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Abstract

Denote by Pk the graded polynomial algebra F2[x1, x2, . . . , xk], with
the degree of each generator xi being 1, and let GLk be the general linear
group over the prime field F2 of two elements which acts naturally on Pk

by matrix substitution.
We study the Peterson hit problem of determining a minimal set of

generators for Pk as a module over the mod-2 Steenrod algebra, A. In this
paper, we study the hit problem in terms of the admissible monomials
at the degree (k − 1)(2d − 1). These results are used to verify Singer’s
conjecture for the algebraic transfer, which is a homomorphism from
the homology of the mod-2 Steenrod algebra, TorAk,k+n(F2,F2), to the
subspace of F2⊗APk consisting of all the GLk-invariant classes of degree
n. More precisely, using the results on the hit problem, we prove that
Singer’s conjecture for the algebraic transfer is true in the case k = 5 and
the degree 4(2d − 1) with d an arbitrary positive integer.

1 Introduction

Denote by Pk := F2[x1, x2, . . . , xk] the polynomial algebra over the prime field
of two elements, F2, in k variables x1, x2, . . . , xk, each of degree 1. This
algebra arises as the cohomology with coefficients in F2 of an elementary
abelian 2-group of rank k. Hence, Pk is a module over the mod-2 Steen-
rod algebra, A. The action of A on Pk is determined by the elementary
properties of the Steenrod squares Sqi and subject to the Cartan formula
Sqn(fg) =

∑n
i=0 Sq

i(f)Sqn−i(g), for f, g ∈ Pk (see Steenrod and Epstein [30]).
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A polynomial g in Pk is called hit if it belongs to A+Pk, where A+ is
the augmentation ideal of A. That means g can be written as a finite sum
g =

∑
u>0 Sq

2u

(gu) for suitable polynomials gu ∈ Pk.
We are interested in the hit problem, set up by F. Peterson, of determining

a minimal set of generators for the polynomial algebra Pk as a module over
the Steenrod algebra. In other words, we want to determine a basis of the F2-
vector space QPk := Pk/A+Pk = F2⊗A Pk. The problem is an interesting and
important one. It was first studied by Peterson [21], Wood [41], Singer [28], and
Priddy [24], who showed its relation to several classical problems respectively in
cobordism theory, modular representation theory, the Adams spectral sequence
for the stable homotopy of spheres, and stable homotopy type of classifying
spaces of finite groups. Then, this problem was investigated by Carlisle and
Wood [3], Crabb and Hubbuck [4], Hung and Nam [11], Janfada and Wood [13],
Kameko [14, 15], Mothebe [18], Nam [19], Repka and Selick [25], Phuc and
Sum [22, 23], Silverman [26], Silverman and Singer [27], Singer [29], Walker
and Wood [39, 40], Wood [42] and others.

The vector space QPk was explicitly calculated by Peterson [21] for k = 1, 2,
by Kameko [14] for k = 3, and recently by the present author [31, 33] for k = 4.

Let GLk be the general linear group over the field F2. This group acts
naturally on Pk by matrix substitution. Since the two actions of A and GLk

upon Pk commute with each other, there is an inherited action of GLk on QPk.
Denote by (Pk)n the subspace of Pk consisting of all the homogeneous poly-

nomials of degree n in Pk and by (QPk)n the subspace of QPk consisting of
all the classes represented by the elements in (Pk)n. In [28], Singer defined the
algebraic transfer, which is a homomorphism

ϕk : TorAk,k+n(F2,F2) −→ (QPk)GLk
n

from the homology of the Steenrod algebra to the subspace of (QPk)n consisting
of all the GLk-invariant classes. It is a useful tool in describing the homology
groups of the Steenrod algebra, TorAk,k+n(F2,F2). This transfer was studied by
Boardman [1], Bruner, Hà and Hung [2], Hà [9], Hung [10], Chon-Hà [6, 7, 8],
Minami [17], Nam [20], Hung and Quỳnh [12], Tin and Sum [38], the present
author [32, 34, 35] and others.

It was shown that the transfer is an isomorphism for k = 1, 2 by Singer in
[28] and for k = 3 by Boardman in [1] . However, for any k > 4, ϕk is not a
monomorphism in infinitely many degrees (see Singer [28], Hung [10].) Singer
made the following conjecture.

Conjecture 1.1 (Singer [28]). The algebraic transfer ϕk is an epimorphism
for any k > 0.

The conjecture is true for k 6 3. We are studying this conjecture for k = 4
by using the results in [31, 33]. We hope that it is also true in this case.
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From the results of Wood [41] and Kameko [14], the hit problem is reduced
to the case of degree n of the form

n = s(2d − 1) + 2dm, (1.1)

where s, d,m are non-negative integers and 1 6 s < k, (see [33]). For s = k− 1
and m > 0, the problem was studied by Crabb and Hubbuck [4], Nam [19],
Repka and Selick [25] and the present author [31, 33, 35].

In the present paper, we study the hit problem in degree n of the form (1.1)
with s = k − 1 and m = 0. This result is used to verify Singer’s conjecture
for algebraic transfer. More precisely, using this result we prove that Singer’s
conjecture is true in the case k = 5 and the degree 4(2d−1) with d an arbitrary
positive integer.

From the result of Carlisle and Wood [3] on the boundedness conjecture,
we can see that for d big enough, the dimension of (QPk)n does not depend on
d; it depends only on k. One of the main results of the paper is the following.

Theorem 1.2. Let n = (k− 1)(2d− 1) with d a positive integer. If d > k > 3,
then

dim(QPk)n >

(
(k − 3)

(
k

2

)
+ 1

)
(2k − 1). (1.2)

For either k = 3 or k = 4, the results of Kameko [14] and the present author
[31, 33] imply that the inequality (1.2) is an equality. Note that this theorem
has been proved in [22] for d > k. However, for the case d = k, the theorem is
new and the proof of it is more complicated.

Using Theorem 1.2 for k = 5 and the results in [23], we obtain the following.

Theorem 1.3. If n = 4(2d − 1) with d a positive integer, then (QP5)GL5
n = 0.

By a simple computatuion using the results in Tangora [37], Lin [16] and

Chen [5], we see that Ext5,2d+2+1
A (F2,F2) = 〈h0h

4
d〉, where hd denote the Adams

element in Ext1,2d

A (F2,F2). Since h4
d = 0 for d > 0, we get Ext5,2d+2+1

A (F2,F2) =

0. Hence, TorA5,2d+2+1(F2,F2) = 0. By Theorem 1.3, the homomorphism

ϕ5 : TorA5,2d+2+1(F2,F2) −→ (QP5)GL5

4(2d−1)

is a trivial isomorphism. So, we get the following.

