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Abstract

For a right Noetherian ring A with the center R = Z(A), and a finitely
generated right A-module M , we show:

(1) P ∈ Ass(M) implies that P ∩ R ∈ Supp(M).

(2) P ∈ Min.Supp(M) implies that there exists Q ∈ Ass(M) such that
Q ∩ R = P .

This result has several applications in determining the nilradical of the
center of a Noetherian ring. We also give a conceptually simple proof of
the fact that the center of an Artinian ring is semiprimary. Some other
related results are obtained for irreducible rings.

1 INTRODUCTION

A ring R means always a ring with identity. For a Noetherian ring R, N(R)
denotes the nil radical or the prime radical of R. For an ideal I of R, C(I)
denotes the set of elements of R that are regular modulo I. Let M be a right R-
module and S be a subset of M , then the right annihilator of S in R is denoted
by Ann(S). Let B be a subset of a set A, then Bc denotes the complement
of B in A. For any ring A we denote by Z(A) and J(A) the center and the
Jacobson radical of A, respectively.

It is well known that the center of a right Artinian ring R is usually not
Artinian, however considering the center Z(R) as the endomorphism ring of
(R⊗Rop)-module, R of finite length; it follows that Z(R) is necessarily semipri-
mary ;i.e. the Jacobson radical J(R) is nilpotent and R/J(R) is Artinian. For
these results see [1]. In this paper we determine the center of a right Noetherian
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ring. We first define Ass(M) for a right R-module. We use central localisation
to prove Theorem 2.12 which is crucial for determining the minimal prime
ideals of the center of a right Noetherian ring. Let A be a right Noetherian
ring with R a subring of the center of A with same identity as in A. We then
show that for any minimal prime ideal P of R there exists a minimal prime
ideal Q of A such that P = Q ∩ R. We also show that the number of minimal
prime ideals of R is finite. This yields a result that N(A) ∩ R = N(R). Such
results are general results for a right Noetherian ring A. In fact we easily show
that if A is an Artinian ring; then the center of A is a semiprimary ring. This
proof is conceptually clear and simpler than that given by Jensen and Jondrup
in [1]. We finally prove that if P is a minimal prime ideal of a right Noetherian
and irreducible ring A, then P ∩R is a minimal prime ideal of R where R is a
subring of the center of A.

2 CENTER OF NOETHERIAN RINGS

We begin with the following Proposition.

Proposition 2.1 Let A be a right Noetherian ring and M be a finitely gener-
ated right A-module, and let R be a subring of Z(A) that contains the identity of
A. Then the set S = {Ideals I of A such that I = Ann(U), 0 �= U ⊆ M a sub-
module} contains a maximal element P which is a prime ideal of A. Moreover,
if P = Ann(V ), 0 �= V ⊆ M , then P = Ann(K), for all 0 �= K ⊆ M .

Proof Choose P ∈ S maximal by Noetherian condition on A. Now P =
Ann(V ) for some 0 �= V ⊆ M . Let IJ ⊆ P where I and J are ideals of A.
If I �⊂ P then V I �= 0. Now IJ ⊆ P = Ann(V ) implies that V IJ = 0, so
J ⊆ Ann(V I). Let T = Ann(V I) so that J ⊆ T . Now T ∈ S and since
P = Ann(V ), P ⊆ T . But P is maximal in S, so T = P and so J ⊆ P . So P
is a prime ideal of A. Other things are obvious. �
Definition 2.2 Let V be an A-module. V �= 0 such that Ann(V ) = P and
Ann(T ) = P for all 0 �= T ⊆ V , then we call V a prime module.

Definition 2.3 Let M be an A-module and 0 �= V ⊆ M be a prime module
with Ann(V ) = P , we say P is the assasinator of M . The set of all assasinators
of M is denoted by Ass(M).

Remark 2.4 Proposition 2.1 says that for a Noetherian module M over a
right Noetherian ring A, Ass(M) �= φ. Also if V is a prime module, we can
choose V to be cyclic such that V ≈ (A/I), I a right ideal of A and P =
Ann(A/I).

Definition 2.5 A right ideal I of a ring A is said to be a prime right ideal of
A if xAy ⊆ I, x �∈ I implies that y ∈ I.



V. K. Bhat 63

Definition 2.6 Let I be a right ideal of a ring A. An ideal J is called the
bound of I if J ⊆ I and J is the largest ideal contained in I.

