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Abstract

We consider 3-Jordan algebras, i.e., the nonassociative commutative
algebras satisfying (x3y)x = x3(yx). The variety of 3-Jordan algebras
contains all Jordan algebras and all pseudo-composition algebras. We
prove that a simple 3-Jordan algebra with idempotent is either a Jordan
algebra or a pseudo-composition algebra.

1 Introduction

All algebras considered in this paper are nonassociative algebras over a
commutative associative ring R containing scalars 1

2 and 1
3 . If R is a field, we

denote it by K. By our assumptions on scalars K is of characteristic not 2 and
3.

As usual, if a, b, c are elements of an algebra, we denote the associator
(ab)c − a(bc) by (a, b, c). If B, C and D are subsets of an algebra, we denote
by (B, C, D) the set of all (b, c, d) with b ∈ B, c ∈ C and d ∈ D.

We say that an algebra A over K with idempotent e is of e-quadratic type if
there are a linear form γ : A → K and a symmetric bilinear form φ : A×A → K
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such that x2 + γ(x)x + φ(x, x)e = 0 for all x ∈ A. When A has an identity
element 1 and A is of 1-quadratic type, we say that A is a quadratic algebra.

An algebra is called alternative if it satisfies the alternative identities (x, x, y) =
0 and (y, x, x) = 0. A Jordan algebra is a commutative algebra satisfying the
Jordan identity (x2, y, x) = 0. For a classification of alternative and Jordan
algebras see Kuz’min and Shestakov [7].

A commutative algebra A over K is said to be a pseudo-composition alge-
bra if there is a nonzero symmetric bilinear form φ : A × A → K such that
x3 = φ(x, x)x for all x ∈ A. When K is algebraically closed, such an al-
gebra necessarily has an idempotent element e. In [9] Meyberg and Osborn
characterized pseudo-composition algebras with idempotent: the algebra is of
e-quadratic type, or modulo the radical of its bilinear form is of e-quadratic
type, or can be constructed starting with an alternative quadratic algebra.
Any proper ideal of a pseudo-composition algebra is contained in the radi-
cal of its bilinear form. Therefore, if this bilinear form is nondegenerate then
the pseudo-composition algebra is simple. More results on pseudo-composition
algebras can be found in the papers by Elduque and Okubo [4, 5].

When studying a variety determined by a class of algebras, one often asks
if the variety is finitely based. An effective way to start looking for the basis is
to construct the polynomial identities in the variety of smallest degree. For the
variety determined by pseudo-composition algebras, the identities of smallest
degree were determined by Giuliani and Peresi [6]. These authors showed that
(x3, y, x) = 0 is an identity that holds in all pseudo-composition algebras.
They also showed that all polynomial identities of degree five or less of pseudo-
composition algebras are consequences of commutativity and (x3, y, x) = 0.

We call the identity (x3, y, x) = 0 the 3-Jordan identity. We say that a
commutative algebra satisfying (x3, y, x) = 0 is a 3-Jordan algebra.

The variety of 3-Jordan algebras contains all Jordan algebras and all pseudo-
composition algebras. Since the variety of 3-Jordan algebras arises naturally as
a generalization of both Jordan and pseudo-composition algebras, the variety
of 3-Jordan algebras deserves to be studied.

The structure of the simple algebras is one of the main questions in the
theory of algebras. In this paper, we prove that a simple 3-Jordan algebra with
idempotent is either a Jordan algebra or a pseudo-composition algebra.

2 Peirce Decomposition

We denote by f(a, b, c, y, d) = 0, the complete linearization of (x3, y, x) = 0.
Let A be a 3-Jordan algebra and assume that A has an idempotent e.

Let Le denote the left multiplication operator: Le(a) = ea (∀a ∈ A). From
f(a, e, e, e, e) = 0 we obtain (2L4

e − L3
e − 2L2

e + Le)(a) = 0 for any a ∈ A. This
means that Le satisfies the polynomial 2t4− t3 −2t2 + t and Le has eigenvalues
0, 1,−1, 1

2 . Therefore A has the Peirce decomposition A = A1 ⊕A 1
2
⊕A−1 ⊕A0
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with Aλ = {z ∈ A | ez = λz}. We indicate the unique decomposition of x ∈ A
by x = [x]1 +[x] 1

2
+[x]−1 +[x]0. We denote by aλ, bλ, cλ, dλ arbitrary elements

of Aλ (λ = 1, 1
2
,−1, 0).

We now derive the relations among the subspaces Aλ.
Let a ∈ A1. For b ∈ A1 we obtain from f(a, e, e, b, e) = 0 that [ab] 1

2
+

4[ab]−1 + 2[ab]0 = 0. Therefore ab = [ab]1, and we have that A2
1 ⊂ A1. If

b ∈ A 1
2

then we get from f(a, b, e, e, e) = 0 that [ab]1 + 3[ab]−1 + [ab]0 = 0
and thus A1A 1

2
⊂ A 1

2
. If b ∈ A−1, f(a, e, e, b, e) = 0 gives 4[ab]1 + 3[ab] 1

2
+

2[ab]0 = 0. Therefore A1A−1 ⊂ A−1. If b ∈ A0, f(a, b, e, e, e) = 0 gives
4[ab]1 + 3[ab] 1

2
+ 4[ab]−1 + 4[ab]0 = 0. Therefore A1A0 = 0.

Now, let a ∈ A 1
2
. For b ∈ A 1

2
we obtain from f(a, b, e, e, e) = 0 that

[ab] 1
2

= 0; it follows that A2
1
2

⊂ A1 + A−1 + A0. If b ∈ A−1 the identity
f(a, b, e, e, e) = 0 yields [ab]−1 = 0 and we get A 1

2
A−1 ⊂ A1 + A 1

2
+ A0. If

b ∈ A0 the identity f(a, b, e, e, e) = 0 gives [a, b]1−3[ab]−1+[ab]0 = 0. Therefore
A 1

2
A0 ⊂ A 1

2
.

Next, let a ∈ A−1. For b ∈ A−1, f(a, b, e, e, e) = 0 gives [ab] 1
2
− 16[ab]−1 =

0. Therefore A2−1 ⊂ A1 + A0. If b ∈ A0, using f(a, b, e, e, e) = 0 we get
4[a−1b0]1 + 3[a−1b0] 1

2
+ 36[a−1b0]−1 + 4[a−1b0]0 = 0. Therefore A−1A0 = 0.