Corollary 1.4. Singer’s conjecture is true for k = 5 and the degree 4(2d − 1)
with d an arbitrary positive integer.

This paper is organized as follows. In Section 2, we recall some needed
information on the weight vectors of monomials, the admissible monomials in
Pk and Singer’s criterion on the hit monomials. Theorems 1.2 and 1.3 are
respectively proved in Sections 3 and 4.
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2 Preliminaries

In this section, we recall some needed information from Kameko [14] and Singer
[29], which will be used in the next section.

2.1 The weight vectors of monomials

Notation 2.1.1. We denote Nk = {1, 2, . . . , k} and

XJ = X{j1,j2,...,js} =
∏

j∈Nk\J

xj , J = {j1, j2, . . . , js} ⊂ Nk,

In particular, XNk
= 1, X∅ = x1x2 . . . xk, Xj = x1 . . . x̂j . . . xk, 1 6 j 6 k,

and X := Xk ∈ Pk−1.
Let αi(a) denote the i-th coefficient in dyadic expansion of a non-negative

integer a. That means a = α0(a)20 +α1(a)21 +α2(a)22 + . . . , for αi(a) = 0 or
1 with i > 0.

Let x = xa1
1 xa2

2 . . . xak

k ∈ Pk. Denote νj(x) = aj , 1 6 j 6 k. Set

Jt(x) = {j ∈ Nk : αt(νj(x)) = 0},

for t > 0. Then, we have x =
∏

t>0X
2t

Jt(x).

Definition 2.1.2. For a monomial x in Pk, define two sequences associated
with x by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .),

σ(x) = (ν1(x), ν2(x), . . . , νk(x)),

where ωi(x) =
∑

16j6k αi−1(νj(x)) = degXJi−1(x), i > 1. The sequences
ω(x) and σ(x) is respectively called the weight vector and the exponent vector
of x.

Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of non-negative integers. The
sequence ω are called the weight vector if ωi = 0 for i� 0.

The sets of all the weight vectors and the exponent vectors are given the
left lexicographical order.

For a weight vector ω, we define degω =
∑

i>0 2i−1ωi. If there are i0 =
0, i1, i2, . . . , ir > 0 such that i1 + i2 + . . .+ ir = m, ωi1+...+is−1+t = bs, 1 6 t 6

is, 1 6 s 6 r, and ωi = 0 for all i > m, then we write ω = (b
(i1)
1 , b

(i2)
2 , . . . , b

(ir)
r ).

Denote b
(1)
u = bu. For example, ω = (3, 3, 2, 2, 2, 1, 0, . . .) = (3(2), 2(3), 1).

Denote by Pk(ω) the subspace of Pk spanned by all monomials y such that
deg y = degω, ω(y) 6 ω, and by P−k (ω) the subspace of Pk spanned by all
monomials y ∈ Pk(ω) such that ω(y) < ω.



162 The hit problem and the algebraic transfer in some degrees

Definition 2.1.3. Let ω be a weight vector and f, g two polynomials of the
same degree in Pk.

i) f ≡ g if and only if f − g ∈ A+Pk. If f ≡ 0 then f is called hit.
ii) f ≡ω g if and only if f − g ∈ A+Pk + P−k (ω).

Obviously, the relations ≡ and ≡ω are equivalence ones. Denote by QPk(ω)
the quotient of Pk(ω) by the equivalence relation ≡ω. Then, we have

QPk(ω) = Pk(ω)/((A+Pk ∩ Pk(ω)) + P−k (ω)).

For a polynomial f ∈ Pk, we denote by [f ] the class in QPk represented
by f . If ω is a weight vector and f ∈ Pk(ω), then denote by [f ]ω the class in
QPk(ω) represented by f . Denote by |S| the cardinal of a set S.

It is easy to see that

QPk(ω) ∼= QPω
k := 〈{[x] ∈ QPk : x is admissible and ω(x) = ω}〉.

So, we get

(QPk)n =
⊕

deg ω=n

QPω
k
∼=

⊕
deg ω=n

QPk(ω).

Hence, we can identify the vector space QPk(ω) with QPω
k ⊂ QPk.

For 1 6 i 6 k, define the A-homomorphism ρi : Pk → Pk, which is deter-
mined by ρi(xi) = xi+1, ρi(xi+1) = xi, ρi(xj) = xj for j 6= i, i + 1, 1 6 i < k,
and ρk(x1) = x1 + x2, ρk(xj) = xj for j > 1.

It is easy to see that the general linear group GLk is generated by the ma-
trices associated with ρi, 1 6 i 6 k, and the symmetric group Σk is generated
by the ones associated with ρi, 1 6 i < k. So, a class [f ]ω represented by a ho-
mogeneous polynomial f ∈ Pk(ω) is an GLk-invariant if and only if ρi(f) ≡ω f
for 1 6 i 6 k. [f ]ω is an Σk-invariant if and only if ρi(f) ≡ f for 1 6 i < k.

We note that the weight vector of a monomial is invariant under the per-
mutation of the generators xi, hence QPk(ω) has an action of the symmetric
group Σk. Furthermore, we have the following.

Lemma 2.1.4. Let ω be a weight vector. Then, QPk(ω) is an GLk-module.

Proof. We prove the lemma by showing that if x is a monomial in Pk, then
gk(x) ∈ Pk(ω(x)).

If ν1(x) = 0, then x = gk(x) and ω(gk(x)) = ω(x). Suppose ν1(x) > 0 and
ν1(x) = 2t1 + . . .+ 2tb , where 0 6 t1 < . . . < tb, b > 1.

Since x =
∏

t>0X
2t

Jt(x) ∈ Pk and gk is a homomorphism of algebras,

gk(x) =
∏
t>0

(gk(XJt(x)))
2t

=

(
b∏

u=1

(
(x1+x2)XJtu (x)∪1

)2tu

)( ∏
t 6=t1,t2,...,tb

X2t

Jt(x)

)
.
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Then, gk(x) is a sum of monomials of the form

ȳ =

(
c∏

j=1

(
x2XJtuj

(x)∪1

)2tu

)( ∏
t 6=tu1 ,...,tuc

X2t

Jt(x)

)
,

where 0 6 c 6 b. If c = 0, then ȳ = x and ω(ȳ) = ω(x). Suppose c > 0.
If 2 ∈ Jtuj

(x) for all j, 1 6 j 6 c, then ω(ȳ) = ω(x) and ȳ ∈ Pk(ω(x)).

Suppose there is an index j such that 2 6∈ Jtuj
(x). Let j0 be the smallest index

such that 2 6∈ Jtuj0
(x). Then, we have

ωi(ȳ) =

{
ωi(x), if i 6 tuj0

,

ωi(x)− 2, if i = tuj0
+ 1.

