. Oshiro, and S. T. Rizvi, *On the relative (quasi-) continuity of modules*, Comm. Alg. 26(11) (1998), 3497-3510.
- [5] K. Oshiro and S. T. Rizvi, *The exchange property of quasi-continuous modules with finite exchange property*, Osaka J. Math. 33 (1996), 217-234.