Finally, for a, b ∈ A0 we use f(a, e, e, b, e) = 0 to obtain 2[ab]1 + [ab] 1
2
−

2[ab]−1 = 0 and then A2
0 ⊂ A0.

We summarize these results in the following proposition.

Proposition 1 Let A be a 3-Jordan algebra. If A contains an idempotent e,
then A has the Peirce decomposition

A = A1 ⊕ A 1
2
⊕ A−1 ⊕ A0.

Furthermore,

A2
1 ⊂ A1, A1A 1

2
⊂ A 1

2
, A1A−1 ⊂ A−1, A1A0 = 0,

A2
1
2
⊂ A1 + A−1 + A0, A 1

2
A−1 ⊂ A1 + A 1

2
+ A0, A 1

2
A0 ⊂ A 1

2
,

A2
−1 ⊂ A1 + A0, A−1A0 = 0,

A2
0 ⊂ A0.

3 Examples and First Results

An algebra A is called power-associative if each x ∈ A generates an
associative subalgebra. Any alternative algebra and any Jordan algebra is
power-associative.

Example 1 Any commutative algebra A1 which is nilpotent of index five is
a 3-Jordan algebra which has no idempotent. The algebra A1 need not be
power-associative or Jordan.
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Bernstein algebras. A commutative algebra A over K is called a Bernstein
algebra if there is a nonzero algebra homomorphism ω : A → K such that
x2x2 = ω(x)2x2 for any x ∈ A. Bernstein algebras always have idempotents (for
example, a2 with w(a) = 1). An idempotent e with ω(e) = 1 of A determines
the Peirce decomposition A = A1⊕A 1

2
⊕A0, and A1 = Ke, A2

1
2
⊂ A0, A 1

2
A0 ⊂

A 1
2
, A2

0 ⊂ A 1
2

and A 1
2
A2

0 = 0. The Bernstein algebra A is a Jordan algebra if
and only if x3 = ω(x)x2, or equivalently A2

0 = 0 and (uz)z = 0 (∀u ∈ A 1
2
, z ∈

A0). See Lyubich [8], Alcalde, Baeza and Burgueño [1], and Walcher [11].

Proposition 2 Let A be a Bernstein algebra. Then A is a Jordan algebra if
and only if it is a 3-Jordan algebra.

Proof If A is a Jordan algebra then A is a 3-Jordan algebra. Conversely,
assume that A is a 3-Jordan algebra. By Proposition 1 A2

0 ⊂ A0. But we
have also that A2

0 ⊂ A 1
2
. Hence A2

0 = 0. For all u ∈ A 1
2
, z ∈ A0, from

f(e, u, z, z, e) = 0 we obtain (uz)z = 0. It follows that A is a Jordan algebra.

From the classification of Bernstein-Jordan algebras of dimension 5 over the
real field given by Correa and Peresi [2], we take the following example.

Example 2 Let A2 be the commutative algebra over the real field R with basis
{e, e1, e2, e3, e4} and nonzero products e2 = e, ee1 = 1

2
e1, ee4 = 1

2
e4, e

2
1 = e3

and e1e2 = e4. This algebra has Peirce decomposition A2 = Re ⊕ A 1
2
⊕ A0,

where A 1
2

=< e1, e4 > and A0 =< e2, e3 >. For any x ∈ A2, x3 = ω(x)x2,
where ω : A2 → R is the algebra homomorphism defined by ω(e) = 1, ω(ei) =
0 (1 ≤ i ≤ 4).

Train algebras of rank three. A commutative algebra A over K with a
nonzero algebra homomorphism ω : A → K is a train algebra of rank three if it
satisfies an identity x3 = (1+δ)ω(x)x2−δω(x)2x (for some δ ∈ K). When δ �=
1
2
, such an algebra A always has an idempotent e and a Peirce decomposition

A = Ke⊕A 1
2
⊕Aδ , where ker(ω) = A 1

2
⊕Aδ and A2

1
2
⊂ Aδ, A 1

2
Aδ ⊂ A 1

2
, A2

δ = 0

(see Costa [3]). There are train algebras of rank three with δ = 1
2

which have
no idempotent.

Proposition 3 Let A be a train algebra of rank three. Then A is a 3-Jordan
algebra if and only if it is a Jordan algebra or a pseudo-composition algebra.
Furthermore, if δ �= 1,−1 and A is a 3-Jordan algebra then A is a Bernstein-
Jordan algebra.

Proof Assume that A is a 3-Jordan algebra. If δ = −1 then x3 = ω(x)2x and
A is a pseudo-composition algebra. Assume that δ �= −1. Given any x and y
in A, 0 = (x3, y, x) = (1 + δ)ω(x)(x2, y, x). Therefore ω(x)(x2, y, x) = 0. If
ω(x) �= 0 then (x2, y, x) = 0. Since ω is nonzero there is an a ∈ A such that
ω(a) �= 0. If ω(x) = 0 then, for any λ ∈ K, since ω(a+λx) = ω(a) �= 0, we have
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((a + λx)2, y, a + λx) = 0. By characteristic not 2 and 3 we get (x2, y, x) = 0.
In both cases we get (x2, y, x) = 0. Therefore A is a Jordan algebra. The
converse implication is clear.

Assume now that δ �= 1,−1 and A is a 3-Jordan algebra. We know that
A is Jordan and so x2x2 = x3x. We will prove that A is a Bernstein algebra.
By linearization of x3 = (1 + δ)ω(x)x2 − δω(x)2x we get 3x4 = (3 + 4δ +
2δ2)ω(x)2x2+(−4δ−2δ2)ω(x)3x. By multiplying x3 = (1+δ)ω(x)x2−δω(x)2x
by x we obtain x4 = (δ2 +δ+1)ω(x)2x2−(δ+δ2)ω(x)3x. Adding (1+δ) times
the first equation to −(4 + 2δ) times the second equation gives (δ − 1)x4 =
(δ − 1)ω(x)2x2. Since δ �= 1, x2x2 = ω(x)2x2.

Costa [3] classified the train algebras of rank three having dimension 5.
From this classification we take the following class of examples.

Example 3 Let A3 be the commutative algebra with basis {e, e1, e2, e3, e4} and
nonzero products e2 = e, ee1 = 1

2e1, ee2 = −e2, ee3 = −e3, ee4 = 1
2e4, e

2
1 = e3

and e1e2 = ke4 (k ∈ K, k �= 0). The Peirce decomposition is A3 = Ke ⊕
A 1

2
⊕ A−1, where A 1

2
=< e1, e4 > and A−1 =< e2, e3 >. If ω : A3 → K is

the algebra homomorphism defined by w(e) = 1, w(ei) = 0 (1 ≤ i ≤ 4) then
x3 = ω(x)2x. Therefore A3 is a pseudo-composition algebra.

