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Abstract
In this paper we use the quadratic regularization technique to develop two

iterative algorithms for solving equilibrium problems. The first one is an ex-
tension of the extragradient algorithm to pseudomonotone equilibrium problem
satisfying a certain Lipschitz condition. To avoid the Lipschitz condition we
propose a line search technique to obtain a convergent algorithm for pseu-
domonotone equilibrium problems.

1 Introduction and the Problem Statement

Let K be a nonempty, closed, convex set in Rn and let f : K×K → R∪{+∞}.
In this paper we consider the following problem

Find x∗ ∈ K such that: f(x∗, y) ≥ 0 for all y ∈ K. (EP )
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Throughout the paper, as usual, we suppose that f(x, x) = 0 for every x ∈ K
and we call such a function equilibrium bifunction. Equilibrium problem (EP)
dealing with monotone-type equilibrium bifunction f has been considered by
a lot of authors (see e.g. [3, 8, 10, 11, 12, 14]). Conditions for existence of so-
lutions of equilibrium problems can be found, for example, in [3] and recently
in [4, 17]. Stability for equilibrium problem (EP) is studied in [10]. An ap-
plication of equilibrium problem to a Nash market model having concave cost
function recently is investigated in [15]. In [11, 12] a number of problems in-
cluding mathematical programming problems, variational inequality, Kakutani
fixed point as well as Nash equilibrium and minimax problems are formulated
in the form of equilibrium problems of the form (EP).

It is well known that the regularization technique is a powerful tool for
analyzing and for solving optimization problems and variational inequalities.
Recently the regularization technique has been used to develop iterative algo-
rithms for equilibrium problems [7, 9, 11, 14]. In [6, 14] the authors use auxil-
iary problem principle to obtain iterative algorithms for monotone equilibrium
problem (EP) where the subproblems arised in each iteration are equilibrium
problems having strongly monotone equilibrium bifunction. These algorithms
are not easy to implement, since the latter problems are again difficult to solve.
In [7] Konnov proposes to use a gap function technique to solve the strongly
monotone equilibrium subproblems arised in the proximal point method for
equilibrium problem (EP) dealing with weakly monotone equilibrium bifunc-
tion. This approach leads to the problem of minimizing a gap function which,
in general, is not easy to solve, since this gap function may not be convex.

In this paper we will use the regularization technique to extend the well
known extragradient method widely used in mathematical programming as well
as in variational inequality to the equilibrium problem (EP). By this way we
obtain a linearly convergent algorithm for solving (EP) when f is psedomono-
tone and Lipschitz on K. In order to avoid the Lipschitz condition we will use
a line search to obtain a convergent algorithm for solving equilibrium problem
(EP) with pseudomonotone equilibrium bifunction f . Computational results
on a class of problem (EP) show the efficiency of the algorithm.

The paper is organized as follows. In next section we list some examples
and present fixed point formulations for (EP). The third section is devoted to
description of the extragradient algorithm and its convergence. In the fourth
section we modify the extragradient algorithm by using a line search technique
which allows avoiding the Lipschitz condition. We close the paper with some
computational results and experiences on the proposed algorithms.

2 Examples and Fixed Point formulations

In this section we first recall some definitions for monotonicity and list a number
of examples for equilibrium problem (EP). Then we give fixed point formula-
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tions to (EP).
2.1. Examples. First we recall some well known definitions on monotonicity
(see e.g. [6]).
Definition 2.1. Let M and K be convex sets in Rn such that M ⊆ K, and
let ϕ : K × K → R ∪ {+∞}. The bifunction ϕ is said to be

(a) strongly monotone on M with constant τ > 0 if for each pair of points
x, y ∈ M , one has

ϕ(x, y) + ϕ(y, x) ≤ −τ‖x − y‖2;

(b) strictly monotone on M if for all distinct x, y ∈ M , we have

ϕ(x, y) + ϕ(y, x) < 0;

(c) monotone on M if for each pair of points x, y ∈ M , we have

ϕ(x, y) + ϕ(y, x) ≤ 0;

(d) pseudomonotone on M if for each pair of points x, y ∈ M it holds

ϕ(x, y) ≥ 0 implies ϕ(y, x) ≤ 0.

From the definitions above we obviously have the following implications:

(a) ⇒ (b) ⇒ (c) ⇒ (d).

Specially, if f(x, y) := supv∈T (x) 〈v, y − x〉 where T : K ⇒ 2K then Defi-
nition 2.1 is equivalent to the following well known definitions of generalized
variational inequality (see e.g. [5, 6]).

• T is said to be pseudomonotone on M ⊆ K if for any pair x, y ∈ M and
u ∈ T (x), v ∈ T (y) it holds

〈u, x− y〉 ≥ 0 implies 〈v, y − x〉 ≤ 0.

• T is said to be monotone on M ⊆ K if for any x, y ∈ M, u ∈ T (x), v ∈
T (y) it holds

〈u − v, x − y〉 ≥ 0.

