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Abstract

Two commuting operators S and T are polynomially bounded if there
exists a constant C such that ‖p(S, T )‖ ≤ C ‖p‖∞ for every polynomial p
in two variables, where the sup norm is computed over the product of the
spectrums of the two operators. Two operator valued measures E and F
defined on the Borel sets of the plane satisfy a boundedness condition if
their product has a bounded extension to the algebra generated by the
measurable rectangles. In this note we point out a connection between
these two properties for scalar operators S and T and their spectral
resolutions E and F , respectively.

In this note we point out a connection between two different properties
which have been studied in connection with certain pairs of commuting op-
erators between Banach spaces. Namely, we consider the pairs of commuting
scalar operators which are polynomially bounded, and the pairs of commut-
ing scalar operators which have spectral resolutions whose products satisfy a
boundedness condition.

Let X be a complex Banach space with L(X) the space of continuous linear
operators on X. Let S, T ∈ L(X) be commuting operators with spectrums
σ = σ(S) and τ = τ (T ) [throughout we adhere to the terminology and notation
of Dunford and Schwartz ([4],[5])]. Let P be the space of all complex valued
polynomials in two variables with the sup-norm, ‖ p ‖∞= sup{| p(s, t) |: s ∈
σ, t ∈ τ}. The operators S and T are said to be polynomially bounded or
satisfy condition (P) if
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86 Polynomially Bounded Operators and Bounded Products

(P ) there exists a constant C such that ‖ p(S, T ) ‖≤ C ‖ p ‖∞ for all p ∈ P.

Polynomially bounded operators have been considered in various settings
and used to construct functional calculi ([1],[6]; in condition (P) we have used a
different definition for ‖ ‖∞). Let S and T be scalar operators with resolutions
of the identity E and F , respectively ([5], XV.4.1). Let B(σ) ( resp. B(τ ))
be the Borel subsets of σ (resp. τ ). If A ∈ B(σ), B ∈ B(τ ), let A × B be
the rectangle generated by A and B. Define the product E × F of E and
F on the rectangles by (E × F )(A × B) = E(A)F (B). Let A be the algebra
generated by the rectangles A × B, A ∈ B(σ), B ∈ B(τ ). Then the product
E × F has a unique finitely additive extension E × F to A. Every element of
A has a representation ∪n

i=1Ai × Bi where the {Ai × Bi} are pairwise disjoint
and Ai ∈ B(σ),Bi ∈ B(τ ). We say that S and T (or E and F ) satisfy the
boundedness condition (B) if

(B): there exists a constant k such that ‖ ∑n
i=1 E(Ai)F (Bi) ‖≤ k for every

pairwise disjoint sequence {Ai × Bi} with Ai ∈ B(σ), Bi ∈ B(τ ) (i.e., if E × F
is bounded on A).

The boundedness property (B) has been considered when the problem of
whether the sum and product of two commuting spectral operators is a spectral
operator ([3]). In general condition (B) is not satisfied even for reflexive spaces
([7],[10]) although it is always satisfied in Hilbert spaces ([12]).

In this note we consider the relationship between conditions (P) and (B)
for commuting scalar operators. We show that for such operators (B) always
implies (P) and show that the converse holds for commuting spectral operators
with real spectrums.

If x ∈ X, let Fx denote the X-valued measure on B(τ ) defined by Fx(B) =
F (B)x; note that Fx is countably additive in the norm topology of X since F
is countably additive in the strong operator topology ([5]XV.2.5). If y ∈ X′,
let yE be the X′-valued set function defined on B(σ) by (yE)(A) = yE(A) note
that yE is bounded and countably additive in the weak* topology of X′. We
define the product of yE and Fx , yE ·Fx ,on measurable rectangles A×B, A ∈
B(σ),B∈ B(τ ), by yE · Fx(A ×B) = 〈yE(A), Fx(B)〉 = 〈y, E(A)F (B)x〉. Then
yE · Fx has a unique finitely additive extension to the algebra A generated by
the measurable rectangles.

