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Abstract

The purpose of this paper is to study the theory of germ of r−reticular
map under the action of the group Diffr(n). The main result is to find
the relations between versal deformations and infinitesimal deformations
of a germ r−reticular map.

1. INTRODUCTION AND BASIC CONCEPTS

One of these questions of Catastrophe theory is an investigation of the singu-
larities of map-germ after perturbation. The aim of this paper is to generalize
Mather’s deformation theory of reticular map-germ. This is a preparation to
classify reticular map-germs under an algebraic criterion.

The paper contains two sections. The first section deals with the basis
notations, and the second gives some results on the relations between versal
deformation and an infinitesimal deformation of a germ of r−reticular map in
real case.

Let f, g : R
n → R

p be C∞-differentiable maps. We say that f and g define
a germ at x0 ∈ U ⊂ R

n, if there exists a neighbourhood V of x0 in U such that
f ≡ g on V . We denote by ε(n, p) the set of germs of differentiable maps at 0
from R

n to R
p. We write ε(n) instead of ε(n, 1).

Fix an r ∈ N, 0 ≤ r ≤ n, and consider Xi to be a germ of the set
{(x1, x2, ..., xn) ∈ R

n | xi = 0}. Denote P (Ir), the family of all subsets of
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56 Deformations of r-reticular map germs

the set Ir = {1, 2, ..., r}.
The collection X = (Xσ)σ∈P(Ir ) where Xσ = ∩i∈σXi, is called a germ of

r−reticular manifold. Denote by Diffr(n), the set {Φ: (Rn, 0) → (Rn, 0) | Φ is
a diffeomorphism germ at zero, such that Φ(Xσ) = Xσ , σ ∈ P (Ir)}.

Let f : X → Y be a map from X into Y , where X, Y are smooth manifold-
germs. Denote by f the collection (fσ)σ∈P(Ir ), where fσ = f |Xσ . We call it a
r-reticular map-germ, and we write f : X → Y .

We say that two germs f, g are r−reticular equivalent if there exists Φ ∈
Diffr(n) such that f = g ◦Φ.

Definition 1.1 Let f : X → Y be a r−reticular map-germ and let U be an
open subset of R

p, we say that a map-germ F : X × U 	 (x, u) 
→ F (x, u) ∈ Y
is a q−parameter deformation of f if F (x, 0) = f(x).

Definition 1.2 A deformation F of f is said to be a constant deformation if
F is of the following form: F (x, u) = f(x)

Definition 1.3 We say two q−parameter deformations F1, F2 of the r−reticular
germ f are r−reticularly equivalent if there exists g : (X × R

q , 0) → (X, 0),
g(Xi, 0) = Xi, ∀i = 1, ..., r and g(x, 0) = x such that F1(x, u) = F2(g(x, u), u).

Definition 1.4 Let F : X×U → Y be a q−parameter deformation of r−reticular
germ f : X 
→ Y and U, U ′ be open subsets of R

q, and h : (U ′, 0) → (U, 0), u′ 
→
h(u′) be a smooth map-germ. Then, the map h ∗ F : X × U ′ 	 (x, u′) 
→
F (x, h(u′)) ∈ Y is called a deformation induced from F by the map h.

Definition 1.5 An r-reticular germ f is stable if any deformation of f is
reticularly equivalent to the constant deformation of f.

Definition 1.6 A deformation F of f is said to be versal if every deformation
of f is r-reticularly equivalent to one induced from F.

Definition 1.7 We denote by R{Ḟ1, ..., Ḟq} the vector subspace of ε(n), which
is generated by Ḟ1, ..., Ḟq, where Ḟi = ∂F

∂ui
(x, 0) and (e1, . . . , ep) is the canonical

basis of ε(n, p). We write

Trf = ε(n){x1
∂f

∂x1
, ..., xr

∂f

∂xr
,

∂f

∂xr+1
, ...,

∂f

∂xn
} + f∗ε(p)(e1 , . . . , ep),

where f∗ε(p) is the subring of ε(n) defined by f∗ε(p) = {k ◦f : k ∈ ε(p)}ε(n).
We say that a q-parameter deformation F of f is an infinitesimally versal

deformation if:

Trf + R{Ḟ1, ..., Ḟq} = ε(n)
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2. RESULTS

Theorem 2.1 Let f : X → Y be a r−reticular germ and let U be open set in
R

q, and F : X×U 	 (x, u) 
→ F (x, u) ∈ Y be a q−parameter deformation of f.
Then the deformation F is infinitesimally versal if it is a versal deformation.