• T is said to be strongly monotone on M ⊆ K with modulus β > 0, if for
any x, y ∈ M, u ∈ T (x), v ∈ T (y) it holds

〈u − v, x − y〉 ≥ β‖x − y‖2.
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Equilibrium problem (EP) contains the following problems as special cases.
1. Optimization Problem. Let K be as before and ϕ : K → IR. Consider the
optimization problem

min{ϕ(x) : x ∈ K} . (OP )

By setting f(x, y) := ϕ(y) − ϕ(x) it is easy to see that (OP) is equivalent to
(EP) in the sense that their solution-sets are coincided. Clearly, if ϕ is convex,
then f(x, ·) is convex for each x ∈ K
2. Mixed Multivalued Variational Inequality: Let T : K ⇒ 2K be a multivalued
mapping such that T (x) = ∅ for all x ∈ K. The following problem is called
mixed variational inequality:

Find x∗ ∈ K, v∗ ∈ T (x∗) such that:
〈v∗, x− x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0 for all x ∈ K. (MVIP)

By setting
f(x, y) := sup

v∈T (x)

〈v, y − x〉 + ϕ(y) − ϕ(x),

we can easily see that (MVIP) is equivalent to (EP).
In an important special case when T is single valued and ϕ ≡ 0, f(x, y) :=

〈T (x), y − x〉. Problem (MVIP) is equivalent to the variational inequality:

Find x∗ ∈ K such that: 〈T (x∗), x− x∗〉 ≥ 0 for all x ∈ K. (V IP )

By Definition 2.1, it is easy to check that T is pseudomonotone (resp. mono-
tone, strongly monotone) on K if and only if f is pseudomonotone (resp. mono-
tone, strongly monotone) on K.
3. Kakutani Fixed Point. Let φ : K ⇒ 2K . The well known Kakutani fixed
point Theorem says that if K is nonempty compact convex and φ is upper
semicontinuous on K in the sense of Berge [2] with φ(x) is nonempty, compact,
convex for every x ∈ K, then there exists x∗ ∈ K such that x∗ ∈ φ(x∗).

Taking
f(x, y) := max

v∈T (x)
〈x − v, y − x〉 ,

we can see that (EP) collapses into the fixed point problem

Find x∗ ∈ K such that: x∗ ∈ φ(x∗). (FP )

4. Nash Equilibria Problem. Let I := {1, · · · , p} (the set of p players), ∅ =
Ki ⊆ R

ni be the strategy set of player i ( i ∈ I ) and li : K1×K2×· · ·×Kp → R

be the loss function of player i ∈ I.
By definition, x∗ = (x∗1, · · · , x∗p) ∈ K1 × · · · × Kp is said to be Nash

equilibrium point of l := (l1, · · · , lp) on K if and only if

li(x∗) ≤ li(x[yi]) ∀yi ∈ Ki, ∀i ∈ I,
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where x[yi] stands for the vector obtained from x = (x1, · · · , xp) ∈ K1×· · ·×Kp

by replacing xi with yi.
The problem of finding a Nash equilibrium point of l on K can be formulated

equivalently (see [11, 12]) by setting for each x, y ∈ K:

f(x, y) :=
p∑

i=1

{
li(x[yi])− li(x)

}
.

Note that in all problems mentioned above, f(x, x) = 0 for all x ∈ K.

2.2. Fixed Point Formulations. It is well known that (see e.g. [3, 10, 6])
if f is pseudomonotone and f(x, ·) is convex on K, for each fixed x ∈ K, then
the solution-set K∗ of (EP) is closed and convex.

The following lemmas, can be found, for example in [9, 12].

Lemma 2.1 Let f : K ×K → R∪ {+∞} be an equilibrium bifunction. Then
the following statements are equivalent:

(i) x∗ is a solution to (EP).

(ii) x∗ ∈ K is a solution to the problem:

min
y∈K

f(x∗, y). (2.1)

Proof. See e.g. Lemma 1 in [12] �
In what follows we suppose that:

Hypothesis (C): K is nonempty, closed, convex and f(x, ·) convex and sub-
differentiable on K for each x ∈ K.

In some cases, it is very useful to use the following regularized auxiliary
problem

Find x∗ ∈ K such that: ρf(x∗, y)+
1
2
‖y−x∗‖2 ≥ 0 for all y ∈ K, (AuxEP )

where ρ > 0 is a regularization parameter.
The equivalence between (EP) and (AuxEP) is due to the following lemma.

Lemma 2.2 Let f : K × K → R ∪ {+∞} be an equilibrium bifunction and
let x∗ ∈ K. Suppose Hypothesis (C) is satisfied. Then x∗ ∈ K is a solution to
(EP) if and only if x∗ is a solution to (AuxEP).

Proof. See e.g. Proposition 1 in [12] �
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3 The Extragradient Algorithm for EP.

Lemma 2.2 suggests an iterative procedure xk+1 = s(xk), for solving the
equilibrium problem (EP) where s(xk) is the solution of the strongly convex
program

min
y∈K

{
ρf(xk, y) +

1
2
‖y − xk‖2

}
.

However it is well known that (see e.g. [5, 6]), for monotone variational in-
equality which is a special case of monotone equilibrium problem, the sequence{
xk

}
does not converge to a solution. So to obtain a convergent algorithm, the

extragradient (or double projection) algorithm has been introduced for mono-
tone variational inequality (see e.g. [5, 12, 13]).

3.1. Description of the Algorithm. The algorithm we are going to de-
scribe is an extension of the extragradient algorithm to equilibrium problem
(EP) where f is pseudomonotone on K.

ALGORITHM 1.

Step 0: Take x0 ∈ K, set k := 0.

Step 1: Find yk ∈ K as the unique solution to the strongly convex
program:

min
y∈K

{
ρf(xk, y) +

1
2
‖y − xk‖2

}
. (3.1)

If yk = xk, then terminate: xk is a solution to (EP).

Otherwise go to Step 2.

Step 2: Find xk+1 ∈ K as the unique solution to strongly convex pro-
gram:

min
y∈K

{
ρf(yk , y) +

1
2
‖y − xk‖2

}
. (3.2)

Step 3: Set k := k + 1, and go to Step 1.