Lemma 1. Assume that condition (B) is satisfied. Then yE · Fx is bounded
and countably additive on A and has a unique, countably additive extension to
the σ-algebra B(σ × τ ) generated by A which is bounded by k ‖ y ‖‖ x ‖.

Proof Condition (B) implies that yE · Fx is bounded on A by k ‖ y ‖‖ x ‖. If
A ∈ B(σ) (B ∈ B(τ )), then yE(A) · Fx(·) (yE(·) · Fx(B)) is countably additive
since F (E) is countably additive in the strong operator topology. It follows
from Theorem2 of [8] that yE · Fx is countably additive on A.
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The last statement follows from standard results for the extension of scalar
measures.

Let G be an X-valued, bounded, finitely additive set function defined on a
σ-algebra Σ of subsets of set S. If f : S → C is bounded and Σ-measurable,
the integral of f with respect to G,

∫
S

fdG, is then a well-defined element of X
satisfying the inequality

(∗) ‖
∫

S

fdG ‖≤ sup{| f(t) |: t ∈ S}semi − var(G)(S),

where semi − var is the semi-variation of G ([4]IV.10.3; we integrate only
bounded functions so no elaborate integration theory is required). In particular,
if f : S → C is a bounded Borel function, then f is both E and Ex integrable
with (

∫
S

fdE)x =
∫

S
fdEx.

We need the following simple Fubini-type result for the product yE · Fx.

Lemma 2. Assume that condition (B) is satisfied. Let f : σ → C and g : τ →
C be bounded Borel functions and x ∈ X, y ∈ X′. Then

∫
σ×τ

f ⊗ gdyE · Fx =
〈∫σ fdyE,

∫
τ gdFx〉, where f ⊗g : σ×τ → C is defined by f ⊗g(s, t) = f(s)g(t).

Proof If f and g are characteristic functions of Borel sets, the result follows
from the definitions of the products so the result holds for simple functions.
For the general case pick sequences of simple Borel functions {αk}, {βk} such
that αk → f uniformly on σ and βk → g uniformly on τ . Then αk⊗βk → f ⊗g
uniformly on σ× τ so the result follows easily from Lemma1 and the inequality
(*).

We have our first result relating properties (B) and (P).

Theorem 3. Assume that condition (B) is satisfied. Then condition (P) is
satisfied with constant C = 4k.

Proof Let x ∈ X, y ∈ X′ with ‖ x ‖≤ 1, ‖ y ‖≤ 1. For i, j ≥ 0, by Lemma2
〈y, SiT jx〉 = 〈∫

σ
sidyE(s),

∫
τ

tjdFx(t)〉 =
∫

σ×τ
sitjdyE ·Fx(s, t). If p is a poly-

nomial of two variables, we have 〈y, p(S, T )x〉 =
∫
σ×τ

p(s, t)dyE ·Fx(s, t). From
Lemma1 and [4]III.1.5, we obtain

| 〈y, p(S, T )x〉 |≤‖ p ‖∞ var(yE · Fx)(σ × τ ) ≤‖ p ‖∞ 4k,

where var(ν) is the variation of a measure ν . Hence, ‖ p(S, T ) ‖≤‖ p ‖∞ 4k
and condition (P) is satisfied (with constant 4k from (B)).

For the converse of Theorem3 we make the additional assumption that the
spectrums of S and T are real. In this case it is only necessary to consider real
polynomials in condition (P).
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Theorem 4. Assume that condition (P) is satisfied only for real polynomials
and that σ and τ ⊂ R. Then condition (B) is satisfied with constant k = C.