Proof For any α ∈ ε(n, p), we construct an 1-parameter deformation F ′(x, t) =
f(x) + tα(x) of f. Since F is versal, there exist g, ϕ such that f(x) + tα(x) =
F (g(t, x), ϕ(t)), where g : X × R → X, g(x, 0) = x and g is of the form

g(x, t) = (x1g1(x, t), . . . , xrgr(x, t), gr+1(x, t), . . . , gn(x, t)),

and
ϕ : R → R

q, ϕ(0) = 0,

such that g and ϕ are smooth germs. Differentiating by t at 0, we get:
α(x) = F ′(g(x, t), ϕ(t))|t=0

=
r∑

i=1

xi
∂F
∂xi

. ∂gi(x,t)
∂t

|t=0 +
n∑

i=r+1

∂F
∂xi

. ∂gi(x,t)
∂t

|t=0 +
q∑

i=1

∂F
∂ui

. ∂ϕi

∂t
|t=0

=
r∑

i=1
xi

∂f

∂xi
hi(x) +

n∑
i=r+1

∂f

∂xi
hi(x) +

q∑
i=1

CiḞi(x)

where hi(x) = ∂gi(x,t)
∂t |t=0, Ḟi(x) = ∂F

∂ui
, Ci = ∂ϕi(t)

∂t |t=0. The proof of the theo-
rem is now completed. �

Before going to the next result, we need the following lemmas.

Lemma 2.2 Let f ∈ ε(n, p), Φ ∈ ε(n+q, p) and let Φ be q−parameter deforma-
tion of f , and F ∈ ε(n+q−1, p) is defined by F (x, t2, ..., tq) = Φ(x, 0, t2, ..., tq).
If there exists a vector field germ X at 0 ∈ R

n × R
q such that

1) X = ∂Φ
∂t1

+
q∑

i=2
εi(t) ∂Φ

∂ti
+

n∑
i=1

Xi(x, t) ∂Φ
∂xi

2) X ◦ φ = 0,

then there exists a submersion map-germ h : (Rq, 0) → (Rq−1, 0) such that Φ is
r−reticularly equivalent to h ∗ F .

Proof If follows readily from the condition 2 that φ is a constant deformation
of F. Hence X is constant of vector field

v =
∂Φ
∂t1

+
q∑

i=2

εi(t)
∂Φ
∂ti

in a neighbourhood of 0 ∈ R
q . If Ψ(t1, ..., tq) = (t1, Ψt1(t2, ..., tq)) is a locally

diffeomorphism, defined by the integral of vector field v, then h : (t1, ..., tq) →
Ψ−1

t1
(t2, ..., tq) is the required map and we have

φ = (h ∗ F )(ΠX(x, t), t)
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where ΠX : X × R
q 	 (x, t) → x ∈ X is canonically projective. Therefore φ is

r-reticularly equivalent to h ∗ F. �
Lemma 2.3 Let F be an infinitesimally versal q−parameter deformation of
f and Φ be an 1-parameter deformation of F. Then the deformation Φ is
r−reticularly equivalent to the deformation induced from F .

Proof Since F is an infinitesimally versal deformation of f , we have

ε(n) =
r∑

i=1

xi
∂f

∂xi
ε(n) +

n∑

i=r+1

∂f

∂xi
ε(n) + R{Ḟ1, ..., Ḟq}.

It is equivalent to

ε(n + 1, p) =
r∑

i=1

xi
∂Φ
∂xi

ε(n + 1) +
n+1∑

i=r+1

∂Φ
∂xi

ε(n + 1) + ε(1){Φ̇1, ..., Φ̇q}. (∗)

In particular, if ∂Φ
∂t ∈ ε(n + 1, p), by (*) we get

∂Φ
∂t

=
r∑

i=1

xiXi(x, t)
∂Φ
∂xi

+
n+1∑

i=r+1

Xi(x, t)
∂Φ
∂xi

+
q∑

i=1

ε(t)
∂Φ
∂λi

Taking X = ∂Φ
∂t − ∑q

i=1 ε(t) ∂Φ
∂λi

− ∑r
i=1 xiXi(x, t) ∂Φ

∂xi
− ∑n

i=r+1 Xi(x, t) ∂Φ
∂xi

,
then by Lemma 2.2, we have X ◦φ = 0. Hence the deformation Φ is equivalent
to h ∗ F for some h, proving our Lemma. �
Theorem 2.4 Any infinitesimally versal deformation is versal.