Algebras of rank three. A commutative algebra A over K is an algebra of
rank three if there are a linear form γ : A → K and a symmetric bilinear form
φ : A × A → K such that x3 = γ(x)x2 + φ(x, x)x for all x ∈ A. Walcher
[12] proved that (with the exception of one class) finite dimensional algebras
of rank three can be constructed either from a quadratic alternative algebra or
from a representation of the Clifford algebra, and characterized the semisimple
and simple rank three algebras.

Proposition 4 Let A be an algebra of rank three. Then A is a 3-Jordan algebra
if and only if A is a Jordan algebra or a pseudo-composition algebra.

Proof As noticed before, Jordan and pseudo-composition algebras are 3-Jordan
algebras. Assume now that A is a 3-Jordan algebra. By hypothesis we have
x3 = γ(x)x2 + φ(x, x)x for all x ∈ A. If γ = 0 and φ = 0 we have x3 = 0
and it follows that A is a Jordan algebra. When γ = 0 and φ �= 0 we have
x3 = φ(x, x)x and A is a pseudo-composition algebra. Finally, assume that
γ �= 0. Then for some a ∈ A we have γ(a) �= 0. Given any x and y in A,
0 = (x3, y, x) = γ(x)(x2, y, x). If γ(x) �= 0 we have (x2, y, x) = 0. If γ(x) = 0
then, for any λ ∈ K, since γ(a+λx) = γ(a) �= 0, we have ((a+λx)2 , y, a+λx) =
0. By characteristic not 2 and 3 we get (x2, y, x) = 0. In both cases we get
(x2, y, x) = 0. Therefore A is a Jordan algebra.

A class of examples. Let V be a vector space of dimension ≥ 1 over K and
φ : V ×V → K a symmetric bilinear form. We define an algebra J(φ, V ) on the
vector space K⊕V by defining multiplication: (α+x)(β+y) = (αβ+φ(x, y))+
(αy + βx). The algebra J(φ, V ) is a Jordan algebra called the Jordan algebra
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of φ. If J is any Jordan algebra over K and P is any pseudo-composition
algebra over K, then the direct sum J ⊕ P is a 3-Jordan algebra. We denote
by J(φ, V, P ) the algebra J(φ, V )⊕P and call it the 3-Jordan algebra of φ and
P .

Proposition 5 Let J(φ, V ) be the Jordan algebra of a symmetric bilinear form
φ : V × V → K. Let P be a pseudo-composition algebra over K. Then the
idempotents of J(φ, V, P ) are 1, 1

2 + a, c, 1 + c, 1
2 + a + c, where c is an

idempotent of P and a ∈ V such that φ(a, a) = 1
4 . Moreover, if P = Kc ⊕

A
(c)
1
2

⊕ A
(c)
−1 is the Peirce decomposition of P determined by c, then the Peirce

subspaces of J(φ, V, P ) with respect to an idempotent e are:
(i) A1 = K ⊕ V, A 1

2
= 0, A−1 = 0, A0 = P if e = 1;

(ii) A1 = K(1 + 2a), A 1
2

= {x ∈ V : φ(a, x) = 0}, A−1 = 0, A0 =
K(1 − 2a) ⊕ P if e = 1

2
+ a;

(iii) A1 = Ke, A 1
2

= A
(c)
1
2

, A−1 = A
(c)
−1, A0 = K ⊕ V if e = c;

(iv) A1 = K ⊕ V ⊕ Kc, A 1
2

= A
(c)
1
2

, A−1 = A
(c)
−1, A0 = 0 if e = 1 + c;

(v) A1 = K(1 + 2a) ⊕ Kc, A 1
2

= {x ∈ V : φ(a, x) = 0} ⊕ A
(c)
1
2

,

A−1 = A
(c)
−1, A0 = K(1 − 2a) if e = 1

2
+ a + c.

Proof Let e = α + a + c (α ∈ K, a ∈ V, c ∈ P ). We have e2 = α2 + φ(a, a) +
2αa + c2 and e2 = e gives α2 + φ(a, a) = α, 2αa = a, c2 = c. If a = 0 and
α = 0 then e = c. If a = 0 and α �= 0 then α = 1 and e = 1 + c. If a �= 0 then
α = 1

2
and e = 1

2
+a+ c with φ(a, a) = 1

4
. Hence the idempotents of J(φ, V, P )

are as stated.
We give a proof for (v). The proofs of (i), (ii), (iii) and (iv) are analogous.

Let e = 1
2 + a + c and y = β + x + d (β ∈ K, x ∈ V, d ∈ P ). If ey = y we

obtain d ∈ A
(c)
1 = Kc and x = 2βa, hence A1 = K(1 + 2a) ⊕ Kc. When

ey = 1
2
y we have β = 0, φ(a, x) = 0 and d ∈ A

(c)
1
2

. For ey = −y we have
3β = −2φ(a, x), 3x = −2βa and cd = −d; it follows that 9β = −2φ(a, 3x) =
−2φ(a,−2βa) = 4βφ(a, a) = β, i.e., β = 0, and thus x = 0; hence A−1 = A

(c)
−1.

Finally, for ey = 0y we obtain x = −2βa and d = 0, hence A0 = K(1 − 2a).

4 Further Identities

In this section we obtain all degree three identities involving elements
in the Peirce spaces A1, A 1

2
, A−1 and A0. We do this by making all possible

substitutions in f(a, b, c, y, d) = 0.