Proof Let P be the space of all real polynomials in two variables equipped with
the sup-norm, ‖ p ‖= sup{| p(s, t) |: s ∈ σ, t ∈ τ}. Define Ψ : P →L(X) by
Ψ(p) = p(S, T ). Then Ψ is an algebra homomorphism and by condition (P), Ψ
is continuous with ‖ Ψ ‖≤ k. Therefore, Ψ has a continuous linear extension,
still denoted by Ψ ,from C(σ × τ ), the space of all real valued continuous
functions on σ × τ , into L(X) with ‖ Ψ ‖≤ k. There exists a finitely additive
set function G from the Borel sets of σ × τ, B(σ × τ ), into L(X)′′ such that
〈G(·), z〉 ∈ rca( σ × τ ) for every z ∈ L(X)′, 〈z, Ψf〉 =

∫
σ×τ f(s, t)dG(s, t)z for

every f ∈ C(σ × τ ), and ‖ Ψ ‖= semi − var(G) ([4]VI.7.2). Since SiT j =∫
σ

sidE(s)
∫
τ

tjdF (t) = Ψ(sitj) =
∫

σ×τ
sitjdG(s, t) for i, j ≥ 0,

(1) Siq(T ) =
∫

σ

sidE(s)
∫

τ

q(t)dF (t) = Ψ(siq(t)) =
∫

σ×τ

siq(t)dG(s, t)

for i ≥ 0 and all real valued polynomials q in one variable . If g ∈ C(τ ),
pick a sequence of real valued polynomials {qk} converging to g uniformly on
τ . Then replacing q by qk in (1) and passing to the limit using (*) gives

Sig(T ) =
∫

σ
sidE(s)

∫
τ

g(t)dF (t) = Ψ(sig(t)) =
∫
σ×τ

sig(t)dG(s, t).
Repeating the same argument gives

(2) f(S)g(T ) =
∫

σ

f(s)dE(s)
∫

τ

g(t)dF (t) = Ψ(f(s)g(t)) =
∫

σ×τ

f(s)g(t)dG(s, t)

for f ∈ C(σ), g ∈ C(τ ).
If x ∈ X, y ∈ X′, define y⊗x ∈ L(X)′ by 〈y⊗x, U〉 = 〈y, Ux〉 for U ∈ L(X).

Then ‖ y ⊗ x ‖=‖ y ‖‖ x ‖. We claim that 〈yE(A), F (B)x〉 = 〈G(A × B), y ⊗
x〉 = G(A × B)y ⊗ x for all Borel sets A ∈ B(σ), B ∈ B(τ ). From (2),

(3) 〈y
∫

σ

fdE,

∫
τ

gdFx〉 =
∫

σ×τ

f ⊗ gdGy ⊗ x

for f ∈ C(σ), g ∈ C(τ ). Let K ⊂ τ be compact and pick gk ∈ C(τ ), | gk |≤
1, such that {gk} converges to χK pointwise. Replacing g by gk in (3) and
using the fact that Fx and Gy ⊗ x are countably additive, we obtain from the
Dominated Convergence Theorem ([4]IV.10.10)

〈y ∫
σ

fdE,
∫

τ
χKdFx〉 = 〈y ∫

σ
fdE, F (K)x〉 =

∫
σ×τ

f ⊗ χKdGy ⊗ x. Both
〈y ∫

σ
fdE, F (·)x〉 and

∫
σ×τ

f ⊗χ·dGy⊗x are countably additive on B(τ ) , and
since they agree on compact sets by the computation above, they are equal on
B(τ ).

Fix B ∈ B(τ ) and let L ⊂ σ be compact. Pick fk ∈ C(σ), | fk |≤ 1, such
that fk → χL pointwise. Since 〈y ∫

σ fkdE, F (B)x〉 =
∫

σ×τ fk ⊗ χBdGy ⊗ x,
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passing to the limit as above gives 〈yE(L), F (B)x〉 = G(L × K)y ⊗ x . Both
〈yE(·), F (B)x〉 and G(· × B)y ⊗ x are countably additive on B(σ), and since
they agree on the compact sets, they must be equal on B(σ). This establishes
our claim.