Proposition 2.7 Let A be a right Noetherian ring. Let M be a cyclic prime
module with Ann(M) = P . If M ≈ (A/I), then P is a bound of I and I is a
prime right ideal of A.

Proof P = Ann(M) implies that P = Ann(A/I), so clearly P is a bound of
I. Now let xAy ⊆ I, x �∈ I. Now xA is a right ideal of A and xA �⊂ I. Now
(xA+ I)/I is a right A- submodule of A/I. Also ((xA+ I)/I)y = xAy + I = I,
the zero of A/I. So y ∈ Ann((xA + I)/I). So y ∈ P ⊆ I and so I is a prime
right ideal. �

Let A be a ring and S be a multiplicative closed subset of R, where R is
a subring of Z(A) such that 1 ∈ S where 1 is the identity of R with R and
S having no zero divisors. We construct MS for any right A-module M as
the equivalence class of pairs (m,s) where m ∈ M and s ∈ S and (m, s) (k, q)
if there exists t ∈ S such that (mq − ks)t = 0. Denote equivalence class of
(m,s) by (m/s). With suitable addition and multiplication MS becomes a right
A-module. If M = A, then AS is a ring and MS is a right AS-module with
multiplication (m/t)(r/s)=(mr/ts). Let f : M → MS be the map given by
f(m)=(m/1). It is easily seen that f is an A-map. If M = A, then f is a ring
homomorphism. With this we state the following two Propositions which can
be proved easily:

Proposition 2.8 The functor M → MS is exact ;i.e. AS is a flat A-module.

Proposition 2.9 The map I → IS gives a one-one correspondence between
the prime right ideals of A with I ∩S = φ and all the proper prime right ideals
of AS. The inverse map is given by I → f−1(I), where f is the natural map
A → AS.

Proposition 2.10 Let A be a right Noetherian ring. Let R ⊆ Z(A) be a
subring of Z(A) and S ⊆ R be a multiplicative closed set. If M is a finitely
generated right A-module and if PS ∈ Ass(M∗A∗), where M∗ = MS and A∗ =
AS , then for P ∩ S = φ, f−1(PS) = P ∈ Ass(MA), where f is the usual map
A → AS.

Proof PS ∈ Ass(M∗A∗), so there exists a prime submodule 0 �= U∗ ⊆ M∗
such that Ann(U∗) = PS ∈ AS and Ann(V ∗) = Ann(U∗) for all 0 �= V ∗ ⊆ U∗.
We can choose U∗ cyclic and such that U∗ = CS for some non zero submodule
0 �= C ⊆ M . So by 2.7 and 2.8 CS ≈ (AS/IS) and IS a prime right ideal
with bound PS . Now Ann(CS) = PS implies that Ann(AS/IS) = PS . Note
that ((1/1)+ IS).PS = 0 as PS ⊆ IS . So (1 + I)P.t = 0, t ∈ S. So (1 + I)t �= 0,
so t �∈ I as I ∩ S = φ. Now generate a non zero R-module by t + I and
call it J/K. Note that J/K = (t + I)R �= 0 and (t + I)R = (tR + I)/I.
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Now P ⊆ Ann((tR + I)/I) and since I ∩ S = φ with I a prime right ideal
with bound P , we have P = Ann((tR + I)/I) because if P ⊆ L such that
((tR + I)/I)L = 0,then tL ⊆ I. But t �∈ I, so L ⊆ I which is a contradiction.
Similarly we can show that P ∈ Ass(M) and P ∩ S = φ. �
Definition 2.11 Let R ⊆ Z(A) as usual. Let M be an A-module and P ⊆ R
be a prime ideal of R. Let S = (P ∩R)c , the complement of P ∩R in R. Denote
localisation of M at S by MS. Define support(M) = {Prime ideals P of R such
that MS �= 0}.We denote support(M) by Supp(M). Min.Supp(M) = {Prime
ideals P of R such that P is minimal with the property that MS �= 0}.
Theorem 2.12 Let A be a right Noetherian ring and M a finitely generated
A-module, then:

(1) P ∈ Ass(M) implies that P ∩ R ∈ Supp(M).

(2) If P ∈ Min.Supp(M), then there exists Q ∈ Ass(M) such that Q ∩ R =
P , where R is a subring of Z(A).