Lemma 1 Let A be a 3-Jordan algebra and assume that A has a Peirce de-
composition A = A1 ⊕ A 1

2
⊕ A−1 ⊕ A0. Then the following identities hold:
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(a1b1)c 1
2

= a1(b1c 1
2
) + b1(a1c 1

2
), (1)

−(a1b1)c−1 = a1(b1c−1) = b1(a1c−1), (2)
a1[b 1

2
c 1

2
]
1

= [(a1b 1
2
)c 1

2
]
1

+ [(a1c 1
2
)b 1

2
]
1
, (3)

a1[b 1
2
c 1

2
]−1

= −2 [(a1b 1
2
)c 1

2
]−1

= −2 [b 1
2
(a1c 1

2
)]−1

, (4)

[(a1b 1
2
)c 1

2
]
0

= [b 1
2
(a1c 1

2
)]

0
, (5)

a1[b 1
2
c−1]

1
= 2 [(a1b 1

2
)c−1]

1
= −[b 1

2
(a1c−1)]

1
, (6)

2 a1[b 1
2
c−1] 1

2

= 2 [(a1b 1
2
)c−1] 1

2

= −[b 1
2
(a1c−1)] 1

2

, (7)

2 [(a1b 1
2
)c−1]

0
= −[b 1

2
(a1c−1)]

0
, (8)

(a1, b 1
2
, c0) = 0, (9)

a1[b−1c−1]1 = −[(a1b−1)c−1]1 = −[b−1(a1c−1)]1, (10)
(b−1, a1, c−1) = 0, (11)

3 [a2
1
2
]
1
a 1

2
= 3 [a2

1
2
]
0
a 1

2
+ [[a2

1
2
]
−1

a 1
2
]
1
2

, (12)

3[a 1
2
b 1

2
]
1
c−1 = −[[a 1

2
c−1] 1

2

b 1
2
]
−1

− [a 1
2
[b 1

2
c−1] 1

2

]
−1

, (13)

[(a 1
2
, c0, b 1

2
)]

1
= 0, (14)

[(a 1
2
c0)b 1

2
]−1

= 0, (15)

c0[a 1
2
b 1

2
]
0

= [(c0a 1
2
)b 1

2
]
0

+ [a 1
2
(c0b 1

2
)]

0
, (16)

−3a 1
2
[b−1c−1]1 + 3a 1

2
[b−1c−1]0 = [[a 1

2
b−1] 1

2

c−1]
1
2

+ [[a 1
2
c−1] 1

2

b−1]
1
2

, (17)

[a 1
2
b−1]

1
c−1 = −[a 1

2
c−1]

1
b−1, (18)

(a 1
2
c0)b−1 = 0, (19)

(a 1
2
b−1)c0 = 0, (20)

(b0c0)a 1
2

= c0(b0a 1
2
) + b0(c0a 1

2
), (21)

[a−1b−1]0c0 = 0. (22)

Proof Identity f(e, b1, c 1
2
, a1, e) = 0 reduces to (1).

Identity f(a1 , e, c−1, b1, e) simplifies to (a1b1)c−1+2(a1c−1)b1−(b1c−1)a1 =
0, and f(e, b1, c−1, a1, e) = 0 to (a1b1)c−1 − (a1c−1)b1 + 2(b1c−1)a1; from these
two equations we obtain (2).

Identity f(a1 , b 1
2
, e, c 1

2
, e) = 0 gives

−[b 1
2
c 1

2
]
1
a1 + [(a1b 1

2
)c 1

2
]
1

+ [(a1c 1
2
)b 1

2
]
1

= 0,

−3[(a1b 1
2
)c 1

2
]−1

+ [(a1c 1
2
)b 1

2
]−1

− [b 1
2
c 1

2
]−1

a1 = 0,

−[(a1b 1
2
)c 1

2
]
0

+ [(a1c 1
2
)b 1

2
]
0

= 0,
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and f(a1 , e, c 1
2
, b 1

2
, e) = 0 gives

[(a1b 1
2
)c 1

2
]−1

− 3[(a1c 1
2
)b 1

2
]−1

− [b 1
2
c 1

2
]−1

a1 = 0.

From these four equations we obtain (3), (4) and (5).
Identity f(a1 , b 1

2
, c−1, e, e) = 0 yields

2[(a1b 1
2
)c−1]

1
+ [(a1c−1)b 1

2
]
1

= 0,

2[(a1b 1
2
)c−1]

0
+ [(a1c−1)b 1

2
]
0

= 0.

From identity f(a1, b 1
2
, e, c−1, e) = 0 we obtain

−[b 1
2
c−1]

1
a1 + 4[(a1b 1

2
)c−1]

1
+ [(a1c−1)b 1

2
]
1

= 0,

3[(a1b 1
2
)c−1] 1

2

− [b 1
2
c−1] 1

2

a1 + [(a1c−1)b 1
2
] 1
2

= 0.

We use identity f(a1, e, c−1, b 1
2
, e) = 0 to get

[(a1b 1
2
)c−1] 1

2

− [b 1
2
c−1] 1

2

a1 = 0.

These five equations give (6), (7) and (8).
Identity f(e, b 1

2
, c0, a1, e) = 0 reduces to (9).

From f(a1, b−1, e, c−1, e) = 0 we get

−[b−1c−1]1a1 − 2[(a1b−1)c−1]1 + [(a1c−1)b−1]1 = 0,

−[(a1b−1)c−1]0 + [(a1c−1)b−1]0 = 0.

Identity f(a1 , e, c−1, b−1, e) = 0 gives

−[b−1c−1]1a1 + [(a1b−1)c−1]1 − 2[(a1c−1)b−1]1 = 0.

And these three equations yield (10) and (11).
Identity f(a 1

2
, a 1

2
, a 1

2
, e, e) = 0 simplifies to (12).

Identity (13) is the simplified form of f(a 1
2
, b 1

2
, c−1, e, e) = 0.

Identity f(a 1
2
, b 1

2
, c0, e, e) = 0 reduces to

[[a 1
2
c0] 1

2

b 1
2
]
−1

+ [[b 1
2
c0] 1

2

a 1
2
]
−1

= 0.

Identity f(a 1
2
, e, c0, b 1

2
, e) = 0 implies

[[a 1
2
c0] 1

2

b 1
2
]
1
− [[b 1

2
c0] 1

2

a 1
2
]
1

= 0,

3[[a 1
2
c0] 1

2

b 1
2
]
−1

+ [[b 1
2
c0] 1

2

a 1
2
]
−1

= 0,

−[(a 1
2
c0)b 1

2
]
0
− [(b 1

2
c0)a 1

2
]
0

+ [a 1
2
b 1

2
]
0
c0 = 0.
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From these four equations we obtain (14), (15) and (16).
Identity f(a 1

2
, b−1, c−1, e, e) = 0 yields

−3[b−1c−1]1a 1
2
− [[a 1

2
b−1] 1

2

c−1]
1
2

− [[a 1
2
c−1] 1

2

b−1]
1
2

+ 3[b−1c−1]0a 1
2

= 0,

[a 1
2
b−1]

1
c−1 + [a 1

2
c−1]

1
b−1 = 0,

and these two equations give (17) and (18).
We use f(a 1

2
, e, c0, b−1, e) = 0 to obtain

[(a 1
2
c0)b−1]

1
= 0,

[a 1
2
b−1] 1

2

c0 + 3[[a 1
2
c0] 1

2

b−1]
1
2

= 0,

2[(a 1
2
c0)b−1]

0
+ [a 1

2
b−1]

0
c0,

and f(e, b−1, c0, a 1
2
, e) = 0 to get

[a 1
2
b−1] 1

2

c0 − [(a 1
2
c0)b−1] 1

2

= 0,

−[(a 1
2
c0)b−1]

0
+ [a 1

2
b−1]

0
c0 = 0.