For convergence of the algorithm we suppose, in addition to a Hypothesis
(C) that the equilibrium bifunction f satisfies the following Lipschitz condition:

There exist two constants c1 > 0 and c2 > 0, such that:

f(x, y) + f(y, z) ≥ f(x, z) − c1‖y − x‖2 − c2‖z − y‖2 ∀x, y, z ∈ K. (3.3)

We note that when x = z, since f(x, x) = 0, this condition reduces to

f(x, y) + f(y, x) ≥ −(c1 + c2)‖y − x‖2 ∀x, y ∈ K.
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Theorem 3.1 Suppose, in addition to Assumption (C) that the equilibrium
bifunction f : K × K → R ∪ {+∞} is pseudomonotone on K and satisfies the
Lipschitz condition (3.3). Let f is lower semicontinuous on K ×K and f(·, y)
is upper semicontinuous on K. Then

(i) If Algorithm 1 terminates at some iteration point xk by Step 1, then xk

is a solution to (EP).

(ii) If the sequence
{
xk

}
k≥0

is infinite, then for all x∗ ∈ K∗, it holds that

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−(1−2ρc1)‖yk−xk‖2−(1−2ρc2)‖xk+1−yk‖2.
(3.4)

(iii) If 0 < ρ < min
{

1
2c1

, 1
2c2

}
, the sequence

{
xk

}
Q-linearly converges to a

solution x∗ ∈ K∗.

Proof. First we prove part (i). Suppose that at Step 1, we have yk = xk.
Then xk is the solution of the problem

min
y∈K

{
ρf(xk, y) +

1
2
‖y − xk‖2

}
.

By Lemma 2.1 it is a solution to (EP).
Let x∗ ∈ K∗, we have

‖xk − x∗‖2 = ‖xk − xk+1 + xk+1 − x∗‖2 (3.5)

= ‖xk+1 − xk‖2 + ‖xk+1 − x∗‖2 + 2
〈
xk+1 − xk, x∗ − xk+1

〉
.

Since xk+1 solves the convex problem

min
y∈K

{
ρf(yk , y) +

1
2
‖y − xk‖2

}
.

By the well known necessary and sufficient condition for optimality of convex
programming, we have

0 ∈ ∂y

{
ρf(yk , y) +

1
2
‖y − xk‖2

}
(xk+1) + NK (xk+1),

where NK(x) stands for the normal cone of K at x and ∂y {f(x, y)} is sub-
gradient of f respect to second variable. Since f(yk , ·) is proper convex and
subdifferentiable on K, using the Moreau-Rockafellar theorem, we see that

xk − xk+1 − ρ∂yf(yk , xk+1) ∈ NK (xk+1).

Therefore〈
xk − xk+1 − ρw, y − xk+1

〉 ≤ 0 ∀y ∈ K, w ∈ ∂yf(yk , xk+1),
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or 〈
xk+1 − xk, y − xk+1

〉 ≥ ρ
〈
w, xk+1 − y

〉 ∀y ∈ K, w ∈ ∂yf(yk , xk+1).

By the definition of subgradient, we have from the last inequality that〈
xk+1 − xk, y − xk+1

〉 ≥ ρf(yk , xk+1) − ρf(yk , y) ∀y ∈ K.

If y = x∗ ∈ K, it becomes〈
xk+1 − xk, x∗ − xk+1

〉 ≥ ρf(yk , xk+1) − ρf(yk , x∗).

We note that, since x∗ is a solution to (EP), f(x∗, yk) ≥ 0 . Then by pseu-
domonotonicity, it follows f(yk , x∗) ≤ 0. Thus〈

xk+1 − xk, x∗ − xk+1
〉 ≥ ρf(yk , xk+1). (3.6)

Now applying the Lipschitz condition (3.3) with x = xk, y = yk and z = xk+1

we obtain〈
xk+1 − xk, x∗ − xk+1

〉 ≥ ρf(xk , xk+1) − ρf(xk , yk)

− ρc1‖yk − xk‖2 − ρc2‖xk+1 − yk‖2. (3.7)

On the other hand, since yk is the solution to the convex problem

min
y∈K

{
ρf(xk, y) +

1
2
‖y − xk‖2

}
,

by the same way, we can show that

ρf(xk , y) − ρf(xk, yk) ≥ 〈
yk − xk, yk − y

〉
, ∀y ∈ K.

If y = xk+1 ∈ K, it becomes

ρf(xk , xk+1) − ρf(xk, yk) ≥ 〈
yk − xk, yk − xk+1

〉
. (3.8)

From (3.5), (3.7) and (3.8), it follows that

‖xk − x∗‖2 ≥ ‖xk+1 − xk‖2 + ‖xk+1 − x∗‖2 + 2
〈
yk − xk, yk − xk+1

〉
− 2ρc2‖xk+1 − yk‖2 − 2ρc1‖yk − xk‖2. (3.9)

Substituting

‖xk+1 − xk‖2 + 2
〈
yk − xk, yk − xk+1

〉
= ‖xk+1 − yk‖2 + ‖yk − xk‖2 (3.10)

into (3.9), we obtain the estimation

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1 − 2ρc1)‖yk − xk‖2 − (1 − 2ρc2)‖xk+1 − yk‖2,
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which proves the first part of (ii).
Now we prove (iii). The assumption 0 < ρ < min

{
1

2c1
, 1

2c2

}
implies

1 − 2ρc1 > 0 and 1 − 2ρc2 > 0. (3.11)

Thus
‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ ∀k ≥ 0, (3.12)

and
(1 − 2ρc1)‖yk − xk‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (3.13)

The inequality (3.12) implies that
{‖xk − x∗‖}

k≥0
is nonincreasing. Since it

is bounded below by 0, it must be convergent. To show that this sequence
converges to 0 it suffices to show that it has a subsequence converging to 0.
Indeed, since the sequence

{
xk

}
is bounded it has a subsequence converges to

a point in K. Let
{
xki

}
i≥0

be the subsequence converging to some point x.
Applying inequality (3.12) iteratively, we obtain

(1 − 2ρc1)
n∑

k=0

‖yk − xk‖2 ≤ ‖x0 − x∗‖2 − ‖xn+1 − x∗‖2 ∀n ≥ 0.