Hence ω(ȳ) < ω(x) and ȳ ∈ Pk(ω(x)). The lemma is proved. �

2.2 The admissible monomials

Definition 2.2.1. Let x, y be monomials of the same degree in Pk. We say
that x < y if and only if one of the following holds:

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.2.2. A monomial x is said to be inadmissible if there exist mono-
mials y1, y2, . . . , ym such that yt < x for t = 1, 2, . . . ,m and x −

∑m
t=1 yt ∈

A+Pk.
A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of all the admissible monomials of degree n in Pk is a
minimal set of A-generators for Pk in degree n.

Theorem 2.2.3 (See Kameko [14]). Let x, y, w be monomials in Pk such that
ωi(x) = 0 for i > r > 0, ωs(w) 6= 0 and ωi(w) = 0 for i > s > 0.

i) If w is inadmissible, then xw2r

is also inadmissible.
ii) If w is strictly inadmissible, then wy2s

is also strictly inadmissible.

Now, we recall a result of Singer [29] on the hit monomials in Pk.

Definition 2.2.4. A monomial z in Pk is called a spike if νj(z) = 2dj − 1 for
dj a non-negative integer and j = 1, 2, . . . , k. If z is a spike with d1 > d2 >
. . . > dr−1 > dr > 0 and dj = 0 for j > r, then it is called the minimal spike.

For a positive integer n, by µ(n) one means the smallest number r for which
it is possible to write n =

∑
16i6r(2di−1), where di > 0. Singer showed in [29]

that if µ(n) 6 k, then there exists uniquely a minimal spike of degree n in Pk.
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Lemma 2.2.5 (See [22]). All the spikes in Pk are admissible and their weight
vectors are weakly decreasing. Furthermore, if a weight vector ω is weakly
decreasing and ω1 6 k, then there is a spike z in Pk such that ω(z) = ω.

The following is a criterion for the hit monomials in Pk.

Theorem 2.2.6 (See Singer [29]). Suppose x ∈ Pk is a monomial of degree n,
where µ(n) 6 k. Let z be the minimal spike of degree n. If ω(x) < ω(z), then
x is hit.

This result implies a result of Wood, which originally is a conjecture of
Peterson [21].

Theorem 2.2.7 (See Wood [41]). If µ(n) > k, then (QPk)n = 0.

We end this section by recalling some notations which will be used in the
next sections. We set

P 0
k = 〈{x = xa1

1 xa2
2 . . . xak

k : a1a2 . . . ak = 0}〉,
P+
k = 〈{x = xa1

1 xa2
2 . . . xak

k : a1a2 . . . ak > 0}〉.

It is easy to see that P 0
k and P+

k are the A-submodules of Pk. Furthermore,
we have the following.

Proposition 2.2.8. We have a direct summand decomposition of the F2-vector
spaces QPk = QP 0

k ⊕QP
+
k . Here QP 0

k = F2 ⊗A P 0
k and QP+

k = F2 ⊗A P+
k .

3 On the generators of Pk in degree (k−1)(2d−1)

First of all, we recall some notations and definitions in [33], which will be used
in the next sections.

3.1 Construction for the generators

Denote Nk =
{

(i; I); I = (i1, i2, . . . , ir), 1 6 i < i1 < . . . < ir 6 k, 0 6 r < k
}
.

Definition 3.1.1. Let (i; I) ∈ Nk, let r = `(I) be the length of I, and let u be
an integer with 1 6 u 6 r. A monomial x ∈ Pk−1 is said to be u-compatible
with (i; I) if all of the following hold:

i) νi1−1(x) = νi2−1(x) = . . . = νi(u−1)−1(x) = 2r − 1,
ii) νiu−1(x) > 2r − 1,
iii) αr−t(νiu−1(x)) = 1, ∀t, 1 6 t 6 u,
iv) αr−t(νit−1(x)) = 1, ∀t, u < t 6 r.
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Clearly, a monomial x can be u-compatible with a given (i; I) ∈ Nk for at
most one value of u. By convention, x is 1-compatible with (i; ∅).

For 1 6 i 6 k, define the homomorphism fi : Pk−1 → Pk of algebras by
substituting

fi(xj) =

{
xj , if 1 6 j < i,

xj+1, if i 6 j < k.

Definition 3.1.2. Let (i; I) ∈ Nk, x(I,u) = x2r−1+...+2r−u

iu

∏
u<t6r x

2r−t

it
for

r = `(I) > 0, x(∅,1) = 1. For a monomial x in Pk−1, we define the monomial
φ(i;I)(x) in Pk by setting

φ(i;I)(x) =


(x2r−1

i fi(x))/x(I,u), if there exists u such that

x is u-compatible with (i, I),

0, otherwise.

Then we have an F2-linear map φ(i;I) : Pk−1 → Pk. In particular, φ(i;∅) = fi.

For a subset B ⊂ Pk, we denote [B] = {[f ] : f ∈ B}. If B ⊂ Pk(ω), then
we set [B]ω = {[f ]ω : f ∈ B}.

We denote

Φ0(B) =
⋃

16i6k

φ(i;∅)(B) =
⋃

16i6k

fi(B).

Φ+(B) =
⋃

(i;I)∈Nk,0<`(I)6k−1

φ(i;I)(B) \ P 0
k .

Φ(B) = Φ0(B)
⋃

Φ+(B).

It is easy to see that if B is a minimal set of generators for A-module Pk−1

in degree n, then Φ0(B) is a minimal set of generators for A-module P 0
k in

degree n and Φ+(B) ⊂ P+
k .

For a positive integer b, denote

ω(k,b) = ((k − 1)(b)), ω̄(k,b) = ((k − 1)(b−1), k − 3, 1).

Lemma 3.1.3 (See [33]). Let b be a positive integer and let j0, j1, . . . , jb−1 ∈
Nk. We set i = min{j0, . . . , jb−1} and I = (i1, . . . , ir) with {i1, . . . , ir} =
{j0, . . . , jb−1} \ {i}. Then, we have∏

06t<b

X2t

jt ≡ω(k,b)
φ(i;I)(X

2b−1).

Definition 3.1.4. For any (i; I) ∈ Nk, we define the homomorphism p(i;I) :
Pk → Pk−1 of algebras by substituting

p(i;I)(xj) =


xj , if 1 6 j < i,∑

s∈I xs−1, if j = i,

xj−1, if i < j 6 k.
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Then, p(i;I) is a homomorphism of A-modules. In particular, for I = ∅,
p(i;∅)(xi) = 0 and p(i;I)(fi(y)) = y for any y ∈ Pk−1.