These five identities imply (19) and (20).
Identity f(a 1

2
, b0, e, c0, e) = 0 reduces to (21) and f(a−1 , e, c0, b−1, e) = 0

simplifies to (22).

5 Annihilators of A−1

This section contains results which will be used in Section 7.

Lemma 2 Let A be a 3-Jordan algebra and assume that A has a Peirce de-
composition A = A1 ⊕ A 1

2
⊕ A−1 ⊕ A0. Then we have the following equations:

(A1, A1, A1)A−1 = 0, (23)
[(A1, A 1

2
, A1)A−1]

1
= 0, [(A1, A 1

2
, A1)A−1] 1

2

= 0, (24)

[(A 1
2
, A1, A 1

2
)]

1
A−1 = 0. (25)

Proof Using (2) we obtain

(a1, b1, c1)d−1 = ((a1b1)c1)d−1 − (a1(b1c1))d−1 =
−(a1b1)(c1d−1) + a1((b1c1)d−1) = a1(b1(c1d−1)) − a1(b1(c1d−1)) = 0,

and this proves (23).
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By (6) we obtain

[(a1(b1c 1
2
))d−1]

1
=

1
2
a1[(b1c 1

2
)d−1]

1
= −1

4
a1[c 1

2
(b1d−1)]

1
=

−1
2
[(a1c 1

2
)(b1d−1)]

1
= [(b1(a1c 1

2
))d−1]

1
,

i.e., [(a1, c 1
2
, b1)d−1]

1
= 0. By (7) we have

[(a1(b1c 1
2
))d−1] 1

2

= a1[(b1c 1
2
)d−1] 1

2

= −1
2
a1[c 1

2
(b1d−1)] 1

2

=

−1
2
[(a1c 1

2
)(b1d−1)] 1

2

= [(b1(a1c 1
2
))d−1] 1

2

,

i.e., [(a1, c 1
2
, b1)d−1] 1

2

= 0. This proves (24).

Identity (13) gives

[(a1b 1
2
)c 1

2
]
1
d−1 = −1

3
[[(a1b 1

2
)d−1] 1

2

c 1
2
]
−1

− 1
3
[(a1b 1

2
)[c 1

2
d−1] 1

2

]
−1

.

Then it follows by (7) and (4) that

[(a1b 1
2
)c 1

2
]
1
d−1 = −1

3
[(a1[b 1

2
d−1] 1

2

)c 1
2
]
−1

− 1
3
[b 1

2
(a1[c 1

2
d−1] 1

2

)]
−1

.

Using commutativity

[(a1b 1
2
)c 1

2
]
1
d−1 = −1

3
[(a1[b 1

2
d−1] 1

2

)c 1
2
]
−1

− 1
3
[(a1[c 1

2
d−1] 1

2

)b 1
2
]
−1

.

Since the right-hand side of this last equation is symmetric in b 1
2

and c 1
2

we
get [(b 1

2
, a1, c 1

2
)]

1
d−1 = 0. We have proved (25).

6 Annihilator Ideals

Let A be a 3-Jordan algebra and assume that A has a Peirce decompo-
sition A = A1 ⊕ A 1

2
⊕ A−1 ⊕ A0. We let

I = {x ∈ A1 | xA−1 = 0}, J = I + A 1
2
I + [A 1

2
(A 1

2
I)]

0
,

M = {y ∈ A 1
2
| yA 1

2
⊂ A1, yA−1 = 0}.

Throughout the rest of the paper, the letters I, J and M are reserved for these
sets.

Lemma 3 The set J is an ideal of A.
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Proof We have to prove that AiJ ⊂ J (i = 1, 1
2
,−1, 0). Throughout the whole

proof we use the notation that the letter x represents an element of I.
We first show that A1J ⊂ J . By (2) we get (a1x)b−1 = −a1(xb−1) = 0.

Therefore A1I ⊂ I. We obtain by (1) that a1(xa 1
2
) = (a1x)a 1

2
−x(a1a 1

2
) ∈ A 1

2
I.

Therefore A1(A 1
2
I) ⊂ A 1

2
I. We have that A1[A 1

2
(A 1

2
I)]

0
⊂ A1A0 = 0.

We next show that A−1J ⊂ J . By definition of I, A−1I = 0. Using (6),
(7) and (8) we obtain (xa 1

2
)b−1 = −1

2a 1
2
(xb−1) = 0. Therefore A−1(A 1

2
I) = 0.

We have A−1[A 1
2
(A 1

2
I)]

0
⊂ A−1A0 = 0.

We now show that A0J ⊂ J . We have that A0I ⊂ A0A1 = 0. By (9)
A0(A 1

2
I) ⊂ (A0A 1

2
)I ⊂ A 1

2
I. Using this and (16) we get

A0[A 1
2
(A 1

2
I)]

0
⊂ [(A0A 1

2
)(A 1

2
I)]

0
+ [A 1

2
(A0(A 1

2
I))]

0
⊂ [A 1

2
(A 1

2
I)]

0
.

We finally show that A 1
2
J ⊂ J . It is clear that A 1

2
I ⊂ J . We now consider

the product A 1
2
(A 1

2
I). Using identity (4) we get [(xa 1

2
)b 1

2
]−1

= −1
2x[a 1

2
b 1

2
]−1

=
0 so that we know that A 1

2
(A 1

2
I) ⊂ A1 +A0. We now show that [A 1

2
(A 1

2
I)]

1
⊂

I. Identity (13), (7) and (4) yield

3[(xa 1
2
)b 1

2
]
1
c−1 = −[[(xa 1

2
)c−1] 1

2

b 1
2
]
−1

− [(xa 1
2
)[b 1

2
c−1] 1

2

]
−1

=

1
2
[[a 1

2
(xc−1)] 1

2

b 1
2
]
−1

+
1
2
x[a 1

2
[b 1

2
c−1] 1

2

]
−1

= 0.