As the sequence
{‖xk − x∗‖}

k≥0
is convergent, passing n → ∞ we have

∞∑
k=0

‖yk − xk‖2 < ∞,

which implies
lim

k→∞
‖yk − xk‖ = 0. (3.14)

Since xki → x, it follows that

lim
i→∞

yki = x. (3.15)

We note that yki is the solution to the problem (3.1) at Step 1 of Algorithm 1,
we can write

ρf(xki , yki) +
1
2
‖yki − xki‖2 ≤ ρf(xki , y) +

1
2
‖y − xki‖2 ∀y ∈ K.

By the lower semicontinuity of f and the upper semicontinuity of f(·, y), pass-
ing to the limit as i → ∞ and using (3.15) we arrive at Because of lower
semicontinuity of f and upper semicontinuity of f(·, y), passing to the limit as
i → ∞ and using (3.15) we arrive at

ρf(x, y) +
1
2
‖y − x‖2 ≥ 0 ∀y ∈ K,
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which means that x is a solution (AuxEP). Then, by Lemma 2.2, x is solution
to (EP). Thus we can apply (3.12) with x∗ = x, to obtain

‖xk+1 − x‖ ≤ ‖xk − x‖ ∀k ≥ 0, (3.16)

which implies that the sequence ‖xk − x‖ is convergent. Noting that the se-
quence

{
xk

}
k≥0

has a subsequence converging to x we deduce that the whole
sequence

{
xk

}
k≥0

converges to x ∈ K∗ as desired.
Finally, from the inequality (3.12), we obtain:

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ 1.

Passing to the limit above inequality as k → ∞, it implies

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ < +∞,

which suffices to show that the sequence
{
xk

}
converges to x∗ in Q-linear rate.

�
3.2. Variational Inequality Case. We consider the following variational
inequality

Find x∗ ∈ Ksuch that: 〈T (x∗), x − x∗〉 ≥ 0 for all x ∈ K, (V IP )

where T : K → K is continuous.
As we have above mentioned, by setting

f(x, y) := 〈T (x), y − x〉 , (3.17)

we can easy to check that x∗ is a solution to (EP) if and only if it is a solution
to (VIP). Clearly, f(x, ·) is linear on K and f(x, x) = 0 for every x ∈ K.

It is easy to see that if T is pseudomonotone on K, that is

〈T (y), y − x〉 ≤ 0 implies 〈T (x), x− y〉 ≥ 0 ∀x, y ∈ K,

then f defined by (3.17) is pseudomonotone on K.
We recall that the mapping T is said to be Lipschitz on K with constant L

(shortly L-Lipschitz) if

‖T (x) − T (y)‖ ≤ L‖x− y‖ ∀x, y ∈ K.

A relationship between Lipschitz continuity of T and the Lipschitz continu-
ity of f in the sense of (3.3) is due to the following lemma.

Lemma 3.1 If T is Lipschitz on K and f(x, y) := 〈T (x), y − x〉, then

f(x, y) + f(y, z) ≥ f(x, z) − c1‖x − y‖2 − c2‖y − z‖2 ∀x, y, z ∈ K.

where c1 and c2 may be any positive numbers satisfying 2
√

c1c2 ≥ L.
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Proof. We have

f(x, y) + f(y, z) − f(x, z) = 〈T (y) − T (x), z − y〉
≥ −‖T (y) − T (x)‖‖z − y‖
≥ −L‖y − x‖‖z − y‖
≥ −2

√
c1c2‖y − x‖‖z − y‖

= −2
√

c1‖y − x‖√c2‖z − y‖
≥ −c1‖y − x‖2 − c2‖z − y‖2.

Thus f satisfies Lipschitz condition (3.3) �

Remark 3.1 When f(x, y) := 〈T (x), y − x〉, Algorithm 1 becomes the extra-
gradient algorithm for (VIP) when T is pseudomonotone on K(see e.g. [5, 12]).
By Theorem 3.1 and Lemma 3.1, the algorithm is convergent when T is pseu-
domonotone and Lipschitz on K whenever 0 < ρ < min

{
1

2c1
, 1

2c2

}
for any

pair c1 > 0 and c2 > 0 satisfying 2
√

c1c2 ≥ L. The last condition for the
regularization ρ is somewhat weaker than that in the extragradient algorithm in
[5, 12].

Remark 3.2 In practice we terminate the algorithm when ‖xk − yk‖ ≤ ε,
where ε > 0 is a given tolerance.

4 A Line-Search Algorithm

Algorithm 1 requires that f satisfies the Lipschitz condition (3.3) which in
some cases is not known. In this section, in order to avoid this requirement,
we modify Algorithm 1 by using a line search. The line search technique has
been used widely in descent methods for solving mathematical programming
problems as well as variational inequalities [5, 6].