Proof (1). Let P ∈ Ass(M), then P = Ann(C), 0 �= C ⊆ M and C
prime cyclic right A-module, so C ≈ (A/I), I a prime right ideal with P as
bound of I. Now 0 → (A/I) → M is exact and 0 → S−1(A/I) → S−1(M)
is injection where S−1(M) etc denotes the usual localisation at S = (P ∩ R)c.
Now S−1(A/I) �= 0 implies that S−1(M) �= 0. So (P ∩ R) ∈ Supp(M).

(2). Let P ∈ Min.Supp(M). For any prime ideal P of A, S−1(P ) ∩
S−1(R) = S−1(P∩R) , where S−1(M) denotes the usual localisation at S = P c.
Denote S−1(M) and S−1(P ) by T and L respectively. Now localize T at L
which is unique maximal ideal of S−1(R). Now T �= 0 implies that TL �= 0.
Now for any prime ideal B of R with B ⊂ P , we have TU = 0, because
U = S−1(B) ∈ Min.Supp(T ). Now by 2.4 T �= φ. Let D be a prime ideal
such that V = S−1(D) ∈ Ass(T ), then TF �= 0, where F = S−1(D ∩R) . Also
V ∩S−1(R) ⊆ L because L is the unique maximal ideal of S−1(R). So F = L as
F ∈ Supp(T ) by above. Thus V ∩S−1(R) = L. It can be easily seen from this
that D ∩R = P and V = S−1(D) ∈ Ass(T ) easily yields that D ∈ Ass(M). �

We now give several applications of our main Theorem. We determine the
Nilradical of the center of a Noetherian ring. We also give a conceptually simple
proof of the fact that the center of an Artinian ring is semiprimary. Finally we
apply the main Theorem to give a precise form of the minimal prime ideals of
the center of an irreducible right Noetherian ring.

Proposition 2.13 Let A be a Noetherian ring and R be a subring of Z(A).
Then for any minimal prime ideal Q of R, Q = P ∩ R where P is a minimal
prime ideal of A.

Proof Note that AQ �= 0 and Q ∈ Min.Supp(A). So there exists P ∈ Ass(A)
such that P ∩R = Q by 2.12. Let U ⊆ P be a minimal prime ideal of A, then
U ∩R = Q = P ∩ R, because Q is a minimal prime ideal. �
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Proposition 2.14 Let A be a Noetherian ring and R be a subring of Z(A),
then:

(1) N(A) ∩ R = N(R).

(2) The number of minimal prime ideals of R is finite.

Proof (1). We have N(R) = ∩Pi, Pi all minimal prime ideals of R. Now
each Pi = Qi ∩R for some minimal prime ideal Qi of A and since Qi are finite,
so N(R) = (Q1 ∩ R) ∩ (Q2 ∩ R) ∩ ... ∩ (Qn ∩ R). Now N(A) ∩ R ⊆ N(R) and
since A is right Noetherian, so for A nil radical= prime radical. Let x ∈ N(R),
so x is nilpotent. So that xA ⊆ N(A) implies that

∑
xiA ⊆ N(A) for all

xi ∈ N(R). So N(R)A ⊆ N(A) and N(R) ⊆ N(R)A ∩ R ⊆ N(A) ∩ R. So
N(R) = N(A) ∩ R.

(2). Obvious by 2.12. �
We now use 2.12 to prove that the centre of an Artinian ring is semiprimary.

We also recall that in an Artinian ring all prime ideals are minimal (and indeed
maximal). One may see Theorem (2.3.9) and Corollary (3.2.26) of [2].

Proposition 2.15 Let A be a right Artinian ring and R = Z(A). If Q is a
maximal ideal of R, then Q = P ∩ R for some minimal prime ideal P of A.

Proof Let Pj, 1 ≤ j ≤ n be the minimal prime ideals of A. If Q ⊆ (∪(Pj∩R)),
1 ≤ j ≤ n, then Q ⊆ Pj ∩R , for some Pj and so Q = Pj ∩R as Q is maximal.
Now suppose Q �⊂ (∪(Pj∩R)), then there exists c ∈ Q such that c �∈ (∪(Pj∩R))
and so c �∈ (Pj ∩ R) for all j. Now let cx ∈ N(A) so that cx ∈ Pj for all j, so
cAx ⊆ Pj. Now c ∈ R, so c �∈ Pj implies that x ∈ Pj for all j, 1 ≤ j ≤ n. Hence
x ∈ N(A) and so c ∈ C(N(A)). But A is right Artinian, so c ∈ C(0). So c
is a unit of A. So ct=1, t ∈ A implies that t ∈ Z(A) = R. But c ∈ Q which
contradicts the fact that Q is a maximal ideal of Z(A) = R. So Q ⊆ (∪(Pj∩R)),
1 ≤ j ≤ n. Hence as above Q = Pj ∩ R for some j, 1 ≤ j ≤ n. �

Theorem 2.16 Let A be a right Artinian ring and R = Z(A), then N(R) =
J(R). Also J(R) is nilpotent and R is semiprimary.