We have shown that A 1
2
(A 1

2
I) ⊂ [A 1

2
(A 1

2
I)]

1
+[A 1

2
(A 1

2
I)]

0
⊂ I+[A 1

2
(A 1

2
I)]

0
⊂

J . It remains to show that [A 1
2
(A 1

2
I)]

0
A 1

2
⊂ A 1

2
I. The linearized form of (12)

gives

3[(xa 1
2
)b 1

2
]
0
c 1

2
+ 3[b 1

2
c 1

2
]
0
(xa 1

2
) + 3[c 1

2
(xa 1

2
)]

0
b 1

2
=

3[(xa 1
2
)b 1

2
]
1
c 1

2
+ 3[b 1

2
c 1

2
]
1
(xa 1

2
) + 3[c 1

2
(xa 1

2
)]

1
b 1

2

−[(xa 1
2
)b 1

2
]−1

c 1
2
− [b 1

2
c 1

2
]−1

(xa 1
2
) − [c 1

2
(xa 1

2
)]−1

b 1
2
.

By what we have already proved each summand of the right-hand side of
this equation is zero or is an element of A 1

2
I. Also, by (9), [b 1

2
c 1

2
]
0
(xa 1

2
) =

([b 1
2
c 1

2
]
0
a 1

2
)x ∈ A 1

2
I. Thus

[(xa 1
2
)b 1

2
]
0
c 1

2
+ [(xa 1

2
)c 1

2
]
0
b 1

2
∈ A 1

2
I.

Then we obtain also that

−[(xb 1
2
)c 1

2
]
0
a 1

2
− [(xb 1

2
)a 1

2
]
0
c 1

2
∈ A 1

2
I.

[(xc 1
2
)a 1

2
]
0
b 1

2
+ [(xc 1

2
)b 1

2
]
0
a 1

2
∈ A 1

2
I.

Adding these last three equations and using (5) we obtain that 2[(xa 1
2
)c 1

2
]
0
b 1

2
∈

A 1
2
I. Hence A 1

2
[A 1

2
(A 1

2
I)]

0
⊂ A 1

2
I. Therefore A 1

2
J ⊂ J .



78 A Variety Containing Jordan and Pseudo-Composition Algebras

Lemma 4 If A0 = 0 and I = 0, then M is an ideal of A.

Proof Let y ∈ M . First, we prove that A1M ⊂ M . We have (a1y)b 1
2

=
[(a1y)b 1

2
]
1
+[(a1y)b 1

2
]−1

. Then, since [(a1y)b 1
2
]−1

= −1
2a1[yb 1

2
]−1

= 0 by (4), it
follows that (a1y)b 1

2
= [(a1y)b 1

2
]
1
∈ A1. Thus (A1M)A 1

2
⊂ A1. Using (6) and

(7) we get (a1y)b−1 = −1
2y(a1b−1) = 0 and this means that (A1M)A−1 = 0.

Next, we prove that A 1
2
M ⊂ M . More precisely, we establish that A 1

2
M ⊂

I = 0. Identity (13) gives (a 1
2
y)b−1 = [a 1

2
y]

1
b−1 = −1

3 [[a 1
2
b−1] 1

2

y]
−1

−
1
3 [a 1

2
[yb−1] 1

2
]−1

= 0.
Finally, from the definition of M we obtain A−1M = 0.

7 Simple Algebras

We are now ready to prove our main result.

Theorem 1 Let A be a 3-Jordan algebra and assume that A has an idempo-
tent element. If A is simple then A is either a Jordan algebra or a pseudo-
composition algebra.

Proof By Proposition 1, A has the Peirce decomposition A = A1⊕A 1
2
⊕A−1⊕

A0. Let J be the ideal of A established by Lemma 3. Since A is simple, we
have two possibilities: J = A or J = 0.

First case: J = A = I +A 1
2
I +[A 1

2
(A 1

2
I)]0. Here, A = A1⊕A 1

2
⊕A0, where

A1 = I, A 1
2

= A 1
2
I, and A0 = [A 1

2
(A 1

2
I)]0. Notice that A−1 = 0. By Lemma

1, A satisfies (1), (3), (5), (9), (12), (14), (16) and (21). Since all conditions
of Proposition 6.7 of Osborn [10] are satisfied, we may conclude that A is a
Jordan algebra.

Second case: J = 0. In particular, we have I = 0. Using (23), (A1, A1, A1) ⊂
I = 0. Therefore A1 is a commutative and associative algebra.

In this second case we will show that A is a pseudo-composition algebra.
The proof is long. We present it in a series of lemmas.

Lemma 5 The Peirce subspace A0 is zero. Therefore A = A1 ⊕ A 1
2
⊕ A−1.

Proof We claim that L = A0 +A0A 1
2

is an ideal of A. We have A1A0 = 0 and
by (9) A1(A0A 1

2
) ⊂ (A1A 1

2
)A0 ⊂ A0A 1

2
; hence A1L ⊂ L. We know that

A 1
2
(A0A 1

2
) = [A 1

2
(A0A 1

2
)]

1
+ [A 1

2
(A0A 1

2
)]−1

+ [A 1
2
(A0A 1

2
)]

0
.

Using (13) we get

3[(a0b 1
2
)c 1

2
]
1
d−1 = −[[(a0b 1

2
)d−1] 1

2

c 1
2
]
−1

− [(a0b 1
2
)[c 1

2
d−1] 1

2

]
−1

.
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But by (19) [(a0b 1
2
)d−1] 1

2

= 0 and by (15) [(a0b 1
2
)[c 1

2
d−1] 1

2

]
−1

= 0. Thus

[(a0b 1
2
)c 1

2
]
1
d−1 = 0 and this means that [(a0b 1

2
)c 1

2
]
1

∈ I. It follows that
[A 1

2
(A0A 1

2
)]

1
⊂ I and since I = 0 we obtain [A 1

2
(A0A 1

2
)]

1
= 0. By (15)

[A 1
2
(A0A 1

2
)]−1

= 0. Therefore A 1
2
(A0A 1

2
) = [A 1

2
(A0A 1

2
)]

0
⊂ A0 ⊂ L and,

since A 1
2
A0 ⊂ L we have that A 1

2
L ⊂ L. We know that A−1A0 = 0 and that

A−1(A0A 1
2
) = 0 by (19), hence A−1L ⊂ L. Therefore AL ⊂ L, i.e., L is an

ideal of A.
Since A is simple L = 0 or L = A. Since e ∈ A, but e /∈ L it follows that

L = 0 and also that A0 = 0.