First, we begin with he following definition
Definition 4.1. Let K be a nonempty closed set in Rn. A mapping P : Rn →
Rn is said to be

(i) feasible with respect to K, if

P (x) ∈ K ∀x ∈ Rn,

(ii) quasi-nonexpansive with respect to K, if for every x ∈ Rn, we have

‖P (x)− y‖ ≤ ‖x− y‖ ∀y ∈ K. (4.1)

Noting that, if πK(·) is the Euclidean projection on K, then πK(·) is a
feasible quasi-nonexpansive mappings. By F(K) we denote the class of feasible
quasi-nonexpansive mappings with respect to K.
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Next, we choose a sequence {γk}k≥0 such that

γk ∈ (0, 2); k = 0, 1, . . . ; lim inf γk(2 − γk) > 0.

The algorithm then can be described as follows.

ALGORITHM 2.

Data: x0 ∈ K, α ∈ (0, 1), θ ∈ (0, 1).

Step 0: Set k = 0.

Step 1: Find yk ∈ K as a solution to the following optimization problem:

min
y∈K

{
ρf(xk, y) +

1
2
‖y − xk‖2

}
. (4.2)

If yk = xk stop.

Step 2: (Auxiliary procedure)

Step 2.1: Find m as the smallest number in N such that

{
zk,m = (1 − θm)xk + θmyk;
ρf(zk,m , yk) + α

2
‖yk − xk‖2 ≤ 0.

(4.3)

Step 2.2: Set θk = θm, zk = zk,m. Take any gk ∈ ∂yf(zk , zk). If
‖gk‖ = 0 stop. Otherwise, go to Step 3.

Step 3: (Main iterate) Set

σk =
−θkf(zk , yk)
(1 − θk)‖gk‖2

and xk+1 = Pk(xk − γkσkgk), (4.4)

where Pk ∈ F(K).

Step 4: Set k := k + 1, and go to Step 1.

The following lemma indicates that if Algorithm 2 terminates at Step 1 or
Step 2.2, then indeed a solution of (EP) has been found.

Lemma 4.1 Suppose Hypothesis (C) holds. Then if Algorithm 2 terminates
at Step 1 (resp. Step 2.2), xk (resp. zk) is a solution to (EP).
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Proof. If Algorithm 2 terminates at Step 1, then xk = yk. Since yk is a solution
to the convex optimization problem (4.2), we have

ρf(xk , y) +
1
2
‖y − xk‖2 ≥ ρf(xk, yk) +

1
2
‖yk − xk‖2 = 0, ∀y ∈ K.

By the same argument as in the proof of Lemma 2.2 we can show that xk is
a solution to (EP).

If Algorithm 2 terminates at Step 2.2, then ‖gk‖ = 0, that means 0 ∈
∂yf(zk , zk). Since f(x, ·) is convex subdifferentiable on K, zk is a solution to
the following convex problem:

min
y∈K

f(zk , y)

Then by virtue of Lemma 2.1, zk is a solution to (EP). �
The next lemma shows that there always exists a number m ∈ N such that

the condition (4.3) in Step 2.1 is satisfied.

Lemma 4.2 Suppose that f is upper semicontinuous on K with respect to the
first variable and that xk ∈ K is not a solution of problem (4.2). Then

(i) there exist a finite integer m ≥ 0 such that the inequality in (4.3)
holds;

(ii) f(zk , yk) < 0.

Proof. We firstly prove the statement (i). Assume for contradiction that for
every nonnegative integer m, we have{

zk,m = (1 − θm)xk + θmyk ;
f(zk,m, yk) + α

2ρ
‖yk − xk‖2 > 0.

Passing to the limit above inequality (as m → ∞), by upper semicontinuity of
f(·, y), we obtain

ρf(xk , yk) +
α

2
‖yk − xk‖2 ≥ 0. (4.5)

On the other hand, since yk is a solution to the convex optimization problem
(4.2), we have

ρf(xk , y) +
1
2
‖y − xk‖2 ≥ ρf(xk , yk) +

1
2
‖yk − xk‖2 ∀y ∈ K.

With y = xk the last inequality implies

ρf(xk , yk) +
1
2
‖yk − xk‖2 ≤ 0. (4.6)
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From (4.5) and (4.6) it follows that From (4.5) and (4.6) it follows that

α

2
‖yk − xk‖2 ≥ 1

2
‖yk − xk‖2.

Hence it must be xk = yk or else α ≥ 1. The first case contradicts to xk = yk

while the second one contradicts to the fact 0 < α < 1.
The statement (ii) is obvious by (4.3). �
In order to prove the convergence of Algorithm 2, we give the following key

property of the sequence
{
xk

}
k≥0

generated by the algorithm.

Lemma 4.3 Suppose, in addition to (C), that f is pseudomonotone on K.
Let

{
xk

}
be the sequence generated by Algorithm 2. Then the following state-

ments hold true:

(i) For every solution x∗ of (EP) we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γk(2 − γk)(σk‖gk‖)2. (4.7)

(ii) The sequence
{‖xk − x∗‖}

k≥0
is nonincreasing ( therefore convergent).

(iii) The sequence
{
xk

}
k≥0

is bounded.

(iv)
∑∞

k=0 γk(2 − γk)(σk‖gk‖)2 < +∞.

(v) If the sequence
{
xk

}
has a cluster point x∗ such that x∗ is a solution to

(EP), then the whole sequence
{
xk

}
converges to x∗.