Lemma 3.1.5 (See [22]). If x is a monomial in Pk, then p(i;I)(x) ∈ Pk−1(ω(x)).

Lemma 3.1.5 implies that if ω is a weight vector and x ∈ Pk(ω), then
p(i;I)(x) ∈ Pk−1(ω). Moreover, p(i;I) passes to a homomorphism from QPk(ω)
to QPk−1(ω). In particular, we have

Lemma 3.1.6 (See [33]). Let b be a positive integer and let (j; J), (i; I) ∈ Nk

with `(I) < b.

i) If (i; I) ⊂ (j; J), then p(j;J)φ(i;I)(X
2b−1) = X2b−1 mod(P−k−1(ω(k,b))).

ii) If (i; I) 6⊂ (j; J), then p(j;J)φ(i;I)(X
2b−1) ∈ P−k−1(ω(k,b)).

3.2 Proof of Theorem 1.2

For 0 < h 6 k, set Nk,h = {(i; I) ∈ Nk : `(I) < h}. Then, |Nk,h| =
∑h

t=1

(
k
t

)
.

Proposition 3.2.1 (See [22]). Let d be a positive integer and let p = min{k, d}.
Then, the set

B(d) :=
{[
φ(i;I)(X

2d−1)
]
ω(k,d)

: (i; I) ∈ Nk,p

}
is a basis of the F2-vector space QPk(ω(k,d)). Consequently

dimQPk(ω(k,d)) =

p∑
t=1

(
k

t

)
.

Set Ck = {xj1xj2 . . . xjk−3
x2
j : 1 6 j1 < j2 < . . . < jk−3 < k, j1 6 j < k} ⊂

Pk−1. It is easy to see that |Ck| = (k − 3)
(
k
2

)
.

Lemma 3.2.2 (See [22]). Ck is the set of the admissible monomials in Pk−1

such that their weight vectors are ω̄(k,1) = (k − 3, 1). Consequently,

dimQPk−1(ω̄(k,1)) = (k − 3)

(
k

2

)
.

Corollary 3.2.3. Let d be a positive integer. Then,

D(k,d) = {X2d−1−1z2d−1

: z ∈ Ck}

is the set of the admissible monomials in Pk−1 such that their weight vectors
are ω̄(k,d). Consequently, dimQPk−1(ω̄(k,d)) = (k − 3)

(
k
2

)
.
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Proposition 3.2.4. Let d be an integer such that d > k > 4. Then, the set

B̄(d) :=
⋃

z∈Ck

{[
φ(i;I)(X

2d−1−1z2d−1

)
]
ω̄(k,d)

: (i; I) ∈ Nk

}
is a basis of QPk(ω̄(k,d)). Consequently dimQPk(ω̄(k,d)) = (k − 3)

(
k
2

)
(2k − 1).

This proposition has been proved in [22] for d > k. We prove the proposition
for d = k in the end of this section.

Proof of Theorem 1.2. For k = 3, the theorem follows from the results of
Kameko [14]. For k = 4, it follows from the results in [31, 33].

Suppose k > 5 and d > k. Since deg(ω(k,d)) = deg(ω̄(k,d)) = (k−1)(2d−1) =
n and (QPk)n ∼=

⊕
deg ω=nQPk(ω). Hence, using Propositions 3.2.1 and 3.2.4,

we get

dim(QPk)n =
∑

deg ω=n

dimQPk(ω)

> dimQPk(ω(k,d)) + dimQPk(ω̄(k,d))

=

(
(k − 3)

(
k

2

)
+ 1

)
(2k − 1).

The theorem is proved. �
Note that if k > 5, then the sequence ω̃(k,d) = ((k − 1)(d−2), k − 3, k −

4, 2) is weakly decreasing and deg ω̃(k,d) = (k − 1)(2d − 1). By Lemma 2.2.5,
QPk(ω̃(k,d)) 6= 0. Hence, the inequality (1.2) is not an equality.

The following is a modification of a results in [33].

Lemma 3.2.5. Let d be a positive integer and let y0 be a monomial in (Pk)k−2,
yj = y0xj for 1 6 j 6 k, and (i; I) ∈ Nk.

i) If r = `(I) < d− 1, then

φ(i;I)(X
2d−1−1)y2d−1

i ≡ω̄(k,d)∑
16j<i

φ(j;I)(X
2d−1−1)y2d−1

j +
∑

i<j6k

φ(tj ;I(j))(X
2d−1−1)y2d−1

j ,

where tj = min(j, I), and I(j) = (I ∪ j) \ {tj} for j > i.

ii) If r < d− 2, then

φ(i;I)(X
2d−1−1)y2d−1

i ≡ω̄(k,d)∑
16j<i

φ(j;I∪i)(X
2d−1−1)y2d−1

j +
∑

i<j6k

φ(i;I∪j)(X
2d−1−1)y2d−1

j .
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Proof. Applying the Cartan formula, we have

Sq1(X2c−1
∅ y2c

0 ) =
∑

16j6k

X2c−1
j y2c

j , (3.1)

where c is a positive integer. If r = 0, then tj = j and I(j) = ∅ for j > i. Then,
the the first part of the lemma follows from the relation (3.1) with c = d.

If 0 < r < d−1, then φ(i;I)(X
2d−1−1)y2d−1

i = φ(i1;I\i1)(X
2r−1)(X2c−1

i y2c

i )2r

,
with c = d− r − 1 > 0 and i1 = min I. It is easy to see that

φ(i1;I\i1)(X
2r−1)(Sq1(X2c−1

∅ y2c

0 ))2r

≡ω̄(k,d)
0.

Hence, using the relation (3.1), we get

φ(i;I)(X
2d−1)y2d

i ≡ω̄(k,d)

∑
16j<i

φ(i1;I\i1)(X
2r−1)(X2c−1

j y2c

j )2r

+
∑

i<j6k

φ(i1;I\i1)(X
2r−1)(X2c−1

j y2c

j )2r

.

A simple computation shows φ(i1;I\i1)(X
2r−1)(X2c−1

j y2c

j )2r

= φ(j;I)(X
2d−1)y2d

j ,
for j < i. By computing from Lemma 3.2.2 in [33], we have

φ(i1;I\i1)(X
2r−1)(X2c−1

j y2c

j )2r

≡ω̄(k,d)
φ(tj ;I(j))(X

2d−1)y2d

j , for j > i.

Hence, the first part of the lemma follows.

If 0 < r < d−2, then φ(i;I)(X
2d−1−1)y2d−1

i = φ(i;I)(X
2r+1−1)(X2c−1

i y2c

i )2r+1

,
with c = d− r−2 > 0. Hence, by a direct computation from the relation (3.1),
we get

φ(i;I)(X
2d−1−1)y2d−1

i ≡ω̄(k,d)

∑
16j<i

φ(i;I)(X
2r+1−1)(X2c−1

j y2c

j )2r+1

+
∑

i<j6k

φ(i;I)(X
2r+1−1)(X2c−1

j y2c

j )2r+1

.