We let A1 be an isomorphic image of A1. If a is an element of A1, we use
a to denote the image of a in A1. We define a multiplication between a ∈ A1

and x ∈ A as follows:

ax = a[x]1 + 2a[x] 1
2
− a[x]−1.

Lemma 6 The algebra A is an algebra over the commutative associative ring
A1.

Proof To prove the lemma it is enough to verify that a(xy) = (ax)y = x(ay),
for any a ∈ A1 and x, y ∈ A. We will show that a([x]i[y]j) = (a[x]i)[y]j =
[x]i(a[y]j) (i, j = 1, 1

2 ,−1). Since A1 is associative we get

a([x]1[y]1) = (a[x]1)[y]1 = [x]1(a[y]1).

We now will show that (A1, A 1
2
, A1)A 1

2
⊂ A1. We know from Lemma 4 that

M is an ideal of A. Since A is simple and e /∈ M we must have M = 0. Using
(4) and (2) we obtain

[(a1(b1c 1
2
))d 1

2
]−1

= −1
2
a1[(b1c 1

2
)d 1

2
]−1

=
1
4
a1(b1[c 1

2
d 1

2
]−1

) =

1
4
b1(a1[c 1

2
d 1

2
]−1

) = −1
2
b1[(a1c 1

2
)d 1

2
]−1

= [(b1(a1c 1
2
))d 1

2
]−1

.

This implies that [(a1, c 1
2
, b1)d 1

2
]−1

= 0. It follows that (a1, c 1
2
, b1)d 1

2
= [(a1, c 1

2
, b1)d 1

2
]
1

∈ A1. We will now show that (A1, A 1
2
, A1)A−1 = 0. Since A 1

2
A−1 ⊂ A1 + A 1

2

we have by (24) that

(A1, A 1
2
, A1)A−1 = [(A1, A 1

2
, A1)A−1]

1
+ [(A1, A 1

2
, A1)A−1] 1

2

= 0.

In the two previous results we have shown that (A1, A 1
2
, A1) ⊂ M . Since

M = 0, we get (A1, A 1
2
, A1) = 0. Using this last fact and (1) we obtain

a([x]1[y] 1
2
) = (a[x]1)[y] 1

2
= [x]1(a[y] 1

2
).
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By (2) we have

a([x]1[y]−1) = (a[x]1)[y]−1 = [x]1(a[y]−1).

We know that A 1
2
A 1

2
⊂ A1 + A−1. Thus (A 1

2
, A1, A 1

2
) = [(A 1

2
, A1, A 1

2
)]

1
+

[(A 1
2
, A1, A 1

2
)]−1

= [(A 1
2
, A1, A 1

2
)]

1
by (4). By (25) we get [(A 1

2
, A1, A 1

2
)]

1
A−1 =

0. This says that (A 1
2
, A1, A 1

2
) ⊂ I. Since I ⊂ J and we are in the case J = 0,

we get (A 1
2
, A1, A 1

2
) = 0. This last fact and identities (3) and (4) gives

a([x] 1
2
[y] 1

2
) = (a[x] 1

2
)[y] 1

2
= [x] 1

2
(a[y] 1

2
).

Identities (6) and (7) yield

a([x] 1
2
[y]−1) = (a[x] 1

2
)[y]−1 = [x] 1

2
(a[y]−1).

Finally, by (10) we obtain

a([x]−1[y]−1) = (a[x]−1)[y]−1 = [x]−1(a[y]−1).

Lemma 7 The algebra A1 is a field.

Proof Let N be a nonzero ideal of A1. Since (nx)y = n(xy) for any n ∈ N
and x, y ∈ A, NA is an ideal of A. Since Ne = N ⊂ NA, NA �= 0. Since A is
simple, we must have NA = A. It follows that NA1 = A1. The fact that N is
an ideal of A1 implies that NA1 ⊂ N . Thus A1 = NA1 ⊂ N and so N = A1.
We have shown that A1 is a simple algebra. Since we already know that A1

is commutative and associative, we conclude that A1 is a field. Since A1 is an
isomorphic image of A1 we have that A1 is also a field.

We define the symmetric bilinear function φ : A × A → A1 by setting

φ(x, x) = [x]21 + 2[[x] 1
2
[x] 1

2
]
1

+ [[x] 1
2
[x]−1]

1
− [x]2−1.

The next step is to prove that for any x ∈ A we have x3 = φ(x, x) x.
To make the notation readable in the next lemmas, we let a = [x]1, b = [x] 1

2

and c = [x]−1. Notice that

φ(x, x) = a2 + 2[b2]1 + [bc]1 − c2.

Lemma 8 We have (b + c)3 = φ(b + c, b + c) (b + c).

Proof We first prove that (b + c)3 = φ(b + c, b + c) (b + c) + d, where

d = [[b2]−1b]1 + [b2]−1c + 2[[bc] 1
2
b]1 + 2[[bc] 1

2
c]1.

We have

(b + c)3 = (b + c)2(b + c) = (b2 + 2bc + c2)(b + c) =
b2b + 2(bc)b + c2b + b2c + 2(bc)c + c2c.
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We have the following equations:

b2b = [b2]1b + [b2]−1b = [b2]1b + [[b2]−1b]1 + [[b2]−1b] 1
2

=

[b2]1b + [[b2]−1b]1 + 3[b2]1b

by (12);

2(bc)b = 2[bc]1b + 2[bc]1
2
b = 2[bc]1b + 2[[bc]1

2
b]

1
+ 2[[bc]1

2
b]−1

=

2[bc]1b + 2[[bc]1
2
b]

1
− 3[b2]1c

by (13);

b2c = [b2]1c + [b2]−1c;

2(bc)c = 2[bc]1c + 2[bc]1
2
c = 2[bc]1c + 2[[bc]1

2
c]

1
+ 2[[bc]1

2
c]

1
2

=

−[bc]1c + 2[[bc]1
2
c]

1
− 3bc2

since [bc]1c = 0 by (18), and by (17). Therefore

(b + c)3 = (4[b2]1 + 2[bc]1 − 2c2) b + (−2[b2]1 − [bc]1 + c2) c + d =

(2 [b2]1 + [bc]1 − c2) (b + c) + d =

φ(b + c, b + c) (b + c) + d.