Proof. Take any x∗ ∈ K∗. By the property (4.1) of Pk and (4.4), setting
wk = zk − γkσkgk, Take any x∗ ∈ K∗. By the property (4.1) of Pk and (4.4),
setting wk = zk − γkσkgk, we have

‖xk+1 − x∗‖2 = ‖Pk(wk) − x∗‖2

≤ ‖wk − x∗‖2 (4.8)

= ‖xk − γkσkgk − x∗‖2

= ‖xk − x∗‖2 − 2γkσk

〈
gk, xk − x∗〉 + (γkσk‖gk‖)2. (4.9)

Since gk ∈ ∂yf(zk , zk) and f(zk , ·) is convex on K, we have〈
gk, xk − x∗〉 =

〈
gk, xk − zk + zk − x∗〉 ≥ 〈

gk, xk − zk
〉
+f(zk , zk)−f(zk , x∗).

On the other hand, since f is pseudomonotone and f(x∗, zk) ≥ 0, it follows
that −f(zk , x∗) ≥ 0. Then from the last inequality we obtain〈

gk, xk − x∗〉 ≥ 〈
gk, xk − zk

〉
. (4.10)
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From the formula (4.3), it is easy to see that

xk − zk =
θk

1 − θk
(zk − yk).

Therefore 〈
gk, xk − zk

〉
=

θk

1 − θk

〈
gk, zk − yk

〉
≥ θk

1 − θk
[f(zk, zk) − f(zk , yk)]

=
−θk

(1 − θk)
f(zk, yk). (4.11)

Using (ii) in Lemma 4.2 and formula (4.4), we deduce

−θk

(1 − θk)
f(zk, yk) = σk‖gk‖2 > 0. (4.12)

Then from (4.8), (4.10), (4.11) and (4.12) follows

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γk(2 − γk)(σk‖gk‖)2 ∀x∗ ∈ K∗,

which means that inequality (4.7) was proved.
The statements (ii) and (iii) are immediate from (i) and from fact that

0 < γk < 2. To prove (iv) we apply (i) for all k from 0 to n to obtain
n∑

k=0

γk(2 − γk)(σk‖gk‖)2 ≤ ‖x0 − x∗‖2 − ‖xn+1 − x∗‖2.

Since
{‖xk − x∗‖}

k≥0
is convergent, passing n → ∞ we obtain

∞∑
k=0

γk(2 − γk)(σk‖gk‖)2 < ∞.

The statement (v) is immediate from the fact that, by (ii), for every solution
x∗ ∈ K∗, the whole sequence

{
xk − x∗} is convergent. The lemma is proved.

�
Now we are on a position to prove the following convergence theorem for

Algorithm 2.

Theorem 4.1 In addition to the assumptions of Lemmas 4.2 and 4.3, we
assume that f is lower semicontinuous on K×K. Then, Algorithm 2 or termi-
nates at some iteration point xk yielding a solution to (EP) or else the sequence{
xk

}
converges to a solution of (EP). Moreover, if γk = γ ∈ (0, 2), ∀k ≥ 0,

then
lim

k→∞
inf(σk‖gk‖√k + 1) = 0.
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Proof. If Algorithm 2 terminates at some iteration point xk, then xk is a
solution to (EP) by Lemma 4.1.

Otherwise, by (iv) of Lemma 4.3, we have

γk(2 − γk)(σk‖gk‖)2 → 0 as k → ∞.

Since lim inf γk(2 − γk) > 0, it follows that σk‖gk‖ → 0 as k → ∞. Then

σk‖gk‖ =
−θk

(1 − θk)‖gk‖f(zk , yk) → 0 as k → ∞.

Thus, from Step 2.2 of Algorithm 2 and by Lemma 4.3(iii), we have ‖gk‖ = 0
for all k and bounded, it follows that

−θk

1 − θk
f(zk, yk) → 0 as k → ∞. (4.13)

On the other hand, according to the rule (4.3), it is easy to see that:

α

2ρ
‖xk − yk‖2 ≤ −f(zk , yk). (4.14)

We consider two cases:
Case 1: limsup θk > 0. Then there exists θ > 0 and a subsequence K such that
θk ≥ θ for every k ∈ K. From (4.13) and inequality (4.14), we obtain:

lim
k(∈K)→∞

‖yk − xk‖ = 0. (4.15)

Again by Lemma 4.3(ii), the subsequence
{
xk : k ∈ K}

is bounded. Thus we
may assume without loss of generality that

{
xk : k ∈ K}

converges to some
point x. Using the limit (4.15) we see that the subsequence

{
yk : k ∈ K}

also
converges to x. Hence, from Step 1 of Algorithm 2 and by the upper semicon-
tinuity of f(·, y), we can write

ρf(x, y) +
1
2
‖y − x‖2 ≥ 0 ∀y ∈ K.

By Lemma 2.2, x is a solution to (EP). Then in virtue of (v) in Lemma 4.3
the whole sequence

{
xk

}
converges to a solution to (EP), which proves the

theorem in this case.
Case 2: limk→∞ θk = 0. Let us set

zk = (1 − θm−1)xk + θm−1yk.

As before, since
{
xk

}
is bounded, we may be assume without loss of generality

that some subsequence
{
xk : k ∈ K}

converges to some point x. From Step 1
of Algorithm 2, by lower semicontinuity of ρf(xk, ·)+ 1

2‖ · −xk‖2, the sequence
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{
yk

}
is bounded too [1, 2]. Thus, by taking a subsequence, if necessary, we

may assume that the subsequence
{
yk : k ∈ K}

also converges to some point
y. Taking the limit, by the lower semicontinuity of f and upper semicontinuity
of f(·, y), from

ρf(xk , yk) +
1
2
‖yk − xk‖2 ≤ ρf(xk, y) +

1
2
‖y − xk‖2 ∀y ∈ K,

we can write

y = arg min
y∈K

{
ρf(x, y) +

1
2
‖y − x‖2

}
. (4.16)

On the other hand, by the rules (4.3) of Step 2.2 in Algorithm 2, since m
is the smallest natural number satisfying (4.3), by {θk} → 0, we have:

ρf(zk, yk) +
α

2
‖yk − xk‖2 > 0.