We have φ(i;I)(X
2r+1−1)(X2c−1

j y2c

j )2r+1

= φ(j;I∪i)(X
2d−1−1)y2d−1

j , for j < i.
Applying Lemma 3.2.2 in [33], we obtain

φ(i;I)(X
2r+1−1)(X2c−1

j y2c

j )2r+1

≡ω̄(k,d)
φ(i;I∪j)(X

2d−1−1)y2d−1

j for j > i.

So, the second part of the lemma is proved. �

Denote by It = (t+ 1, t+ 2, . . . , k) for 1 6 t 6 k. Set

Y(t,k,d) =

k∑
u=t

φ(t;It)(X
2d−1−1)x2d−1

u , d > k − t+ 2.
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Lemma 3.2.6. Let y0 ∈ (Pk)k−2, 1 6 t 6 k, and yj = y0xj , 1 6 j 6 k. Then,

Y(t,k,d)y
2d−1

0 ≡ω̄(k,d)

∑
(j;J)

φ(j;J)(X
2d−1−1)y2d−1

j ,

where the sum runs over all (j; J) ∈ Nk with 1 6 j < t, J ⊂ It−1, J 6= It−1.

Proof. By Lemma 3.6 in [33], we have

Y(t,k,d) =
∑
(j;J)

φ(j;J)(X
2d−1−1)x2d−1

j +

k−t∑
u=0

Sq2u

(gu) mod(P−k (ω)), (3.2)

where the sum runs over all (j; J) ∈ Nk with 1 6 j < t, J ⊂ It−1, J 6= It−1,
ω = ((k − 1)(d−1), 1) and gu are suitable polynomials in Pk.

Observe that if y is a monomial in P−k (ω), then there is an index i, 1 6 i 6
d− 1 such that ωi(y) < k − 1 (see the proof of Proposition 2.5 in [33]), hence

yy2d−1

0 ∈ P−k (ω̄(k,d)). Since k − t < d − 1, Sq2u

(gu)y2d−1

0 = Sq2u

(guy
2d−1

0 ) for
all 0 6 u 6 k − t.

The lemma now follows from the above equalities and the relation (3.2). �
We set

D
(j)
(k,d) = {X2d−1−1z2d−1

: z ∈ Ck, νi(z) = 0, i < j, νj(z) > 0}, 1 6 j 6 3.

It is easy to see that D(k,d) = D
(1)
(k,d) ∪D

(2)
(k,d) ∪D

(3)
(k,d).

The following is a modification of Lemma 3.7 in [33].

Lemma 3.2.7. Let d be a positive integer, let y ∈ D(k,d) and let (i; I), (j; J) ∈
Nk with `(J) 6 `(I).

i) If either d > k or d = k and I 6= I1, then

p(j;J)(φ(i;I)(y)) ≡ω̄(k,d)

{
y, if (j; J) = (i; I),

0, if (j; J) 6= (i; I).

ii) If y ∈ D(1)
(k,d) and d = k, then

p(i;I)(φ(1;I1)(y)) ≡ω̄(k,d)


y, if (i; I) = (1; I1),

0 mod〈D(2)
(k,d) ∪D

(3)
(k,d)〉, if (i; I) = (2; I2),

0, otherwise .

iii) If y ∈ D(2)
(k,d) and d = k, then

p(i;I)(φ(1;I1)(y)) ≡ω̄(k,d)


y, if (i; I) = (1; I1), (1; I2), (2; I2),

0 mod〈D(3)
(k,d)〉, if (i; I) = (3; I3),

0, otherwise .
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iv) If y ∈ D(3)
(k,d) and d = k, then

p(i;I)(φ(1;I1)(y)) ≡ω̄(k,d)

{
y if I3 ⊂ I,
0, otherwise.

Proof of Proposition 3.2.4. Set D∗(k,d) = D(k,d) ∪ {X2d−1}. Denote by P(k,d)

the subspace of Pk spanned by the set{
φ(i;I)(y) : y ∈ D∗(k,d), (i; I) ∈ Nk

}
.

Let x be a monomial of degree n = (k − 1)(2d − 1) in Pk and [x]ω̄(k,d)
6= 0.

Then, we have ωi(x) = k − 1 for 1 6 i 6 d − 1. Hence, we obtain x =(∏
06t<d−1X

2t

jt

)
z2d−1

, for suitable monomial z ∈ (Pk)k−1.

By a simple computation using Lemmas 3.1.3, we see that there is (i; I) ∈
Nk such that

x =
( ∏

06t<d−1

X2t

jt

)
z2d−1

≡ω̄(k,d)
φ(i;I)(X

2d−1−1)z2d−1

,

where r = `(I) < d− 1.
We need to prove [x]ω̄(k,d)

∈ [P(k,d)]ω̄(k,d)
. The proof of this fact is based

on Lemmas 3.2.5 and 3.2.6. It is divided into many cases, which are similar to
the ones of Proposition 3.3 in [33]. However, the relation ≡ω̄(k,d)

is used in the
proof instead of ≡.

Suppose x ∈ Pk(ω̄(k,d)). Since [x]ω̄(k,d)
∈ [P(k,d)]ω̄(k,d)

, we have

x ≡ω̄(k,d)

∑
(y,(i;I))∈D(k,d)×Nk

γ(y,(i;I))φ(i;I)(y) +
∑

(i;I)∈Nk

δ(i;I)φ(i;I)(X
2d−1),

where γ(y,(i;I)), δ(i;I) ∈ F2. Since [x]ω(k,d)
= [φ(i;I)(y)]ω(k,d)

= 0 for all y ∈
D(k,d), from the last equality, one gets∑

(i;I)∈Nk

δ(i;I)φ(i;I)(X
2d−1) ≡ω(k,d)

0.

Now using Proposition 3.2.1, we obtain δ(i;I) = 0 for all (i; I) ∈ Nk. So, the
space QPk(ω̄(k,d)) is spanned by the set B̄(d).