We now prove that d = 0. Since A is an algebra over the field A1 (Lemmas
6 and 7), we have

((b + c)3, e, b + c) = (φ(b + c, b + c) (b + c) + d, e, b + c) =
φ(b + c, b + c)(b + c, e, b + c) + (d, e, b + c).

Since ((b + c)3, e, b + c) = 0 and (b + c, e, b + c) = 0 we get (d, e, b + c) = 0.
Then 1

2db + 2dc = 0. This implies db = 0. Therefore d = 0 or b = 0. But if
b = 0 then d = 0. In either case, we have d = 0.

Lemma 9 For any x ∈ A we have x3 = φ(x, x) x. Therefore A is a pseudo-
composition algebra over A1.

Proof We have x = a + p, where p = b + c. Therefore

x3 = (a + p)2(a + p) = (a2 + 2ap + p2)(a + p) =
a2a + a2p + 2(ap)a + 2(ap)p + p2a + p2p.

Since a2a = a2a, a2p = a2(1
2b − c) and 2(ap)a = 2a(ap) = 2a(a(1

2 b − c)) =
a2(1

2
b + 2c) we have

a2a + a2p + 2(ap)a = a2(a + b + c). (26)
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We have

2(ap)p = 2 (a(
1
2
b − c)) (b + c) = 2 a(

1
2
b2 − 1

2
bc − c2) = a(b2 − bc − 2c2) =

a([b2]1 − [b2]−1 − [bc]1 − 2[bc] 1
2
− 2c2)

and

p2a = ap2 = a(b2 + 2bc + c2) = a([b2]1 + [b2]−1 + 2[bc]1 + 2[bc]1
2

+ c2).

By Lemma 8 we get

p2p = φ(p, p) p = (2[b2]1 + [bc]1 − c2) (b + c) =

(2[b2]1 + [bc]1 − c2) (a + b + c) + (−2[b2]1 − [bc]1 + c2)a.

Thus

2(ap)p + p2a + p2p = (2[b2]1 + [bc]1 − c2) (a + b + c). (27)

Adding equations (26) and (27) we obtain

x3 = (a2 + 2[b2]1 + [bc]1 − c2) (a + b + c) = φ(x, x) x.

Therefore x3 = φ(x, x) x for any x ∈ A. We have proved that A is a
pseudo-composition algebra over A1.

8 Further Remarks

In this section we determine necessary and sufficient conditions for a
3-Jordan algebra with idempotent to be a Jordan algebra, and for a 3-Jordan
algebra with idempotent to be pseudo-composition algebra.

Theorem 2 Let A be a 3-Jordan algebra. Suppose that A contains an idem-
potent e with Peirce decomposition A = A1 ⊕ A 1

2
⊕ A−1 ⊕ A0. Then A is a

Jordan algebra if and only A−1 = 0 and A0 is a Jordan subalgebra of A.

Proof If A is a Jordan algebra then its Peirce decomposition is A = A1⊕A 1
2
⊕

A0 and the relations

A2
1 ⊂ A1, A1A 1

2
⊂ A 1

2
, A1A0 = 0, A2

1
2
⊂ A1 + A0, A 1

2
A0 ⊂ A 1

2
, A2

0 ⊂ A0 (28)

hold (see Osborn [10], p. 219). In particular, A−1 = 0 and A0 is a Jordan
subalgebra of A.

Conversely, assume that A−1 = 0 and A0 is a Jordan subalgebra of A. Then
by Proposition 1 relations (28) are satisfied and identities (1), (3), (5), (9), (12),
(14), (16) and (21) hold. Therefore, by Proposition 6.7 in Osborn [10], A is
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a Jordan algebra if and only if A1 and A0 are Jordan subalgebras of A. By
our hypothesis, A0 is a Jordan subalgebra of A. Therefore, to conclude that
A is a Jordan algebra, it remains to prove that A1 is a Jordan subalgebra of
A. Since A2

1 ⊂ A1 we have that A1 is a subalgebra of A. Let x, y ∈ A1. From
f(x, e, x, y, x) = 0 we obtain 3(x2, y, x) + (x3, y, e) = 0. Since (x3, y, e) = 0, we
get (x2, y, x) = 0. Therefore A1 is a Jordan algebra.

As a consequence of our Proposition 5 and Theorem 2, and Proposition 3.2
of Meyberg and Osborn [9] we obtain the following result.

Corollary 1 The algebra J(φ, V, P ) is a Jordan algebra if and only if P is of
e-quadratic type satisfying x2 + γ(x)x = 0 (γ �= 0).

Theorem 3 Let A be a 3-Jordan algebra over K. Suppose that A contains an
idempotent e with Peirce decomposition A = A1 ⊕ A 1

2
⊕ A−1 ⊕ A0. Then A is

a pseudo-composition algebra if and only if A1 = Ke and A0 = 0.

Proof If A is a pseudo-composition algebra then it has a Peirce decomposition
A = Ke ⊕ A 1

2
⊕ A−1 (see Meyberg and Osborn [9]). Therefore A1 = Ke and

A0 = 0.
Conversely, let A be a 3-Jordan algebra and suppose it has a Peirce decom-

position A = Ke ⊕ A 1
2
⊕ A−1. In our present case, φ(x, x) ∈ K and φ(x, x) =

φ(x, x)e. As in the Lemma 9, for any x ∈ A, we have that x3 = φ(x, x) x.
Therefore A is a pseudo-composition algebra over K.

It follows from Proposition 5 and Theorem 3 that J(φ, V, P ) is a 3-Jordan
algebra which is not a pseudo-composition algebra.

Corollary 2 The following assertions are equivalent.
(i) The algebra A is a 3-Jordan algebra and contains an idempotent e with
Peirce decomposition A = Ke⊕A 1

2
⊕A−1 ⊕A0 satisfying A−1 = 0 and A0 = 0

(respectively, A 1
2

= 0 and A0 = 0).
(ii) The algebra A is a pseudo-composition algebra with Peirce decomposition
A = Ke ⊕ A−1 ⊕ A 1

2
satisfying A−1 = 0 (respectively, A 1

2
= 0).

(iii) The algebra A is of e-quadratic type satisfying x2 + β(x)x = 0, β �= 0
(respectively, x2 + β(x)x + γ(x, x)e = 0, γ(e, e) = −3, β(x) = −2

3γ(x, e).)

Proof This is an immediate consequence of our Theorem 3 and Proposition
3.2 of Meyberg and Osborn [9].
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