Proof Let F be an infinitesimally versal q−parameter deformation of f and
suppose that F ′ is any deformation of f with parameter λ′ ∈ R

q′
. Consider

the deformation F̂ (x, λ, λ′) = F (x, λ) + F ′(x, λ′) − f(x), and the sequence of
subspaces R

q ⊂ R
q+1 ⊂ ... ⊂ R

q+q′
. Since F is an infinitesimally versal, we see

that F̂1 = F̂ |λ′
2=...=λ′

q′=0 is equivalent to the induced deformation of F.

We will prove that if F is infinitesimally versal, then F̂1 is infinitesimally
versal too. Indeed, since F is infinitesimally versal, we have

ε(n, p) = Trf + R[Ḟ1, ..., Ḟq] (∗′)

and Ḟi = [ ˙̂
F1]i, i = 1, 2, ..., q. Therefore, {R[Ḟ1, ..., Ḟq]} ⊂ R{[ ˙̂

F1]1, ..., [
˙̂

F1]q+1}.
Hence the condition (∗′) is satisfied.

By the same argument above, we see that F̂2 = F̂ |λ′
3=...=λ′

q′=0 is equivalent

to the induced deformation from F̂1. Similarly, we get F̂i, is equivalent to the
induced deformation from ˆFi−1, i = 2, ..., q′, and therefore F̂ is equivalent to
the induced deformation of F, proving our Theorem. �
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From now on, we denote by Ir
f , the ideal generated by (x1

∂f
∂x1

, . . . , xr
∂f
∂xr

,
∂f

∂xr+1
, ∂f

∂xn
) and Or

f to be the ring defined by ε(n, p)/Ir
f . The symbol ∼= means

an isomorphism between two rings.

Theorem 2.5 Let f : X → Y, g : X → Y be two stable r-reticular map-germs.
If f is reticularly equivalent to g, then Or

f and Or
g are isomorphic.

Before giving the proof of theorem 2.5, we have the following remark. Given
a germ Φ: (Rn, 0) → (Rp, 0), we obtain a mapping Φ∗ : ε(p) → ε(n) by the
formula λ → λ◦Φ. One can easily check that Φ∗ is an algebra homomorphism.
It is said to be induced by Φ.

Since f, g are equivalent, there exists Φ ∈ Diffr(n) such that f = g ◦Φ. Def-
ferentiating by xi, we get ∂f

∂xi
= ∂(g◦Φ)

∂xi
=

∑n
j=1(

∂g
∂xj

◦Φ)∂Φj

∂xi
=

∑n
j=1 Φ∗( ∂g

∂xj
)∂Φj

∂xi

It implies that
Ir
f ⊆ Φ∗(Ir

g ) (1)

By the same argument above, we see that if f = g ◦ Φ, then g = f ◦ Φ−1.

Hence ∂g
∂xi

= ∂(f◦Φ−1)
∂xi

=
∑n

j=1(
∂f
∂xj

◦Φ−1)
∂Φ−1

j

∂xi
=

∑n
j=1(Φ

−1)∗( ∂f
∂xj

)
∂Φ−1

j

∂xi
. This

shows that Ir
g ⊆ (Φ−1)∗(Ir

f ). It implies that

Φ∗(Ir
g ) ⊆ Φ∗[(Φ−1)∗(Ir

f )] = (Φ−1 ◦ Φ)∗(Ir
f ) = Ir

f

This shows that
Φ∗(Ir

g ) ⊆ Ir
f (2)

From (1) and (2), it follows that Ir
f = Φ∗(Ir

g ) and therefore Ir
f
∼= Ir

g . Hence
Or

f
∼= Or

g, proving our theorem. �
Problem Suppose that Or

f
∼= Or

g. Are f and g reticularly equivalent?
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