To prove the set B̄(d) is linearly independent in QPk(ω̄(k,d)), we assume
that there is a linear relation

S =
∑

y∈D(k,d)

γyφ(i;I)(y) ≡ω̄(k,d)
0,

where γy ∈ F2 for all y ∈ D(k,d). By Lemma 3.1.5, p(j;J)(S) ≡ω̄(k,d)
0 for all

(j; J) ∈ Nk. Based on Lemma 3.2.7, we explicitly compute p(j;J)(S) in terms of
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the monomials in Dk,d. Using Corollary 3.2.3 and the relations p(j;J)(S) ≡ω̄(k,d)

0 for all (j; J) ∈ Nk, we will obtain γy = 0 for all y ∈ D(k,d).
Note that the argument in this proof is similar to the one as given in the

proof of Proposition 3.3 in [33]. We refer the reader to [33] for the similar
details of the proof. �

4 An application to the fifth Singer algebraic
transfer

In this section, we prove Theorem 1.3 by a direct computation. Note that the
computations are very complicated, so present here some main results. We
refer the readers to the online version [36] for intermediate calculations.

From now on, we denote by Bk(n) the set of all admissible monomials of
degree n in Pk,

B0
k(n) = Bk(n) ∩ P 0

k , B
+
k (n) = Bk(n) ∩ P+

k .

For a weight vector ω of degree n, we set

Bk(ω) = Bk(n) ∩ Pk(ω), B0
k(ω) = B0

k(n) ∩ Pk(ω), B+
k (ω) = B+

k (n) ∩ Pk(ω).

Then, [Bk(ω)]ω and [B+
k (ω)]ω, are respectively the basses of the F2-vector

spaces QPk(ω) and QP+
k (ω) := QPk(ω) ∩QP+

k .
For any monomials z, z1, z2, . . . , zm in Pk(ω) with m > 1, we denote

Σk(z1, z2, . . . , zm) = {σzt : σ ∈ Σk, 1 6 t 6 m} ⊂ Pk(ω),

〈[Σk(z1, z2, . . . , zm)]ω〉 = Span([Σk(z1, z2, . . . , zm)]ω),

[B(z1, z2, . . . , zm)]ω = [Bk(ω)]ω ∩ 〈[Σk(z1, z2, . . . , zm)]ω〉,

p(z) =
∑

y∈Bk(n)∩Σk(z)

y.

Obviously, 〈[Σk(z1, z2, . . . , zm)]ω〉 is an Σk-submodule of QPk(ω). By Theorem
2.2.6, if ω is the weight vector of the minimal spike of degree n, then [B]ω = [B].
So, we write [B(z1, z2, . . . , zm)]ω = [B(z1, z2, . . . , zm)].

4.1 Computation of QPk(ω(k,d))
GLk

Denote ud,j = φ(1;Ik+1−j)(X
2d−1), j 6 min{k, d}. In this subsection we prove

the following.

Proposition 4.1.1. Let d be a positive integer. Then

QPk(ω(k,d))
GLk =

{
0, if d < k,

〈[qd]ω(k,d)
〉, if d > k.
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Here qd =
∑

(i;I)∈Nk
φ(i,I)(X

2d−1) =
∑k

j=1 p(ud,j).

From the results in Section 3, we have the direct summand decomposition
of the Σk-modules:

QPk(ω(k,d)) =

min{k,d}⊕
j=1

〈[Σk(ud,j)]ω(k,d)
〉.

By a direct computation, we easily obtain the following.

Lemma 4.1.2. For any j 6 min{k, d}, 〈[Σk(ud,j)]ω(5,d)
〉Σk = 〈[p(ud,j)]ω(k,d)

〉.

Proof of Proposition 4.1.1. Let a polynomial f ∈ Pk(ω(k,d)) such that [f ]ω(k,d)
∈

QP5(ω(k,d))
GLk . Then, [f ]ω(h,d)

∈ QPk(ω(k,d))
Σk . Using Lemma 4.1.2, we have

f ≡ω(k,d)

min{k,d}∑
j=1

γjp(ud,j),

with γj ∈ F2. By computing gk(f) + f in terms of the admissible monomials
and using Lemma 2.1.4 we see that if d < k, then

gk(f) + f ≡ω(k,d)
γdφ(1;Ik+1−d)(X

2d−1)

+
∑
j<d

(γj + γj+1)φ(1;Ik+1−j)(X
2d−1) + other terms ≡ω(k,d)

0.

The last equality implies γj = 0 for 1 6 j 6 d. If d > k, then

gk(f) + f ≡ω(k,d)

∑
16t<k

(γt + γt+1)

( ∑
I⊂I2,`(I)=t

φ(1;I)(X
2d−1)

)
≡ω(k,d)

0.

From this we obtain γj = γ1 for 2 6 j 6 k. The proposition follows. �

4.2 Computation of (QP5(ω̄(5,d))
GL5

Note that for any d > 0, we have the direct summand decomposition of the
Σ5-modules:

QP5(ω̄(5,d)) = QP 0
5 (ω̄(5,d))

⊕
QP+

5 (ω̄(5,d)).

From the results in [23], QP 0
5 (ω̄(5,d)) has a basis [B5(ūd,1)] ∪ [B5(ūd,2)],

where

ūd,1 = x2d−1−1
1 x2d−1−1

2 x2d−1
3 x2d+1−1

4 , ūd,2 = x2d−1−1
1 x2d−1

2 x2d−1
3 x2d+2d−1−1

4 .



Nguyen Sum 173

Using the results in [23], we see that dim〈[Σ5(ūd,1)]〉 = 60, 〈[Σ5(ūd,2)]〉 = 40
and there is a direct summand decompositions of the Σ5-modules:

QP 0
5 (ω̄(5,d)) = 〈[Σ5(ūd,1)]〉

⊕
〈[Σ5(ūd,2)]〉.

By a direct computation, we get

Lemma 4.2.1. 〈[Σ5(ūd,1)]〉Σ5 = 〈[p(ūd,1)]〉, 〈[Σ5(ūd,2)]〉Σ5 = 0.

For d = 1, QP5(ω̄(5,1)) = QP 0
5 (ω̄(5,1)). So, one gets the following.

Corollary 4.2.2. QP5(ω̄(5,1))
Σ5 = 〈[p(u1,1]〉.

For d > 3, we set

ūd,3 = x1x
2d−1−2
2 x2d−1−1

3 x2d−1
4 x2d+1−1

5 , ūd,4 = x1x
2d−1−2
2 x2d−1

3 x2d−1
4 x2d+2d−1−1

5 .

B computing from the results in [23], we have

dim〈[Σ5(ūd,3)]〉 = 60, dim〈[Σ5(ūd,4)]〉 = 20.

Lemma 4.2.3. For any d > 3, 〈[Σ5(ūd,3)]〉Σ5 = 〈[p(ūd,3)]〉, 〈[Σ5(ūd,4)]〉Σ5 = 0.