By definition of zk, it implies limk(∈K)→∞ zk = x. Passing k → ∞, k ∈ K the
above inequality, we obtain

ρf(x, y) +
α

2
‖y − x‖2 ≥ 0. (4.17)

Note that formula (4.16) is equivalent to

ρf(x, y) +
1
2
‖y − x‖2 ≥ ρf(x, y) +

1
2
‖y − x‖2 ∀y ∈ K. (4.18)

Substituting y = x ∈ K, we then obtain

ρf(x, y) +
1
2
‖y − x‖2 ≤ 0. (4.19)

Taking into account (4.17) we have

(1 − α)
2

‖y − x‖2 ≤ 0,

which together with α ∈ (0, 1) implies x = y. Then using (4.18) with y = x we
obtain

ρf(x, y) +
1
2
‖y − x‖2 ≥ 0 ∀y ∈ K.

Thus, by Lemma 2.2, x is a solution to (EP). Then, as before, we can deduce
from (v) of Lemma 4.3 that the whole sequence

{
xk

}
converges to a solution

to (EP).
Finally, we establish the remainder of the theorem. By assumtion γk = γ ∈

(0, 2) for all k ≥ 0. We suppose that limk→∞ inf(σk‖gk‖√k + 1) = 0 does not
hold, then there exist a number μ > 0 such that:

σk‖gk‖ ≥ μ√
k + 1

.
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And from Lemma 4.3(iv), it is easy to show that:

μ

∞∑
k=0

1
k + 1

< +∞,

which is a contradiction. The theorem is proved. �

Remark 4.1 In practice to implement the algorithm we take a tolerance ε > 0
and we terminate the algorithm when either ‖xk − yk‖ ≤ ε or ‖gk‖ ≤ ε.

5 Numerical Results.

The computational results presented here are obtained by using MALAB Opti-
mization Toolbox for solving the strongly convex quadratic subproblems needed
to solve in the proposed algorithms. We tested Algorithm 1 for the following
equilibrium problem:

Find x∗ ∈ K such that f(x∗, y) ≥ 0 for all y ∈ K, (5.1)

where K is a polyhedral convex set given by

K := {x ∈ Rn|Ax ≤ b, x ≥ 0} , (5.2)

and the equilibrium bifunction f : K × K → R ∪ {+∞} has the form

f(x, y) = 〈F (x) + Qy + q, y − x〉 . (5.3)

with F (·) being a continuous mapping on K and Q ∈ Rn×n being symmetric
positive semidefinite and q ∈ IRn. Since Q is symmetric positive semidefinite,
f(x, ·) is convex for each fixed x ∈ K. For Problem (5.1), we have the following
results:

Lemma 5.1 If F : K → IRn is τ - strongly monotone on K. Then

i) f is monotone on K whenever τ = ‖Q‖.
ii) f is τ − ‖Q‖-strongly monotone on K whenever τ > ‖Q‖.

Proof. From the definition of f we have

f(x, y) + f(y, x) = 〈Q(y − x), y − x〉 − 〈F (y) − F (x), y − x〉 , (5.4)

which implies
〈Q(y − x), y − x〉 ≤ ‖Q‖‖y − x‖2. (5.5)

Since F is τ -strongly monotone on K, that is

〈F (y) − F (x), y − x〉 ≥ τ‖y − x‖2,
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we have, from (5.4) and (5.4) that f(x, y)+ f(y, x) ≤ 0 whenever τ = ‖Q‖ and

f(x, y) + f(y, x) ≤ −(τ − ‖Q‖)‖y − x‖2,

whenever τ > ‖Q‖. �

Lemma 5.2 If F : is L-Lipschitz on K,i.e.

‖F (y) − F (x)‖ ≤ L‖y − x‖ x, y ∈ K,

Then

f(x, y) + f(y, z) ≥ f(x, z) − c1‖y − x‖2 − c2‖z − y‖ ∀x, y, z ∈ K,

for any c1, c2 > 0 satisfying

2
√

c1c2 ≥ L + ‖Q‖.
Proof. For every x, y, z ∈ K we have

f(x, y) + f(y, z) − f(x, z) = 〈F (y) − F (x), z − y〉 + 〈Q(y − z), y − x〉 ,

which, by Cauchy-Schwartz, inequality implies

〈Q(y − z), y − x〉 ≥ −‖Q‖‖z − y‖‖y − x‖,
and

〈F (y) − F (x), z − y〉 ≥ −‖F (y) − F (x)‖‖z − y‖.
Since F is L-Lipschitz, we can write

〈F (y) − F (x), z − y〉 ≥ −L‖y − x‖‖z − y‖.
Thus from the last three inequalities follows

f(x, y) + f(y, z) − f(x, z) ≥ −(L + ‖Q‖)‖y − x‖‖z − y‖.
Then, by the hypothesis we have

−(L + ‖Q‖)‖y − x‖‖z − y‖ ≥ −c1‖y − x‖2 − c2‖z − y‖2 .

Thus
f(x, y) + f(y, z) ≥ f(x, z) − c1‖y − x‖2 − c2‖z − y‖2.

�
In a special case when F is a linear mapping of the form F (x) = Px with

P ∈ Rn×n, the function f defined above takes the form

f(x, y) = 〈Px + Qy + q, y − x〉 . (5.6)

We suppose that the matrices P, Q are chosen such that Q is symmetric positive
semidefinite and Q − P is symmetric negative semidefinite. Then f has the
following properties:
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(i) f is monotone, f(·, y) is continuous and f(x, ·) is differentiable, convex
on K.