Proof We have N(R) = N(A)∩R by 2.14. Now for a minimal prime ideal Q of
R there exists a minimal prime ideal P of A such that Q = P∩R by 2.12. Let M
be a maximal ideal of R, then M = T ∩R for some minimal prime ideal T of A.
So number of maximal ideals of R is finite, say Mj , 1 ≤ j ≤ m are the maximal
ideals of R. So J(R) = ∩Mj , 1 ≤ j ≤ m. Now given any minimal prime ideal
P of A, P ∩ R is a prime ideal of R. In fact if S is a maximal ideal of R such
that S ⊇ P ∩R, then S = P ∩R by 2.15. So N(R) = J(R) = N(A)∩R and so
J(R) is nilpotent. Now by Chinese Remainder Theorem, namely Proposition
(2.2.1) of [2] (R/J(R)) ≈ (

∏
(R/Mj)) , where Mj, 1 ≤ j ≤ m are distinct

maximal ideals of R. So R/J(R) is Artinian and hence R is semiprimary. �
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Remark 2.17 Such results are not true for subrings of Artinian rings as it is
well known by considering the examples of the ring of integers Z and the field
of rational numbers Q. We are unable to prove in 2.13 that if P is a minimal
prime ideal of A , then P ∩Z(A) is a minimal prime ideal of Z(A). However one
can do this for irreducible rings. Notice that a ring A is called an irreducible
ring if the intersection of any two non-zero ideals of A is non-zero. Irreducible
rings are important in the sense that if A is a right Noetherian ring, then there
exist ideals Ij, 1 ≤ j ≤ n such that ∩Ij = 0 and each R/Ij is an irreducible
ring. We leave the proof of these obvious results to the reader.

Proposition 2.18 Let A be a right Noetherian ring which is irreducible and
R ⊆ Z(A). Let c ∈ R be non-nilpotent, then c is regular in A.

Proof Since c is central, the right and left annihilators of c in A coincide.
Call each AnnA(c). Suppose AnnA(c) �= 0. Now by ascending chain condition
there exists an integer t ≥ 1 such that AnnA(ct) = AnnA(ct+s) for all integers
s ≥ 1. Since c is not nilpotent, ct �= 0 and by our hypothesis on A, we have
(ctA)∩AnnA(c) �= 0. So there is an a ∈ A such that 0 �= cta ∈ AnnA(c) which
implies that a ∈ AnnA(ct+1) = AnnA(ct) which is a contradiction as cta �= 0.
So c is regular in A. �

Theorem 2.19 Let A be a right Noetherian ring which is irreducible and R ⊆
Z(A). Let P be a minimal prime ideal of A, then P ∩ R is a minimal prime
ideal of R.

Proof Note that number of minimal prime ideals of R is finite as any minimal
prime ideal Qj of R is such that Qj = Pj ∩ R for some minimal prime ideal
Pj of A. So let Qj , 1 ≤ j ≤ m be the minimal prime ideals of R. Now let P
be a minimal prime ideal of A and suppose P ∩ R ⊆ (∪Qj), then P ∩ R ⊆ Qj

for some j, 1 ≤ j ≤ m and so P ∩ R = Qj. So P ∩ R is a minimal prime ideal
of R. Now suppose (P ∩ R) �⊂ (∪Qj), then there exists c ∈ P ∩ R such that
c �∈ (∪Qj), so c �∈ Qj for all j, 1 ≤ j ≤ m. So c ∈ C(Qj) for all j, 1 ≤ j ≤ m. So
c ∈ C(N(R)) = C(N(A) ∩ R). So c is not nilpotent, so by 2.18 c is a regular
element of A. So c �∈ P which is a contradiction. So P ∩ R ⊆ (∪Qj) and as
above P ∩ R is a minimal prime ideal of R. �
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