Now let {Ai × Bi : i = 1, ..., n} be pairwise disjoint with Ai ∈ B(σ), Bi ∈
B(τ ). Put h =

∑n
i=1 χAi ⊗ χBi . Let x ∈ X, y ∈ X′ with ‖ x ‖≤ 1, ‖ y ‖≤ 1.

Since var(Gy ⊗ x) ≤ semi − var(G), we have from the equality above

|
∫

σ×τ

hdGy ⊗ x |=|
n∑

i=1

G(Ai × Bi)y ⊗ x |=| 〈y,

n∑
i=1

E(Ai)F (Bi)x〉 |

≤ var(Gy ⊗ x) ≤ semi − var(G) =‖ Ψ ‖≤ k

Hence, ‖ ∑n
i=1 E(Ai)F (Bi) ‖≤ k and (B) is satisfied with the same constant

as in (P).

Remark 5. The proof of Theorem4 shows that if the assumptions of the
theorem are satisfied, there is a functional calculus Ψ : C(σ × τ ) → L(X),i.e.,
there exists an algebra homomorphism Ψ : C(σ× τ ) → L(X) such that Ψ(p) =
p(S, T ) for every real polynomial in two variables, and, moreover, Ψ has a
representation as 〈y, Ψ(f)(x)〉 =

∫
σ×τ

fdyF · Ex for x ∈ X, y ∈ X′. Since
the integral

∫
σ×τ

fdG exists for every bounded Borel function f : σ × τ → R
([2] I.1.12), the functional calculus Ψ can be extended to a functional calculus
Ψ : B(σ × τ,B(σ × τ )) → L(X), where B(σ × τ,B(σ × τ )) is the space of
bounded Borel functions on σ × τ with the sup-norm. The calculations above
show that

(3) 〈y ⊗ x, Ψ(f ⊗ g)〉 =
∫

σ×τ

f ⊗ g(s, t)dG(s, t)y ⊗ x

=
〈

y

∫
σ

fdE,

∫
τ

gdFx

〉
=

∫
σ×τ

f ⊗ gdyE · Fx,

when f (g) is a simple Borel function on σ (τ ). A simple passage to the limit
shows that (3) holds when f (g) is a bounded Borel function. In particular,
G(L × K)y ⊗ x = 〈yE(L), F (K)x〉, when L (K) is a Borel subset of σ (τ ), so
that G is in some sense an extension of the product E × F to the Borel sets of
σ × τ . If the space X contains no isomorphic copy of c0, then G actually has
a unique extension to B(σ × τ ) which has values in L(X), not L(X)

′′
, and is

strongly countably additive ([11]).

It would be of interest to know if the conclusion of Theorem 4 holds without
the restrictions on the spectrums. The proof above uses the fact that the real
valued polynomials are dense in the space of continuous real valued functions,
something not available in the complex case.

If X is a Hilbert space and the spectral resolutions are self-adjoint projec-
tions on X, then condition (B) is always satisfied since if {Ai×Bi : i = 1, ..., n}
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is a pairwise disjoint sequence from A, then
∑n

i=1 E(Ai)F (Bi) is an orthogonal
projection and hence has norm 1.

If X is a Hilbert space and S, T are commuting scalar operators, then by
[5]XV.6.2 there is a bounded, invertible self-adjoint U such that UE(·)U−1,
UF (·)U−1 are self-adjoint and thus satisfy condition (B) by the observation
above. Thus, we have

Corollary 6. If X is a Hilbert space and S, T are commuting scalar operators,
then conditions (B) and (P) are satisfied.

Proof Since UE(·)U−1, UF (·)U−1 satisfy condition (B), E and F likewise
satisfy the condition. The last statement follows from Theorem3.

The first statement in Corollary6 was established by Wermer by different
methods ([12]); the proof above uses LemmaXV.6.2 of [5].
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