(ii) For every x, y, z ∈ K one has

f(x, y) + f(y, z) ≥ f(x, z) − c1‖z − y‖2 − c2‖y − x‖2. (5.7)

where c1 = c2 = ‖P−Q‖
2 .

Indeed, for every x, y ∈ K, since Q−P is symmetric negative semidefinite,
we have

f(x, y) + f(y, x) = 〈(Q − P )(y − x), y − x〉 ≤ 0.

On the other hand, since Q is symmetric positive semidefinite, f(x, ·) is convex
and differentiable on K.

To see (ii) we note that for every x, y, z ∈ K we have

f(x, y) + f(y, z) − f(x, z) = 〈(P − Q)(y − x), z − y〉

≥ −2
‖P − Q‖

2
‖y − x‖‖z − y‖

≥ −‖P − Q‖
2

‖y − x‖2 − ‖P − Q‖
2

‖z − y‖2.

By setting, for example, c1 = c2 = ‖Q−P‖
2 , we obtain (5.7).

Now we consider the optimization problem

min
y∈K

{
ρf(x, y) +

1
2
‖y − x‖2

}
. (5.8)

that we can write in the form

ρf(x, y) +
1
2
‖y − x‖2 =

1
2
〈Hy, y〉 + 〈c(x), y〉 + b(x),

where H = 2ρQ+I, c(x) = (ρ(P−Q)−I)x+ρq and b(x) =
〈
(1
2I − ρP )x − ρq, x

〉
.

Similarly, for the problem

min
y∈K

{
ρf(x, y) +

1
2
‖y − x‖2

}
, (5.9)

we have

ρf(x, y) +
1
2
‖y − x‖2 =

1
2

〈
Ĥy, y

〉
+ 〈ĉ(x, x), y〉 + b̂(x, x),

where
Ĥ = 2ρQ + I,

ĉ(x, x) = ρ(P − QT )x − x + ρq,
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and
b̂(x, x) =

1
2
‖x‖2 − ρ 〈Px + q, x〉 .

Thus both problems (5.8) and (5.9) are convex quadratic programming
problems which can be solved efficiently by MALAB Optimization Toolbox

We tested Algorithm 1 with f given as in (5.1) and n = 5. The following
matrices P and Q are randomly generated

Q =

⎡
⎢⎢⎢⎢⎣
1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ ; P =

⎡
⎢⎢⎢⎢⎣

3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦ .

With q = (1,−2,−1, 2,−1)T ,

K =

{
x ∈ R5|

5∑
i=1

xi ≥ −1,−5 ≤ xi ≤ 5, i = 1, . . . , 5

}
,

c1 = c2 = 1
2
‖Q − P ‖ = 1.4525, ρ = 1

2
c1 = 0.7262, x0 = (1, 3, 1, 1, 2)T and

ε = 10−3 we obtained the following computational results.

Iter(k) xk
1 xk

2 xk
3 xk

4 xk
5

0 1.00000 3.00000 1.00000 1.00000 2.00000
1 -0.34415 1.59236 0.68742 -0.15427 0.63458
2 -0.67195 1.10393 0.65016 -0.57872 0.30562
3 -0.73775 0.92351 0.66742 -0.74459 0.22567
4 -0.74236 0.85341 0.68785 -0.81261 0.20624
5 -0.73668 0.82486 0.70195 -0.84184 0.20152
6 -0.73168 0.81276 0.71030 -0.85493 0.20037
7 -0.72864 0.80747 0.71491 -0.86100 0.20009
8 -0.72700 0.80511 0.71737 -0.86389 0.20002
9 -0.72617 0.80403 0.71865 -0.86529 0.20001
10 -0.72576 0.80354 0.71931 -0.86598 0.20000

The approximate solution obtained after ten iterations is

x10 = (−0.72576, 0.80354, 0.71931,−0.86598, 0.20000)T.

If we choose

P =

⎡
⎢⎢⎢⎢⎣

3.1 2.0 0.0 0.0 0.0
2.0 3.6 0.0 0.0 0.0
0.0 0.0 3.5 2.0 0.0
0.0 0.0 2.0 3.3 0.0
0.0 0.0 0.0 0.0 2.0

⎤
⎥⎥⎥⎥⎦ ,
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then the eigenvalues of matrix Q−P are (−0.7192,−2.7808,−2.9050,−0.8950, 0.0000).
Thus, by observation (i), f is monotone. In this case the obtained computa-
tional results are

Iter(k) xk
1 xk

2 xk
3 xk

4 xk
5

0 1.00000 3.00000 1.00000 1.00000 2.00000
1 -0.34006 1.59892 0.69395 -0.14884 0.69814
2 -0.67118 1.10637 0.65254 -0.57720 0.36476
3 -0.73773 0.92446 0.66833 -0.74422 0.27939
4 -0.74245 0.85380 0.68821 -0.81255 0.25753
5 -0.73676 0.82503 0.70210 -0.84185 0.25193
6 -0.73172 0.81283 0.71037 -0.85495 0.25049
7 -0.72866 0.80751 0.71494 -0.86102 0.25013
8 -0.72701 0.80512 0.71738 -0.86390 0.25003
9 -0.72618 0.80404 0.71866 -0.86530 0.25001
10 -0.72577 0.80354 0.71932 -0.86599 0.25000

and an approximate solution is

x10 = (−0.72577, 0.80354, 0.71932,−0.86599, 0.25000)T

with the tolerance ε = 10−3.
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