For d > 4, we set

ūd,5 = x3
1x

2d−1−3
2 x2d−1−2

3 x2d−1
4 x2d+1−1

5 , ūd,6 = x1x
2d−1−1
2 x2d−1−1

3 x2d−2
4 x2d+1−1

5 ,

ūd,7 = x3
1x

2d−1−3
2 x2d−1−1

3 x2d−2
4 x2d+1−1

5 , ūd,8 = x7
1x

2d−1−5
2 x2d−1−3

3 x2d−2
4 x2d+1−1

5 .

Lemma 4.2.4. For any integer d > 4,

〈[Σ5(ūd,5)]〉Σ5 = 〈[p(ūd,5)]〉, 〈[Σ5(ūd,6, ūd,7, ūd,8)]〉Σ5 = 〈[pd,1]〉.

Here the polynomial pd,1 is determined as in Section 5 of the online version
[36].

4.2.1 The case d = 2

For d = 2, by a direct computation using the results in [23], we have the direct
summand decomposition of the Σ5-modules:

QP+
5 (ω̄(5,2)) = 〈[Σ5(ū2,3)]〉

⊕
〈[Σ5(u2,4)],

where ū2,3 = x1x2x3x
2
4x

7
5, ū2,4 = x1x2x

2
3x

3
4x

5
5. By a direct computation, we

have

Lemma 4.2.5. 〈[Σ5(ū2,3)]〉Σ5 = 0 and 〈[Σ5(ū2,4)]〉Σ5 = 〈[p2,1]〉, where the
polynomial p2,1 is determined as in Section 5 of the online version [36].

From Lemmas 4.2.1 and 4.2.5, we obtain the following.

Proposition 4.2.6. QP5(ω̄(5,2))
Σ5 = 〈[p(u2,1], [p2,1]〉.
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4.2.2 The case d = 3

For d = 3, by a direct computation using the results of [23], we get the direct
summand decompositions of the Σ5-modules:

QP+
5 (ω̄(5,3)) =

5⊕
j=3

〈[Σ5(ū3,j)]〉
⊕
〈[Σ5(ū3,6, ū3,7, ū3,8, ū3,9)]〉,

where

ū3,5 = x1x
3
2x

3
3x

6
4x

15
5 , ū3,6 = x1x

3
2x

3
3x

7
4x

14
5 , ū3,7 = x3

1x
3
2x

5
3x

6
4x

11
5 ,

ū3,8 = x1x
3
2x

6
3x

7
4x

11
5 , ū3,9 = x3

1x
3
2x

5
3x

7
4x

10
5 .

We have

dim〈[Σ5(ū3,5)]〉 = 55,dim〈[Σ5(ū3,6, ū3,7, ū3,8, ū3,9)] = 220.

By a direct computation, we obtain the following.

Lemma 4.2.7. 〈[Σ5(ū3,5)]〉Σ5 = 0, 〈[Σ5(ū3,6, ū3,7, ū3,8, ū3,9)]〉Σ5 = 〈[p3,1], [p3,2]〉,
where the polynomials p3,1 and p3,2 are determines as in Section 5 of the online
version [36].

Combining this lemma and Lemmas 4.2.1, 4.2.3, we get the following result.

Proposition 4.2.8. QP5(ω̄(5,3))
Σ5 = 〈[p(ū3,1)], [p(ū3,3)], [p3,1], [p3,2]〉.

4.2.3 The case d = 4

By a direct computation using the results in [23], we have the direct summand
decomposition of the Σ5-modules:

QP+
5 (ω̄(5,4)) =

5⊕
j=3

〈[Σ5(ū4,j)]〉
⊕
〈[Σ5(ū4,6, ū4,7, ū4,8)]〉

⊕
〈[Σ5(ū4,9, . . . , ū4,15)]〉,

where

ū4,9 = x1x
7
2x

7
3x

15
4 x

30
5 , ū4,10 = x1x

7
2x

14
3 x

15
4 x

23
5 , ū4,11 = x3

1x
5
2x

7
3x

15
4 x

30
5 ,

ū4,12 = x3
1x

5
2x

14
3 x

15
4 x

23
5 , ū4,13 = x3

1x
7
2x

7
3x

13
4 x

30
5 , ū4,14 = x3

1x
7
2x

13
3 x

15
4 x

22
5 ,

ū4,15 = x7
1x

7
2x

11
3 x

13
4 x

22
5 .

Furthermore, we have dim〈[Σ5(ū4,9, . . . , ū4,15)]〉 = 335.
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Lemma 4.2.9. 〈[Σ5(ū4,9, . . . , ū4,15)]〉Σ5 = 〈[p4,2], [p4,3], [p4,4]〉, where the poly-
nomials p4,t, t = 2, 3, 4, are defined as in Section 5 of the online version [36].

The proof of this lemma is straightforward.
Combining this lemma and Lemmas 4.2.1-4.2.4, we obtain the following.

Proposition 4.2.10. We have

QP5(ω̄(5,4))
Σ5 = 〈[p(ū4,1)], [p(u4,3)], [p(u4,5)], [p4,1], [p4,2], [p4,3], [p4,4]〉.

4.2.4 The case d > 5

For d > 5, by a direct computation using the results in [23], we have the direct
summand decomposition of the Σ5-modules:

QP+
5 (ω̄(5,d)) =

5⊕
j=3

〈[Σ5(ūd,j)]〉
⊕
〈[Σ5(ūd,6, ūd,7, ūd,8)]〉

⊕
〈[Σ5(ūd,9, . . . , ū4,20)]〉,

where the monomials ūd,t, 9 6 t 6 20 are determined as in Section 4 of the
online version [36].

We also have
dim〈[Σ5(ūd,9, . . . , ūd,20)]〉 = 335.

Lemma 4.2.11. 〈[Σ5(ūd,9, . . . , ūd,20)]〉Σ5 = 〈[pd,2], [pd,3], [pd,4], [pd,5]〉, where
the polynomials pd,j , j = 2, 3, 4, 5, are determined as in Section 5 of the online
version [36].

The proof of this lemma is very complicated. It is proved by a direct
computation.

Combining this result and Lemmas 4.2.1-4.2.4, we have the following.

Proposition 4.2.12. For any d > 5, we have

QP5(ω̄(5,d))
Σ5 = 〈[p(ūd,1)], [p(ud,3)], [p(ud,5)], [pd,1], [pd,2], [pd,3], [pd,4], [pd,5]〉.

4.3 Proof of Theorem 1.3

Let f ∈ (P5)4(2d−1) such that [f ] ∈ (QP5)GL5

4(2d−1)
. Then, we have [f ] ∈

QP5(ω(5,d))
GL5 .

The case d < 5. By Proposition 4.1.1, [f ]ω(5,d)
= 0, hence [f ] ∈ QP5(ω̄(5,d))

GL5 .
For d = 1, using Corollary 4.2.2, we have f ≡ γp(ū1,1) with γ ∈ F2. By

computing g5(f) + f in terms of the admissible monomials, we obtain

g5(f) + f ≡ γx1x
3
2 + other terms ≡ 0.
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This relation implies γ = 0. The theorem is true for d = 1.
For d = 2, from Proposition 4.2.6, we have f ≡ γp(ū2,1) + δp2,1 with

γ, δ ∈ F2. By computing g5(f) + f in terms of the admissible monomials, we
get

g5(f) + f ≡ γx2x3x
3
4x

7
5 + (γ + δ)x1x

3
2x3x

2
4x

5
5 + other terms ≡ 0.

This relation implies γ = δ = 0. The theorem is proved for d = 2.
For d = 3, using Proposition 4.2.8, we have f ≡ γ1p(ū3,1) + γ2p(ū3,3) +

γ3p3,1 + γ4p3,2 with γj ∈ F2, j = 1, 2, 3, 4. A direct computation shows

g5(f) + f ≡ γ1x
7
2x

3
3x

3
4x

15
5 + γ2x1x

3
2x

2
3x

7
4x

15
5 + γ3x1x

3
2x

3
3x

7
4x

14
5

+ (γ1 + γ2 + γ3 + γ4)x1x
7
2x

3
3x

3
4x

14
5 + other terms ≡ 0.

This relation implies γj = 0, j = 1, 2, 3, 4. The theorem holds for d = 3.
For d = 4, Proposition 4.2.10 implies that f ≡ γ1p(ū4,1) + γ2p(ū4,3) +

γ3p(ū4,5)+
∑4

j=1 γ3+jp4,j with γj ∈ F2, j = 1, 2, . . . , 7. By computing g5(f)+f
in terms of the admissible monomials, we get

g5(f) + f ≡ γ1x
15
1 x

31
2 x

7
3x

7
4 + γ2x1x

7
2x

7
3x

15
4 x

30
5 + γ3x

3
1x

15
2 x

13
3 x

7
4x

22
5

+ γ4x
3
1x

7
2x

5
3x

14
4 x

31
5 + (γ5 + γ6)x15

2 x
7
3x

15
4 x

23
5 + γ6x

7
1x

15
2 x3x

23
4 x

14
5

+ γ7x1x
15
2 x

7
3x

15
4 x

22
5 + other terms ≡ 0.

From this relation we obtain γj = 0, j = 1, 2, . . . , 7. The theorem is proved for
d = 4.

The case d > 5. According to Proposition 4.1.1, [f ]ω(5,d)
= γ[qd]ω(5,d)

, with
γ ∈ F2. Hence, f = γqd + h, with h ∈ QP5(ω̄(5,d)). By a direct computation
from the relations gi(f) + f ≡ 0, i = 1, 2, 3, we get γ = 0. So, [f ] = [h] ∈
QP5(ω̄(5,d))

GL5 . Using Proposition 4.2.12, we obtain

f ≡ γ1p(ūd,1) + γ2p(ūd,3) + γ3p(ūd,5) +

5∑
j=1

γ3+jpd,j ,

where γj ∈ F2, j = 1, 2, . . . , 8. By a direct computation, we have

g5(f) + f ≡ γ1x
2d−1−1
1 x2d−1

2 x2d−1−1
3 x2d+1−1

4

+ γ2x
3
1x

2d−1
2 x2d−1−3

3 x2d−1−1
4 x2d+1−2

5 + γ3x
7
1x

2d−1
2 x2d−1−5

3 x2d+1−3
4 x2d−1−2

5

+ γ4x
3
1x

2d−1
2 x2d−1−1

3 x2d−3
4 x2d+1−2d−1−2

5 + γ5x
3
1x

2d+1−1
2 x2d−1−3

3 x2d−1−1
4 x2d−2

5

+ γ6x1x
2d−1−1
2 x2d−2

3 x2d−1
4 x2d+1−2d−1−1

5 + γ7x
7
1x

2d−1
2 x2d−1−5

3 x2d+1−2d−1−3
4 x2d−2

5

+ (γ1 + γ3 + γ7 + γ8)x3
1x

2d−1−1
2 x2d−3

3 x2d−2
4 x2d+1−2d−1−1

5 + other terms ≡ 0.

The last equality implies that γj = 0, j = 1, 2, . . . , 8. The theorem is com-
pletely proved.
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modulo 2, Ann. Inst. Fourier (Grenoble) 58 (2008) 1785-1837, MR2445834.

[21] F. P. Peterson, Generators of H∗(RP∞×RP∞) as a module over the Steenrod algebra,
Abstracts Amer. Math. Soc. No. 833 (1987) 55-89.

[22] D. V. Phuc and N. Sum, On the generators of the polynomial algebra as a module over
the Steenrod algebra, C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1035-1040. MR3419856

[23] D. V. Phuc and N. Sum, On a minimal set of generators for the polynomial algebra of
five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017)
149-162. MR3595451

[24] S. Priddy, On characterizing summands in the classifying space of a group, I, Amer.
Jour. Math. 112 (1990) 737-748, MR1073007.

[25] J. Repka and P. Selick, On the subalgebra of H∗((RP∞)n;F2) annihilated by Steenrod
operations, J. Pure Appl. Algebra 127 (1998) 273-288, MR1617199.

[26] J. H. Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod
algebra, Proc. Amer. Math. Soc. 123 (1995), 627-637, MR1254854.

[27] J. H. Silverman and W. M. Singer, On the action of Steenrod squares on polynomial
algebras II, J. Pure Appl. Algebra 98 (1995) 95-103, MR1317001.

[28] W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989) 493-523,
MR1022818.

[29] W. M. Singer, On the action of the Steenrod squares on polynomial algebras, Proc.
Amer. Math. Soc. 111 (1991), 577-583, MR1045150.

[30] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Mathematics
Studies 50, Princeton University Press, Princeton N.J (1962), MR0145525.

[31] N. Sum, The negative answer to Kameko’s conjecture on the hit problem, Adv. Math.
225 (2010), 2365-2390, MR2680169.

[32] N. Sum, On the Peterson hit problem of five variables and its applications to the fifth
Singer transfer, East-West J. of Mathematics, 16 (2014) 47-62.

[33] N. Sum, On the Peterson hit problem, Adv. Math. 274 (2015) 432-489, MR3318156.

[34] N. Sum, On the determination of the Singer transfer, Vietnam Journal of Science,
Technology and Engineering, 60(1) (2018), 3-16.

[35] N. Sum, On a construction for the generators of the polynomial algebra as a module
over the Steenrod algebra, In: Singh M., Song Y., Wu J. (eds) Algebraic Topology
and Related Topics. Trends in Mathematics. Birkhäuser/Springer, Singapore (2019),
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